

Algebraic neural network theory

Kathlén Kohn
KTH

WASP | WALLENBERG AI
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

 Göran Gustafssons Stiftelse

NTK approach

target
network

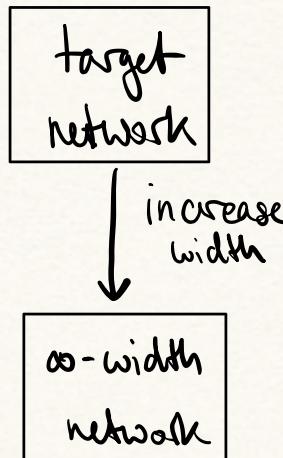
↓
increase
width

∞ -width
network

linearized models

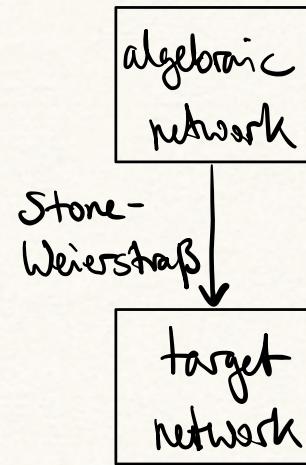
at ∞ dimension

NTK approach



linearized models
of ∞ dimension

AG approach



nonlinear models in
finite-dimensional ambient spaces

Stone - Weierstraß

continuous
functions

let X compact Hausdorff space & A subalgebra of $C(X, \mathbb{R})$ containing a non-zero constant function.

A is dense in $C(X, \mathbb{R})$
in supremum norm

$\Leftrightarrow A$ separates points
(i.e., $\forall x \neq y \in X \exists f \in A : f(x) \neq f(y)$)

Cor: $X \subseteq \mathbb{R}^n$ compact, $f: X \rightarrow \mathbb{R}^m$ continuous, $\varepsilon > 0$.
 $\Rightarrow \exists p: X \rightarrow \mathbb{R}^m$ polynomial function such that
 $\forall x \in X: \|f(x) - p(x)\| < \varepsilon$.

Example: MLPs ← multilayer perceptrons

$$\alpha_L \circ \sigma \circ \dots \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_1$$

α_i = learnable affine linear functions

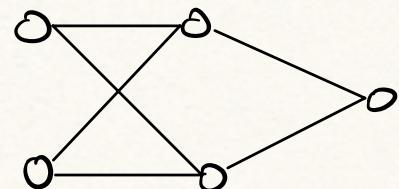
σ = nonlinear activation function, applied entrywise

we assume: σ is a univariate polynomial

Ex: $\sigma(x) = x^2$

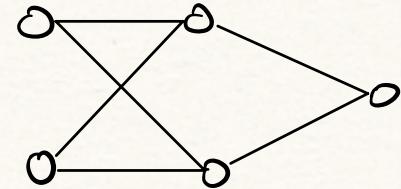
$$[e \ f] \sigma \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$

Which functions does this MLP parametrize?



Ex: $\sigma(x) = x^2$

$$[e \ f] \sigma \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$



Which functions does this MLP parametrize?

$$e^{(ax+by)^2} + f(cx+dy)^2$$

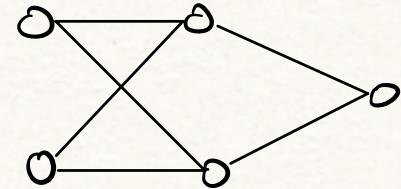
$$= \underbrace{(a^2e + c^2f)}_A x^2 + \underbrace{2(abe + cdf)}_B xy + \underbrace{(b^2e + d^2f)}_C y^2$$

Can you obtain all of $\mathbb{R}[x,y]_2$?

i.e., are all values for A, B, C possible?
 ↗ homogeneous quadratic polynomials in xy

Ex: $\sigma(x) = x^2$

$$[e \ f] \sigma \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$



Which functions does this MLP parametrize?

$$\begin{aligned} & e^{(ax+by)^2} + f(cx+dy)^2 \\ &= \underbrace{(a^2e + c^2f)}_A x^2 + \underbrace{2(abe + cdf)}_B xy + \underbrace{(b^2e + d^2f)}_C y^2 \end{aligned}$$

Can you obtain all of $\mathbb{R}[x,y]_2$?

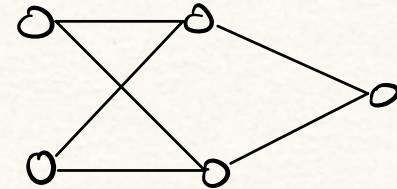
i.e., are all values for A, B, C possible?
↗ homogeneous quadratic polynomials in xy

YES

What about $\sigma(x) = x^3$?

Ex: $\sigma(x) = x^3$

$$\begin{bmatrix} e & f \end{bmatrix} \sigma \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$



Which functions does this MLP parametrize?

$$e(ax+by)^3 + f(cx+dy)^3$$

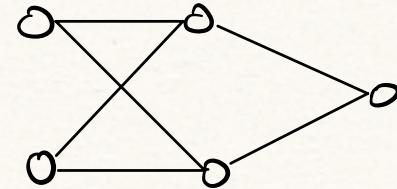
$$= \underbrace{(a^3e + c^3f)}_A x^3 + \underbrace{3(a^2be + c^2df)}_B x^2y + \underbrace{3(ab^2e + cd^2f)}_C xy^2 + \underbrace{(b^3e + d^3f)}_D y^3$$

Can you obtain all of $\mathbb{R}[x,y]_3$?

i.e., are all values for A, B, C, D possible?
 ↗ homogeneous cubic polynomials in x, y

Ex: $\sigma(x) = x^3$

$$[e \ f] \sigma \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$



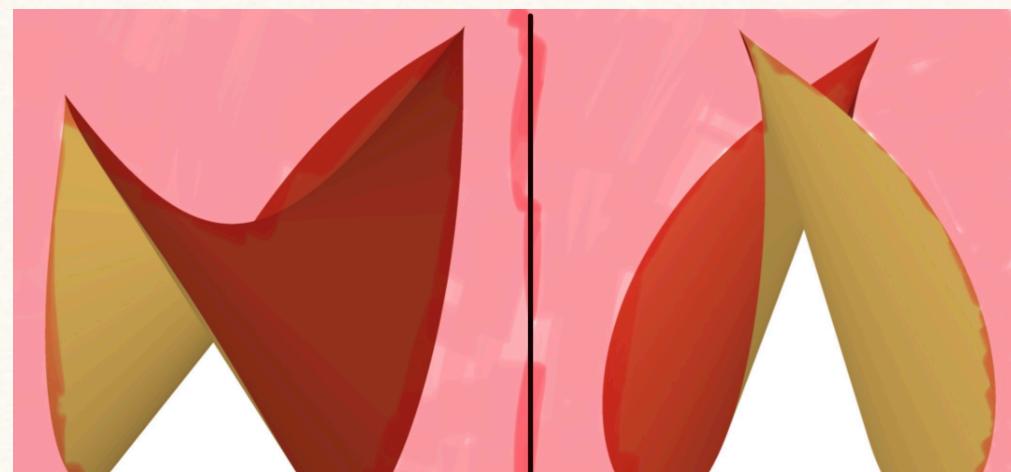
Which functions does this MLP parametrize?

$$\begin{aligned} & e(ax+by)^3 + f(cx+dy)^3 \\ &= \underbrace{(a^3e + c^3f)x^3}_A + \underbrace{3(a^2be + c^2df)x^2y}_B + \underbrace{3(ab^2e + cd^2f)xy^2}_C + \underbrace{(b^3e + d^3f)y^3}_D \end{aligned}$$

Can you obtain all of $\mathbb{R}[x,y]_3$?

↖ homogeneous cubic polynomials in x,y
i.e., are all values for A, B, C, D possible?

No, e.g. $A = 1$
 $B = 0$
 $C = -1$
 $D = 0$



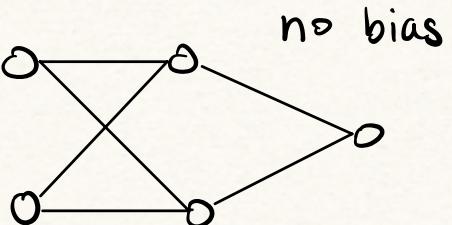
Neuromanifolds

A parametric machine learning model is a map $\mu: \Theta \times X \rightarrow Y$.

Θ $\xrightarrow{\text{parameters}}$ X $\xrightarrow{\text{inputs}}$ Y $\xrightarrow{\text{outputs}}$

Its **neuromanifold** is $\mathcal{M} := \{\mu(\theta, \cdot): X \rightarrow Y \mid \theta \in \Theta\}$.

Examples:



$$\sigma(x) = x^2$$

$$\Rightarrow \mathcal{M} = \mathbb{R}[x_1, y]_2$$

$$\sigma(x) = x^3$$

$$\Rightarrow \mathcal{M} \subsetneq \mathbb{R}[x_1, y]_3$$

$$\sigma(x) = x$$

$$\Rightarrow ?$$

Neuromanifolds

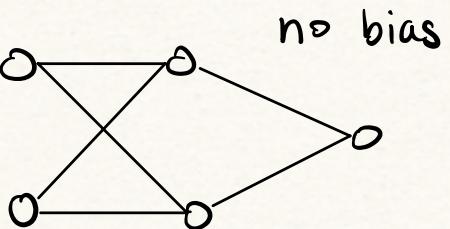
A parametric machine learning model is a map $\mu: \Theta \times X \rightarrow Y$.

$\Theta \times X \xrightarrow{\mu} Y$

parameters inputs outputs

Its **neuromanifold** is $\mathcal{M} := \{\mu(\theta, \cdot): X \rightarrow Y \mid \theta \in \Theta\}$.

Examples:



$$\sigma(x) = x^2$$

$$\Rightarrow \mathcal{M} = \mathbb{R}[x_1, y]_2$$

$$\sigma(x) = x^3$$

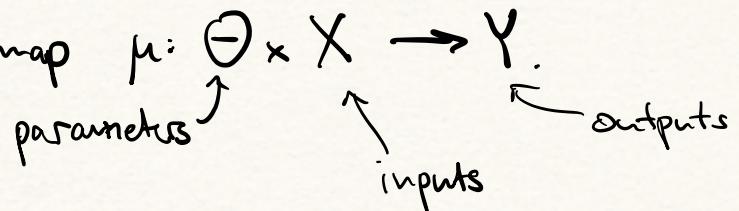
$$\Rightarrow \mathcal{M} \subsetneq \mathbb{R}[x_1, y]_3$$

$$\sigma(x) = x$$

$$\Rightarrow \mathcal{M} = \mathbb{R}^{1 \times 2}$$

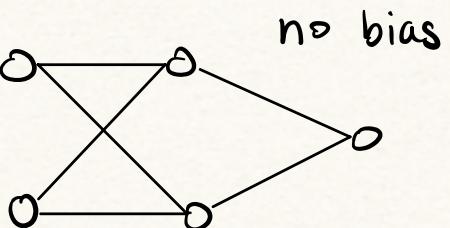
Neuromanifolds

A parametric machine learning model is a map $\mu: \Theta \times X \rightarrow Y$.



Its **neuromanifold** is $M := \{ \mu(\theta, \cdot): X \rightarrow Y \mid \theta \in \Theta \}$.

Examples:



$$\sigma(x) = x^2$$

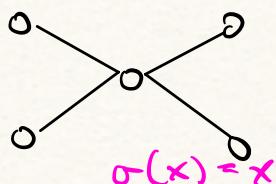
$$\Rightarrow M = \mathbb{R}[x_1, y]_2$$

$$\sigma(x) = x^3$$

$$\Rightarrow M \subsetneq \mathbb{R}[x_1, y]_3$$

$$\sigma(x) = x$$

$$\Rightarrow M = \mathbb{R}^{1 \times 2}$$

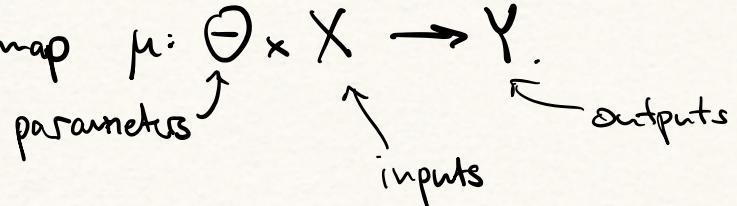


$$\begin{bmatrix} c \\ d \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\Rightarrow M = ?$$

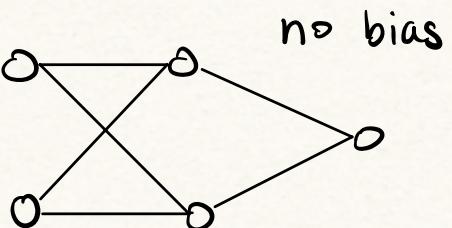
Neuromanifolds

A parametric machine learning model is a map $\mu: \Theta \times X \rightarrow Y$.



Its **neuromanifold** is $M := \{\mu(\theta, \cdot): X \rightarrow Y \mid \theta \in \Theta\}$.

Examples:



$$\sigma(x) = x^2$$

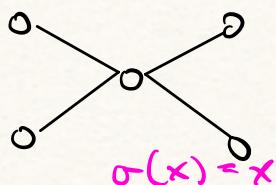
$$\Rightarrow M = \mathbb{R}[x_1, y]_2$$

$$\sigma(x) = x^3$$

$$\Rightarrow M \subsetneq \mathbb{R}[x_1, y]_3$$

$$\sigma(x) = x$$

$$\Rightarrow M = \mathbb{R}^{1 \times 2}$$



$$\begin{bmatrix} c \\ d \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\Rightarrow M = \{W \in \mathbb{R}^{2 \times 2} \mid \text{rk}(W) \leq 1\}$$

Linear MLPs: $\alpha_L \circ \dots \circ \alpha_2 \circ \alpha_1$, where
 $\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ linear

$\Rightarrow \mathcal{M} = ?$

Linear MLPs: $\alpha_L \circ \dots \circ \alpha_2 \circ \alpha_1$, where

$\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ linear

$$\Rightarrow \mathcal{M} = \{W \in \mathbb{R}^{d_L \times d_0} \mid \text{rk}(W) \leq \min\{d_0, d_1, \dots, d_L\}\}$$

Linear MLPs: $\alpha_L \circ \dots \circ \alpha_2 \circ \alpha_1$, where

$\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ linear

$$\Rightarrow \mathcal{M} = \{W \in \mathbb{R}^{d_L \times d_0} \mid \text{rk}(W) \leq \min\{d_0, d_1, \dots, d_L\}\}$$

Polynomial MLPs: $\alpha_L \circ \sigma \circ \dots \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_1$, where

$\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ affine linear

$\sigma \in \mathbb{R}[x]_{\leq 8}$

$\Rightarrow \mathcal{M}$ lives in a finite-dimensional vector space, namely ?

Linear MLPs: $\alpha_L \circ \dots \circ \alpha_2 \circ \alpha_1$, where

$\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ linear

$$\Rightarrow \mathcal{M} = \{W \in \mathbb{R}^{d_L \times d_0} \mid \text{rk}(W) \leq \min\{d_0, d_1, \dots, d_L\}\}$$

Polynomial MLPs: $\alpha_L \circ \sigma \circ \dots \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_1$, where

$\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ affine linear

$\sigma \in \mathbb{R}[x]_{\leq s}$

$\Rightarrow \mathcal{M}$ lives in a finite-dimensional vector space, namely

$$(\mathbb{R}[x_1, \dots, x_{d_0}]_{\leq g^{L-1}})^{d_L}$$

Linear MLPs: $\alpha_L \circ \dots \circ \alpha_2 \circ \alpha_1$, where

$\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ linear

$$\Rightarrow \mathcal{M} = \{W \in \mathbb{R}^{d_L \times d_0} \mid \text{rk}(W) \leq \min\{d_0, d_1, \dots, d_L\}\}$$

Polynomial MLPs: $\alpha_L \circ \sigma \circ \dots \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_1$, where

$\alpha_i: \mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_i}$ affine linear

$\sigma \in \mathbb{R}[x]_{\leq s}$

$\Rightarrow \mathcal{M}$ lives in a finite-dimensional vector space, namely

$$(\mathbb{R}[x_1, \dots, x_{d_0}]_{\leq g^{L-1}})^{d_L}$$

Polynomial MLPs are the only ones with that property!

Leshno, Lin, Pinkus, Schocken: Multilayer feedforward networks with a non-polynomial activation function can approximate any function.

Neural Networks 6, 1993:

Theorem 1:

Let $\sigma \in M$. Set

$$\Sigma_n = \text{span} \{ \sigma(w \cdot x + \theta) : w \in R^n, \theta \in R \}.$$

Then Σ_n is dense in $C(R^n)$ if and only if σ is not an algebraic polynomial (a.e.).

Leshno, Lin, Pinkus, Schocken: Multilayer feedforward networks with a non-polynomial activation function can approximate any function.
Neural Networks 6, 1993:

Theorem 1:

Let $\sigma \in M$. Set

$$\Sigma_n = \text{span} \{ \sigma(w \cdot x + \theta) : w \in R^n, \theta \in R \}.$$

Then Σ_n is dense in $C(R^n)$ if and only if σ is not an algebraic polynomial (a.e.).

polynomials are the choice
to approximate networks with
finite-dimensional models

AG approach

algebraic
network

Stone-
Weierstraß

target
network

nonlinear models in
finite-dimensional ambient spaces

Network training = "distance" minimization

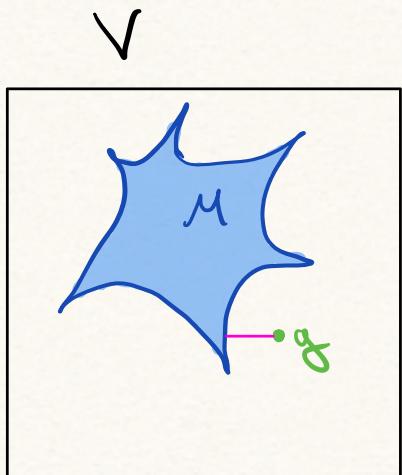
Let $M \subseteq V := \left(\mathbb{R}[x_1, \dots, x_{d_o}] \leq \mathcal{D} \right)^{d_L}$,
↑ neuromanifold

$S \subseteq \mathbb{R}^{d_o} \times \mathbb{R}^{d_L}$ finite dataset,

MSE loss: $\mathcal{L}(f) := \sum_{(a, b) \in S} \|f(a) - b\|^2$

↳ $\text{dist}(f, g) = 0$ possible for $f \neq g$

Proposition: There is a pseudometric $\text{dist}: V \times V \rightarrow \mathbb{R}_{\geq 0}$ and some $g \in V$ such that minimizing $\mathcal{L}(f)$ over $f \in M$ is equivalent to minimizing $\text{dist}(f, g)$ over $f \in M$.



Why?

Network training = "distance" minimization

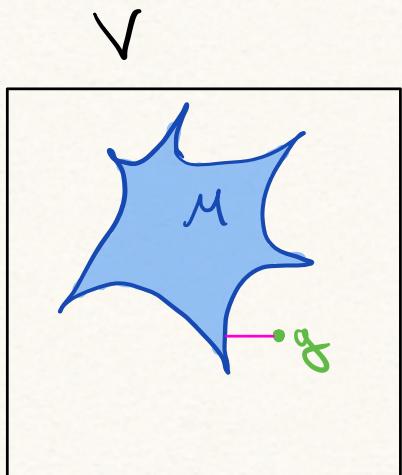
Let $M \subseteq V := \left(\mathbb{R}[x_1, \dots, x_{d_o}] \leq D \right)^{d_L}$,
 ↪ neurmanifold

$S \subseteq \mathbb{R}^{d_o} \times \mathbb{R}^{d_L}$ finite dataset,

MSE loss: $\mathcal{L}(f) := \sum_{(a, b) \in S} \|f(a) - b\|^2$

↳ $\text{dist}(f, g) = 0$ possible for $f \neq g$

Proposition: There is a pseudometric $\text{dist}: V \times V \rightarrow \mathbb{R}_{\geq 0}$ and some $g \in V$ such that minimizing $\mathcal{L}(f)$ over $f \in M$ is equivalent to minimizing $\text{dist}(f, g)$ over $f \in M$.



Assume: $d_L = 1$

Let $\nu_D(x_1, \dots, x_{d_o}) \mapsto$ (all monomials in x_1, \dots, x_{d_o} of degree $\leq D$),
 c_f be coefficient vector of $f \in V$ such that $f(x) = \nu_D(x) \cdot c_f$,

Veronese
embedding ↗

Network training = "distance" minimization

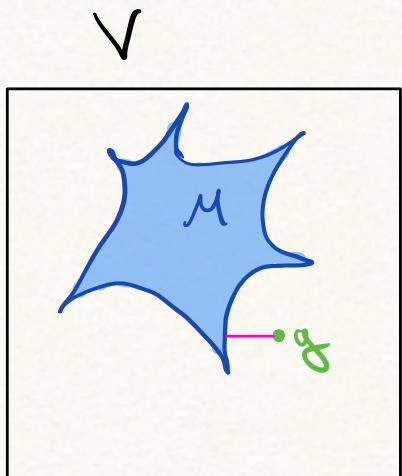
Let $M \subseteq V := \left(\mathbb{R}[x_1, \dots, x_{d_o}] \leq D \right)^{d_L}$,
 ↪ neuromanifold

$S \subseteq \mathbb{R}^{d_o} \times \mathbb{R}^{d_L}$ finite dataset,

MSE loss: $\mathcal{L}(f) := \sum_{(a, b) \in S} \|f(a) - b\|^2$
 ↪ mean squared error

↳ $\text{dist}(f, g) = 0$ possible for $f \neq g$

Proposition: There is a pseudometric $\text{dist}: V \times V \rightarrow \mathbb{R}_{\geq 0}$ and some $g \in V$ such that minimizing $\mathcal{L}(f)$ over $f \in M$ is equivalent to minimizing $\text{dist}(f, g)$ over $f \in M$.



Assume: $d_L = 1$

Let $v_D(x_1, \dots, x_{d_o}) \mapsto$ (all monomials in x_1, \dots, x_{d_o} of degree $\leq D$),
 c_f be coefficient vector of $f \in V$ such that $f(x) = v_D(x) \cdot c_f$,
 A & B matrices whose rows are $v_D(a) \& b$, resp., over all $(a, b) \in S$

Veronese
embedding ↗

$$\Rightarrow \mathcal{L}(f) = \|A c_f - B\|^2$$

Network training = "distance" minimization

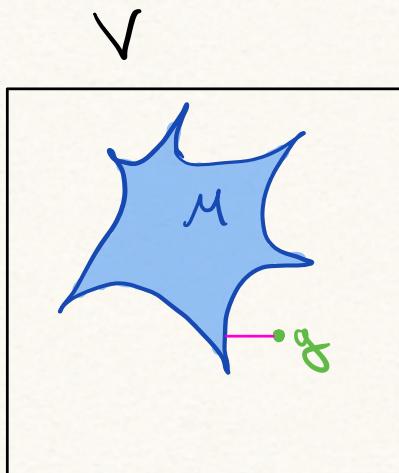
Let $M \subseteq V := \left(\mathbb{R}[x_1, \dots, x_{d_o}] \leq D \right)^{d_L}$,
 ↪ neuromaniifold

$S \subseteq \mathbb{R}^{d_o} \times \mathbb{R}^{d_L}$ finite dataset,

MSE loss: $\mathcal{L}(f) := \sum_{(a, b) \in S} \|f(a) - b\|^2$
 ↪ mean squared error

↳ $\text{dist}(f, g) = 0$ possible for $f \neq g$

Proposition: There is a pseudometric $\text{dist}: V \times V \rightarrow \mathbb{R}_{\geq 0}$ and some $g \in V$ such that minimizing $\mathcal{L}(f)$ over $f \in M$ is equivalent to minimizing $\text{dist}(f, g)$ over $f \in M$.



Assume: $d_L = 1$

Let $v_D(x_1, \dots, x_{d_o}) \mapsto$ (all monomials in x_1, \dots, x_{d_o} of degree $\leq D$),
 c_f be coefficient vector of $f \in V$ such that $f(x) = v_D(x) \cdot c_f$,
 A & B matrices whose rows are $v_D(a) \& b$, resp., over all $(a, b) \in S$

Veronese
embedding ↗

$$\Rightarrow \mathcal{L}(f) = \|A c_f - B\|^2 = \|c_f - A^+ B\|^2 \xrightarrow{\text{pseudoinverse}} + \text{const.}$$

$$\sim \|c\|_Q := c^T Q c$$

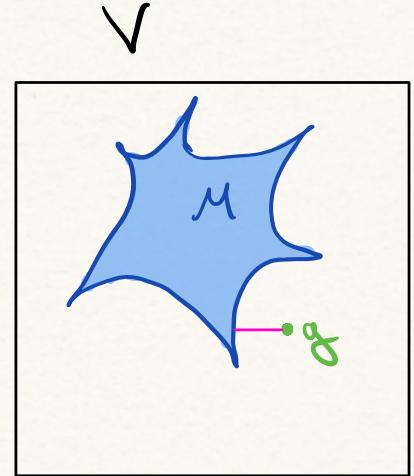
$$\underset{f \in M}{\operatorname{argmin}} \quad L(f) = \underset{f \in M}{\operatorname{argmin}} \quad \| C_f - A^T B \|_{A^T A}^2$$

Observations ($d_L=1$):

① $A^T A$ depends only on input data,
 $A^T B$ on both input & output

② $A^T A \in \mathbb{R}^{\dim V \times \dim V}$ is rank-deficient whenever $|S| < \dim V \Rightarrow$ pseudometric
 \downarrow
 $(\text{LLMs: } |S| < \dim M)$

③



$$\underset{f \in M}{\operatorname{argmin}} \quad L(f) = \underset{f \in M}{\operatorname{argmin}} \quad \| C_f - A^T B \|_{A^T A}^2$$

Observations ($d_L=1$):

① $A^T A$ depends only on input data,
 $A^T B$ on both input & output

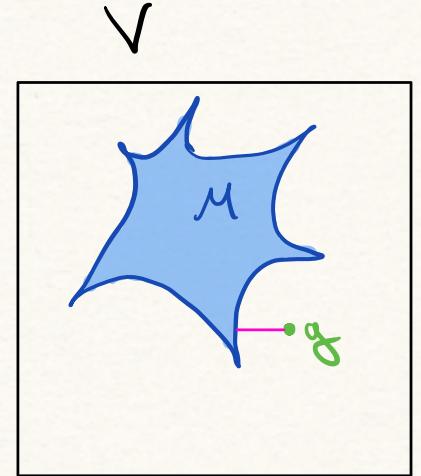
② $A^T A \in \mathbb{R}^{\dim V \times \dim V}$ is rank-deficient whenever $|S| < \dim V \Rightarrow$ pseudometric

③ even when $|S| \geq \dim V$, $A^T A$ is not an arbitrary symmetric PD matrix,
while $A^T B$ yields all vectors $\in \mathbb{R}^{\dim V}$

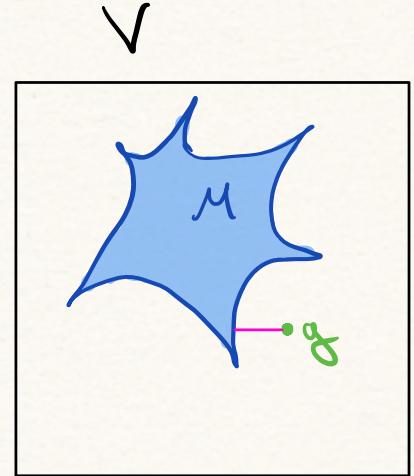
Why?

Which matrices can be obtained?

(try for $d_L=1$: $v(x) = (1, x, x^2, \dots, x^d)$)



$$\underset{f \in M}{\operatorname{argmin}} \quad L(f) = \underset{f \in M}{\operatorname{argmin}} \quad \| C_f - A^T B \|^2_{A^T A}$$

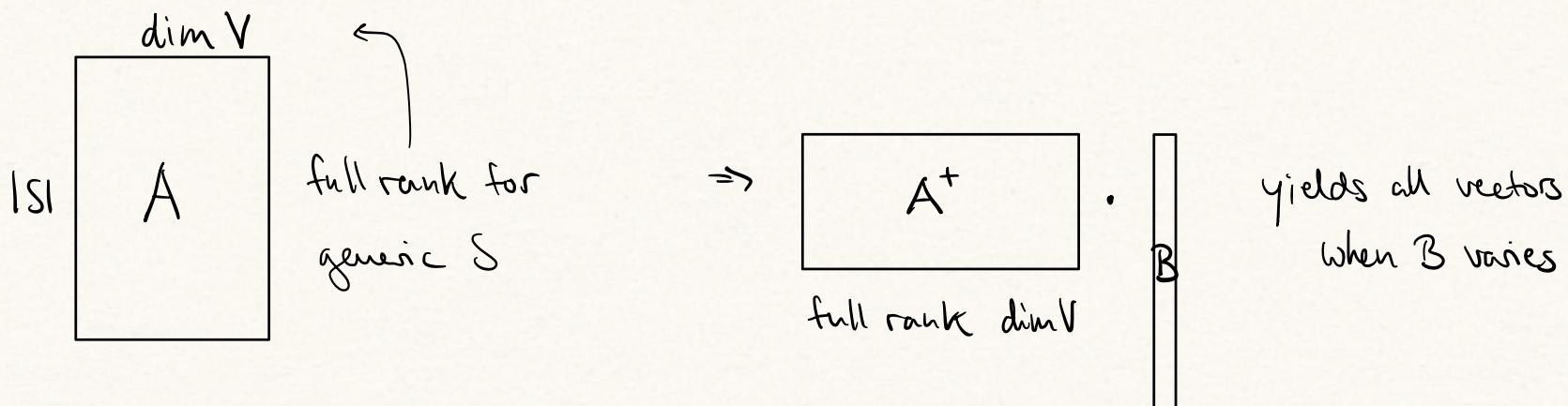


Observations ($d_L=1$):

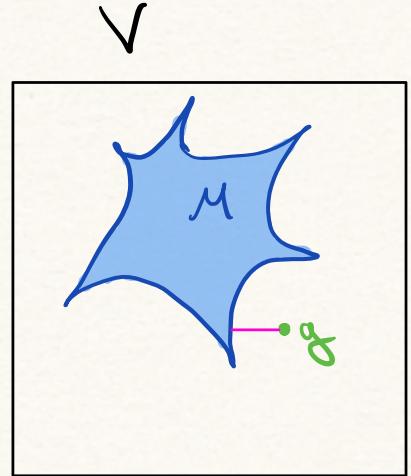
① $A^T A$ depends only on input data,
 $A^T B$ on both input & output

② $A^T A \in \mathbb{R}^{\dim V \times \dim V}$ is rank-deficient whenever $|S| < \dim V$ \Rightarrow pseudometric (LLMs: $|S| < \dim M$)

③ even when $|S| \geq \dim V$, $A^T A$ is not an arbitrary symmetric PD matrix,
while $A^T B$ yields all vectors $\in \mathbb{R}^{\dim V}$



$$\underset{f \in M}{\operatorname{argmin}} \quad L(f) = \underset{f \in M}{\operatorname{argmin}} \quad \| C_f - A^T B \|_{A^T A}^2$$



Observations ($d_L=1$):

① $A^T A$ depends only on input data,
 $A^T B$ on both input & output

② $A^T A \in \mathbb{R}^{\dim V \times \dim V}$ is rank-deficient whenever $|S| < \dim V$ $\xrightarrow{\quad}$ (LLMs: $|S| < \dim M$) \Rightarrow pseudometric

③ even when $|S| \geq \dim V$, $A^T A$ is not an arbitrary symmetric PD matrix,
while $A^T B$ yields all vectors $\in \mathbb{R}^{\dim V}$

$$A^T A = \begin{array}{c|c|c|c} & & & \\ \downarrow i & v(a_1) & \cdots & v(a_{|S|}) \\ \hline & v(a_1) & \cdots & v(a_{|S|}) \\ \downarrow j & & \vdots & \\ & v(a_1) & \cdots & v(a_{|S|}) \end{array}$$

has (i, j) entry $\sum_{(a, b) \in S} v_i(a) v_j(a)$
monomial of degree $\leq 2D$
that can be factored in several ways

Ex.: $d_0 = 1$

$$\Rightarrow v(x) = (1, x, x^2, \dots, x^D)$$

$$\Rightarrow A = \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & a_1^D \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_{151} & a_{151}^2 & \dots & a_{151}^D \end{bmatrix} \text{ Vandermonde matrix}$$

$$\Rightarrow A^T A = \begin{bmatrix} |S| & \sum a_k & \sum a_k^2 & \dots & \sum a_k^D \\ \sum a_k & \sum a_k^2 & \sum a_k^3 & \dots & \sum a_k^{D+1} \\ \sum a_k^2 & \sum a_k^3 & \sum a_k^4 & \dots & \sum a_k^{D+2} \\ \vdots & \vdots & \vdots & & \vdots \\ \sum a_k^D & \sum a_k^{D+1} & \sum a_k^{D+2} & \dots & \sum a_k^{2D} \end{bmatrix} \text{ Hankel matrix}$$

Ex.: $d_0 = 1$

$$\Rightarrow v(x) = (1, x, x^2, \dots, x^D)$$

$$\Rightarrow A = \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & a_1^D \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_{151} & a_{151}^2 & \dots & a_{151}^D \end{bmatrix} \text{ Vandermonde matrix}$$

$$\Rightarrow A^T A = \begin{bmatrix} |S| & \sum a_k & \sum a_k^2 & \dots & \sum a_k^D \\ \sum a_k & \sum a_k^2 & \sum a_k^3 & \dots & \sum a_k^{D+1} \\ \sum a_k^2 & \sum a_k^3 & \sum a_k^4 & \dots & \sum a_k^{D+2} \\ \vdots & \vdots & \vdots & & \vdots \\ \sum a_k^D & \sum a_k^{D+1} & \sum a_k^{D+2} & \dots & \sum a_k^{2D} \end{bmatrix} \text{ Hankel matrix}$$

Ex.: $d_0 = 2, D = 2$

$$\Rightarrow v(x, y) = (1, x, y, x^2, xy, y^2)$$

$$\Rightarrow A^T A = \sum_{\substack{(a,b) \in S \\ a = (x,y)}} \begin{bmatrix} 1 & x & y & x^2 & xy & y^2 \\ 1 & x & y & x^2 & xy & y^2 \\ x & x^2 & xy & x^3 & x^2y & xy^2 \\ y & xy & y^2 & x^3y & x^2y^2 & y^3 \\ x^2 & x^3 & x^2y & x^4 & x^3y & x^2y^2 \\ xy & x^2y & xy^2 & x^3y & x^2y^2 & xy^3 \\ y^2 & xy^2 & y^3 & x^2y^2 & x^2y^3 & y^4 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ x^2 \\ xy \\ y^2 \end{bmatrix}$$

Network training = "distance" minimization

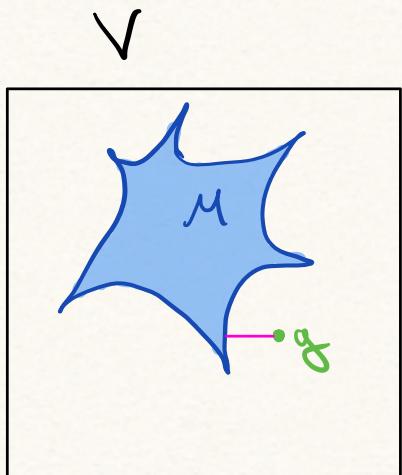
Let $M \subseteq V := \left(\mathbb{R}[x_1, \dots, x_{d_o}] \leq \mathcal{D} \right)^{d_L}$,
 ↪ neuromanifold

$S \subseteq \mathbb{R}^{d_o} \times \mathbb{R}^{d_L}$ finite dataset,

MSE loss: $\mathcal{L}(f) := \sum_{(a, b) \in S} \|f(a) - b\|^2$

↳ $\text{dist}(f, g) = 0$ possible for $f \neq g$

Proposition: There is a pseudometric $\text{dist}: V \times V \rightarrow \mathbb{R}_{\geq 0}$ and some $g \in V$ such that minimizing $\mathcal{L}(f)$ over $f \in M$ is equivalent to minimizing $\text{dist}(f, g)$ over $f \in M$.



$$d_L > 1$$

$$f = (f_1, \dots, f_{d_L}), \quad C_f := \begin{bmatrix} | & | \\ c_{f_1} & \cdots & c_{f_{d_L}} \\ | & | \end{bmatrix}$$

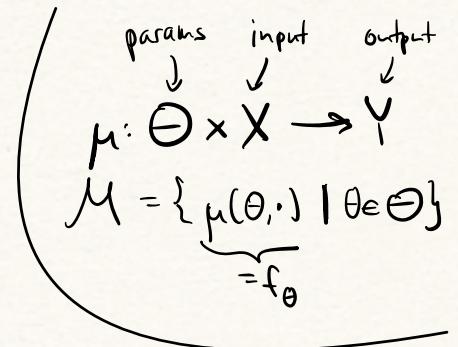
$$\Rightarrow f(x) = v_g(x) \cdot C_f$$

$$\|C\|_Q^2 := \text{tr}(C^T Q C)$$

$$\Rightarrow \mathcal{L}(f) = \|A C_f - B\|_{\text{Frob}}^2 = \|C_f - A^+ B\|_{A^T A}^2 + \text{const.}$$

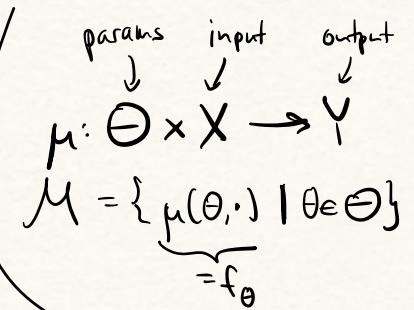
Loss Landscape

$$= \{(\theta, \mathcal{L}(f_\theta)) \mid \theta \in \Theta\}$$



Loss Landscape

$$= \{(\theta, \mathcal{L}(f_\theta)) \mid \theta \in \Theta\}$$



can be studied in a decoupled way:

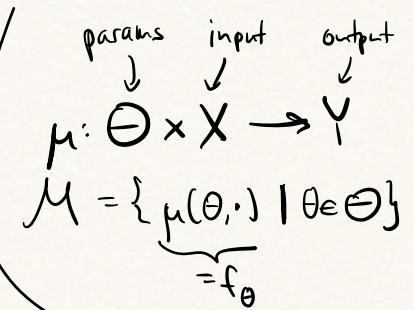
$$\begin{array}{ccc} \Theta & \xrightarrow{\quad} & M \\ \theta & \xrightarrow{\quad} & f_\theta \end{array} \xrightarrow{\mathcal{L}} \mathbb{R}$$

loss landscape in function space:

$$= \{ (f, \mathcal{L}(f)) \mid f \in M \} \subseteq V \times \mathbb{R}$$

Loss Landscape

$$= \{(\theta, \mathcal{L}(f_\theta)) \mid \theta \in \Theta\}$$



can be studied in a decoupled way:

$$\begin{array}{ccc} \Theta & \xrightarrow{\quad} & M \\ \theta & \xrightarrow{\quad} & f_\theta \end{array}$$

$\xrightarrow{\mathcal{L}}$

loss landscape in function space:

$$= \{(f, \mathcal{L}(f)) \mid f \in M\} \subseteq \mathbb{V} \times \mathbb{R}$$

How? *Geometry of M affects loss landscape!*

Which geometric properties does M have?

Geometry of Newmannifolds

$\mu: \Theta \times X \rightarrow Y$ polynomial (in both $\theta \in \Theta$ & $x \in X$)

$$\begin{array}{ccc} \Theta & \longrightarrow & M \\ \theta & \longmapsto & \mu(\theta, \cdot) \end{array}$$

What kind of object is M ?

Geometry of Newmannifolds

$\mu: \Theta \times X \rightarrow Y$ polynomial (in both $\theta \in \Theta$ & $x \in X$)

$$\begin{array}{ccc} \Theta & \longrightarrow & M \\ \theta & \longmapsto & \mu(\theta, \cdot) \end{array}$$

What kind of object is M ?

A semialgebraic set!

↑
describable by
polynomial equations
& inequalities

Geometry of Newmannifolds

$\mu: \Theta \times X \rightarrow Y$ polynomial (in both $\theta \in \Theta$ & $x \in X$)

$$\begin{array}{ccc} \Theta & \longrightarrow & M \\ \theta & \longmapsto & \mu(\theta, \cdot) \end{array}$$

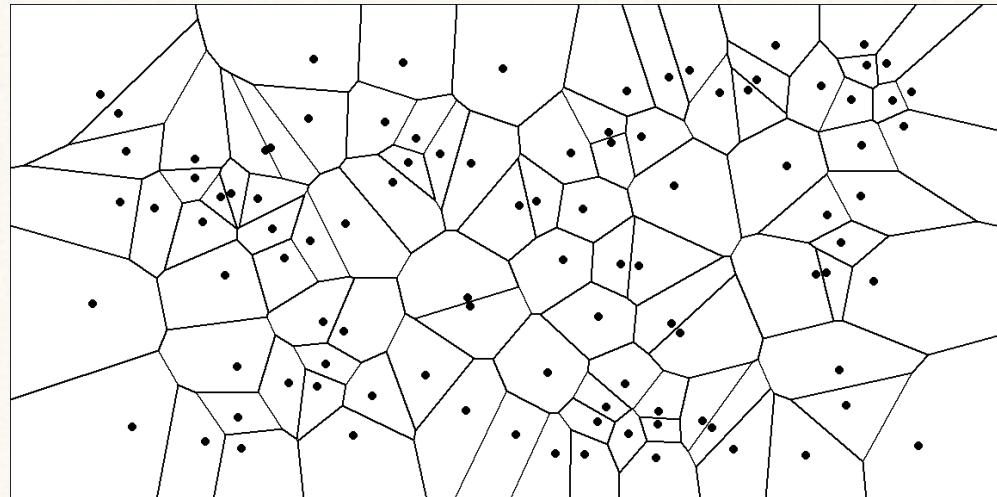
What kind of object is M ?

A semialgebraic set!

↑
describable by
polynomial equations
& inequalities

Euclidean distance
minimization can be
implicitly biased to
singularities & boundaries of M

Voronoi cells

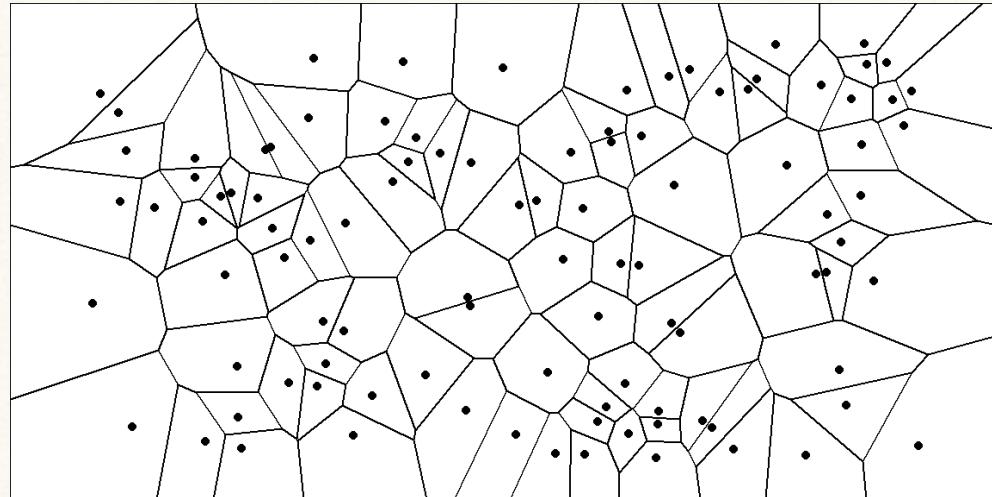


For $S \subseteq \mathbb{R}^n$, the **Voronoi cell** at $p \in S$ is
$$\text{Vor}_S(p) := \{u \in \mathbb{R}^n \mid \forall q \in S, q \neq p: \|p-u\|_2 < \|q-u\|_2\}$$

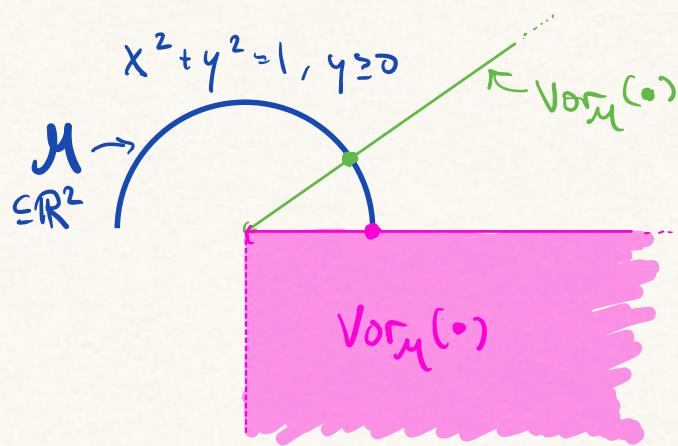
$$M \in \mathbb{R}^2$$
$$x^2 + y^2 = 1, y \geq 0$$

What is the Voronoi cell at • ?
What is the Voronoi cell at • ?

Voronoi cells



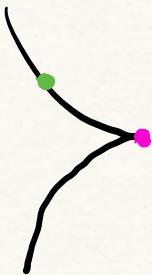
For $S \subseteq \mathbb{R}^n$, the **Voronoi cell** at $p \in S$ is

$$\text{Vor}_S(p) := \{u \in \mathbb{R}^n \mid \forall q \in S, q \neq p: \|p-u\|_2 < \|q-u\|_2\}$$


The **2 relative boundary points** are the only points on M with full-dimensional Voronoi cells!
 ↗ **implicit bias** towards ∂M

points in ∂M are global minima with positive probability on data u

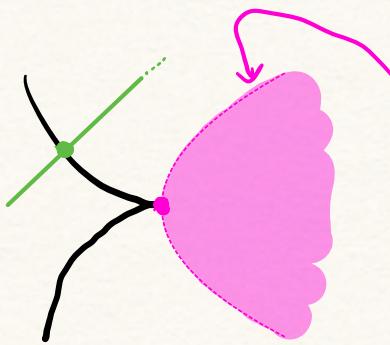
singularities



What are the Voronoi cells at \bullet and \circ ?

singularities

$$y^2 + x^3 = 0$$
$$t \mapsto (-t^2, t^3)$$



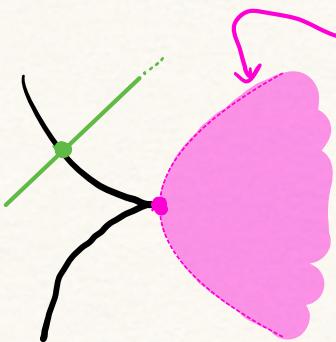
Challenge: Compute
this curve!

→ implicit bias towards $\text{Sing}(M)$

What are the Voronoi cells at \bullet and \circ ?

singularities

$$y^2 + x^3 = 0$$
$$t \mapsto (-t^2, t^3)$$



Challenge: Compute
this curve!

→ **implicit bias** towards $\text{Sing}(M)$

What are the Voronoi cells at and ?

Tradeoff

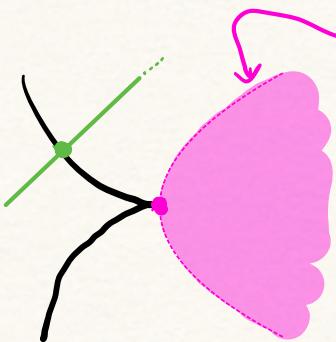
learning close to singularity
→ slow & numerical instability

[Amari et al]

singular solution generalizes better:
① stable global minimum when perturbing data
② **Conjecture:** singularities of neural manifolds
are sparse subnetworks
[We've proven this for MLPs & CNNs]

singularities

$$y^2 + x^3 = 0$$
$$t \mapsto (-t^2, t^3)$$



Challenge: Compute
this curve!

→ **implicit bias** towards $\text{Sing}(M)$

What are the Voronoi cells at and ?

Tradeoff

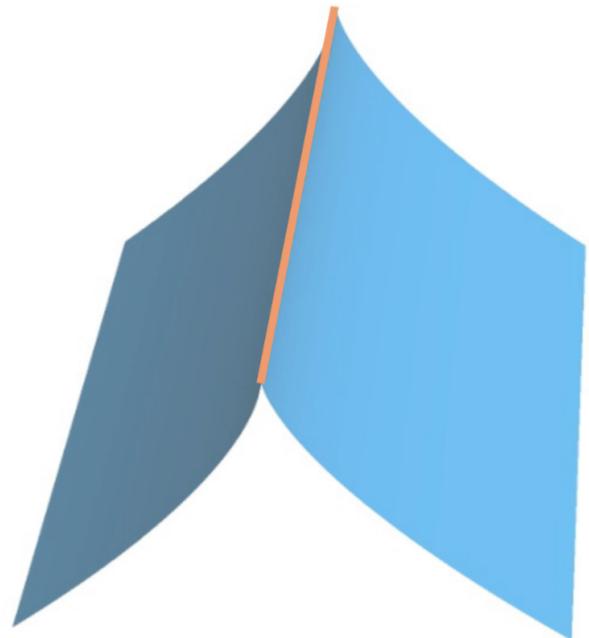
learning close to singularity
→ slow & numerical instability

[Amari et al]

singular solution generalizes better:
① stable global minimum when perturbing data
② **Conjecture:** singularities of neural manifolds
are sparse subnetworks

[We've proven this for MLPs & CNNs]

In general: depends on **type** of singularity



MLP

$\sigma(x) =$ generic
polynomial
of large
degree

CNN

These singularities have that tradeoff,

.....

while these don't!

In both cases, they are sparse subnetworks ^

What about smooth interior points?

$M \subseteq \mathbb{R}^n$ algebraic variety (i.e. described by polynomial equations)

Q symmetric PD $n \times n$ matrix

Fact: For almost all $u \in \mathbb{R}^n$, the number of complex critical points of

$$\min_{x \in M \setminus \text{Sing}(M)} \|x - u\|_Q^2$$

is the same, called the Euclidean Distance Degree: $\text{EDD}_Q(u)$.

What is $\text{EDD}_{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}(0)$?

What about smooth interior points?

$M \subseteq \mathbb{R}^n$ algebraic variety (i.e. described by polynomial equations)

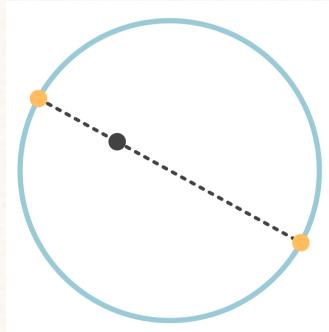
Q symmetric PD $n \times n$ matrix

Fact: For almost all $u \in \mathbb{R}^n$, the number of complex critical points of

$$\min_{x \in M \setminus \text{Sing}(M)} \|x - u\|_Q^2$$

is the same, called the **Euclidean Distance Degree**: $\text{EDD}_Q(u)$.

What is $\text{EDD}_{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}(\bigcirc)$?



What is $\text{EDD}_{\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}}(\bigcirc)$?

What about smooth interior points?

$M \subseteq \mathbb{R}^n$ algebraic variety (i.e. described by polynomial equations)

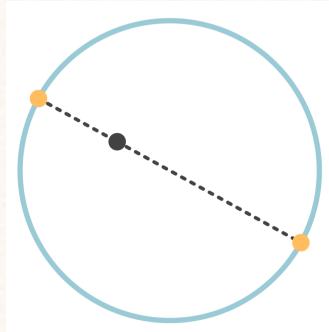
Q symmetric PD $n \times n$ matrix

Fact: For almost all $u \in \mathbb{R}^n$, the number of complex critical points of

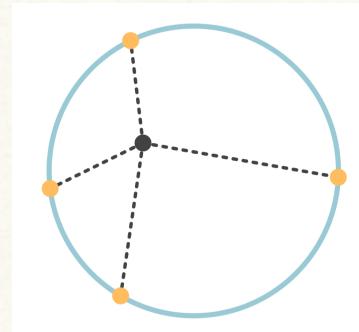
$$\min_{x \in M \setminus \text{Sing}(M)} \|x - u\|_Q^2$$

is the same, called the **Euclidean Distance Degree**: $\text{EDD}_Q(u)$.

What is $\text{EDD}_{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}(\bigcirc)$?



What is $\text{EDD}_{\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}}(\bigcirc)$?



What about smooth interior points?

$M \subseteq \mathbb{R}^n$ algebraic variety (i.e. described by polynomial equations)

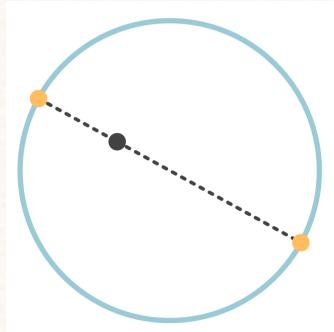
Q symmetric PD $n \times n$ matrix

Fact: For almost all $u \in \mathbb{R}^n$, the number of complex critical points of

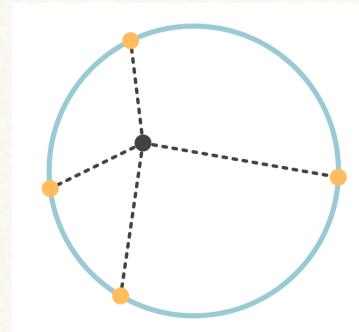
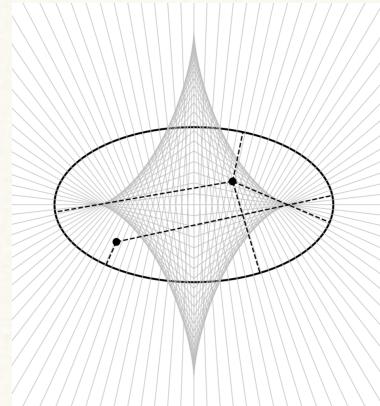
$$\min_{x \in M \setminus \text{Sing}(M)} \|x - u\|_Q^2$$

is the same, called the **Euclidean Distance Degree**: $\text{EDD}_Q(u)$.

What is $\text{EDD}_{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}(\mathbb{O})$?



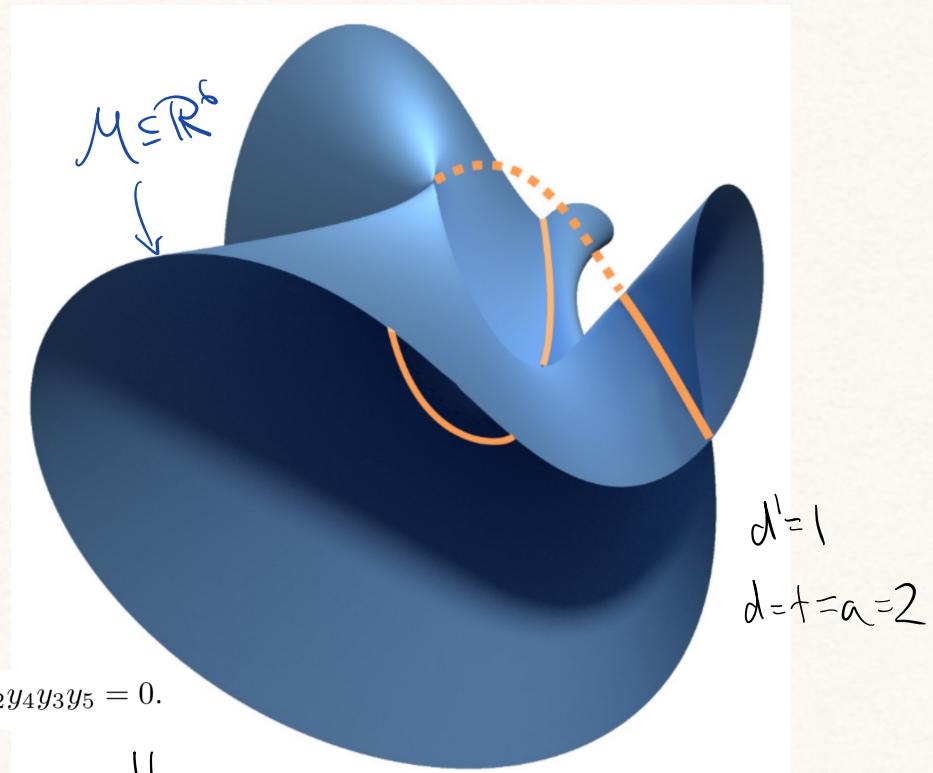
What is $\text{EDD}_{\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}}(\mathbb{O})$?



Lightning Self-Attention (single head, single layer)

$$\begin{array}{ccc}
 \mathbb{R}^{d \times t} & \xrightarrow{\quad} & \mathbb{R}^{d \times t} \\
 X & \mapsto & V X X^T K^T Q X \\
 & & \uparrow \quad \quad \quad \uparrow \\
 & & \text{learnable parameters} \\
 & & V \in \mathbb{R}^{d \times d}, K, Q \in \mathbb{R}^{a \times d}
 \end{array}$$

$$y_1^2 y_6^2 + y_4^2 y_3^2 + y_1 y_3 y_5^2 + y_2^2 y_4 y_6 - 2 y_1 y_4 y_3 y_6 - y_2 y_1 y_6 y_5 - y_2 y_4 y_3 y_5 = 0.$$



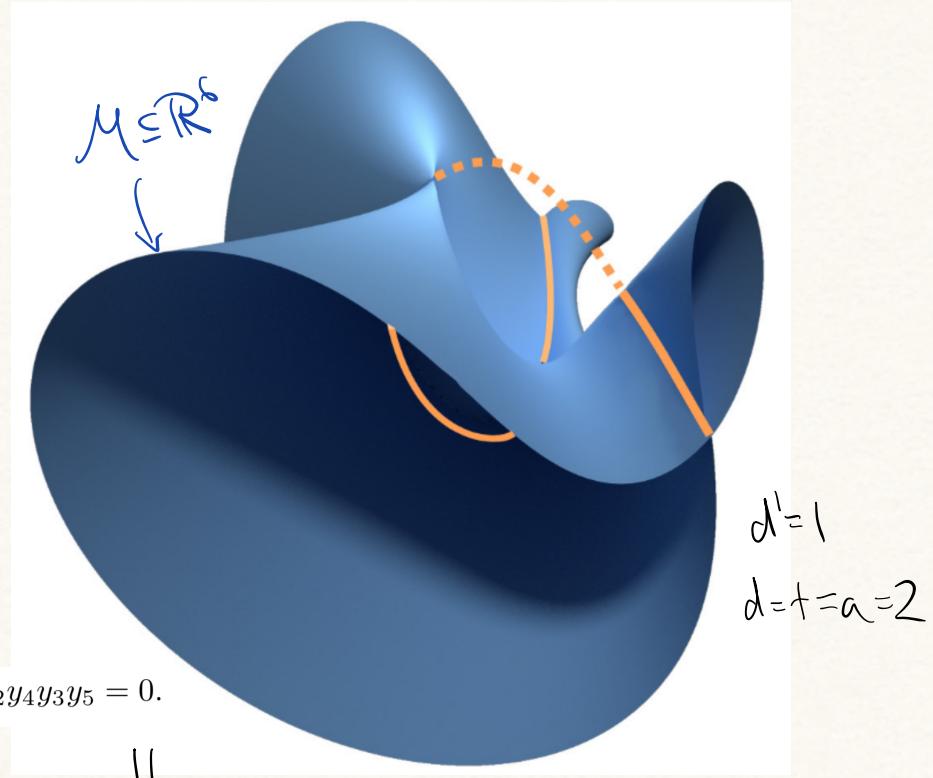
\Downarrow
 For almost all PD matrices Q ,
 $\text{EDD}_Q(M) = 14$.

What happens if Q becomes degenerate?
 (i.e., Q is symmetric positive semidefinite)

Lightning Self-Attention (single head, single layer)

$$\begin{array}{ccc}
 \mathbb{R}^{d \times t} & \xrightarrow{\quad} & \mathbb{R}^{d \times t} \\
 X & \mapsto & V X X^T K^T Q X \\
 & & \uparrow \quad \quad \quad \uparrow \\
 & & \text{learnable parameters} \\
 & & V \in \mathbb{R}^{d \times d}, K, Q \in \mathbb{R}^{a \times d}
 \end{array}$$

$$y_1^2 y_6^2 + y_4^2 y_3^2 + y_1 y_3 y_5^2 + y_2^2 y_4 y_6 - 2 y_1 y_4 y_3 y_6 - y_2 y_1 y_6 y_5 - y_2 y_4 y_3 y_5 = 0.$$



For almost all PD matrices Q ,

$$\text{EDD}_Q(M) = 14.$$

What happens if Q becomes degenerate?

(i.e., Q is symmetric positive semidefinite)

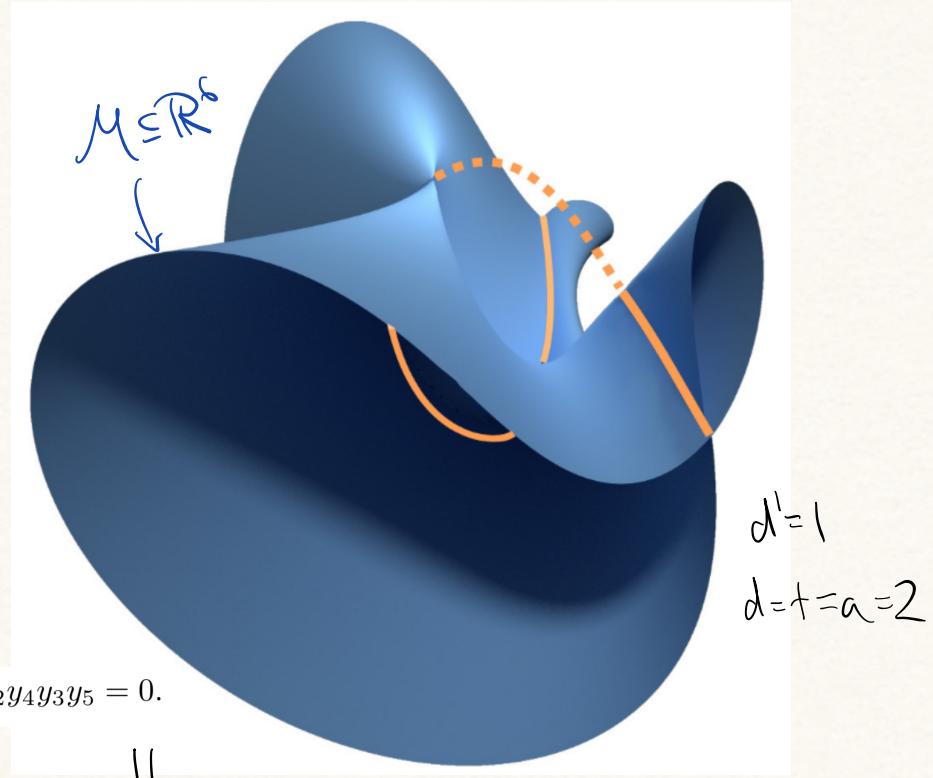
k	complex critical point set
0	14 points
1	14 points
2	4 points + a curve
3	a surface
4	a 3-dimensional subvariety
5	a 4-dimensional subvariety

$K := \dim \ker Q$

Lightning Self-Attention (single head, single layer)

$$\begin{array}{ccc}
 \mathbb{R}^{d \times t} & \xrightarrow{\quad} & \mathbb{R}^{d \times t} \\
 X & \mapsto & V X X^T K^T Q X \\
 & & \uparrow \quad \quad \quad \uparrow \\
 & & \text{learnable parameters} \\
 & & V \in \mathbb{R}^{d \times d}, K, Q \in \mathbb{R}^{a \times d}
 \end{array}$$

$$y_1^2 y_6^2 + y_4^2 y_3^2 + y_1 y_3 y_5^2 + y_2^2 y_4 y_6 - 2 y_1 y_4 y_3 y_6 - y_2 y_1 y_6 y_5 - y_2 y_4 y_3 y_5 = 0.$$



For almost all PD matrices Q ,

$$\text{EDD}_Q(M) = 14.$$

What happens if Q becomes degenerate?

(i.e., Q is symmetric positive semidefinite)

k	complex critical point set
0	14 points
1	14 points
2	4 points + a curve
3	a surface
4	a 3-dimensional subvariety
5	a 4-dimensional subvariety

$K := \dim \ker Q$

$M \cap (\ker(Q) + u)$
 \hookrightarrow zero loss solutions!

In general

$M \subseteq \mathbb{R}^n$ algebraic variety, $d := \dim M$.

Q symmetric positive semi-definite $n \times n$ matrix	$\pi: \mathbb{R}^n \rightarrow K^\perp$
$K := \ker Q$	turns Q into nondegenerate quadric

In general

$M \subseteq \mathbb{R}^n$ algebraic variety, $d := \dim M$.

Q symmetric positive semi-definite $n \times n$ matrix
 $K := \ker Q$

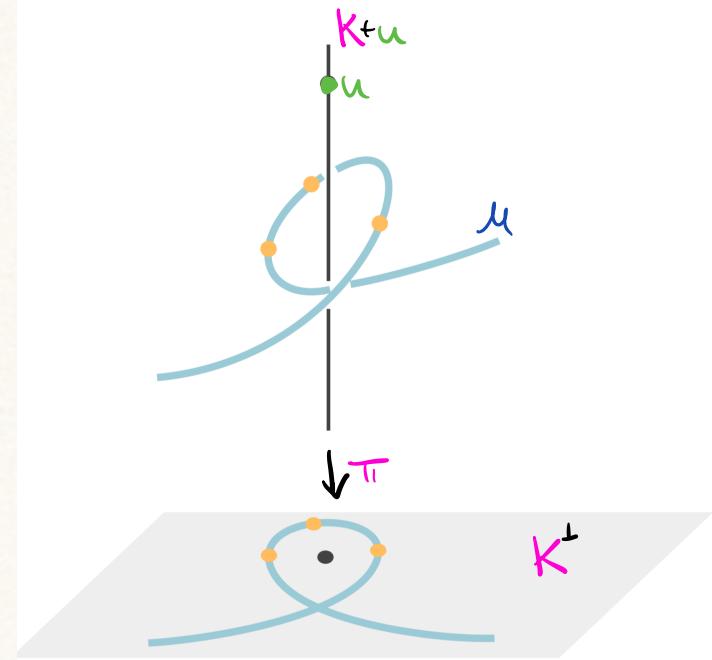
$\pi: \mathbb{R}^n \rightarrow K^\perp$

turns Q into nondegenerate quadric

Case 1: let $k < n-d$.

For almost all Q with $k = \dim K$ and almost all $u \in \mathbb{R}^n$,

$$\begin{array}{c} \text{EDD}_Q(M) \\ \parallel \\ \text{EDD}_{\pi(Q)}(\pi(M)) \end{array} \left\{ \begin{array}{l} \text{critical points of } \min_{x \in M \setminus \text{Sing}(M)} \|x-u\|_Q^2 \\ \uparrow \downarrow \text{1:1} \\ \text{critical points of } \min_{x \in \pi(M) \setminus \text{Sing}(\pi(M))} \|x-\pi(u)\|_{\pi(Q)}^2 \end{array} \right.$$



In general

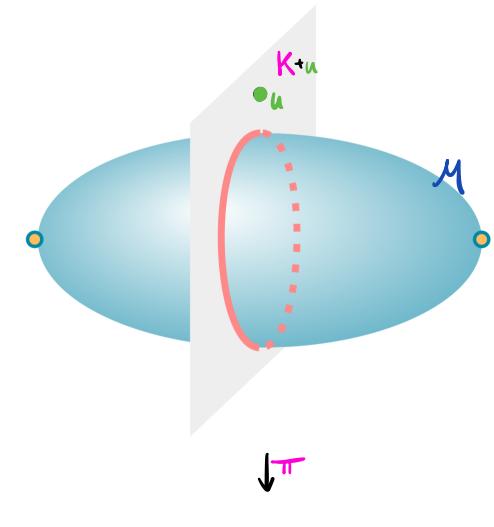
$M \subseteq \mathbb{R}^n$ algebraic variety, $d := \dim M$.

Q symmetric positive semi-definite $n \times n$ matrix	$\pi: \mathbb{R}^n \rightarrow K^\perp$
$K := \ker Q$	turns Q into nondegenerate quadric

Case 2: let $k \geq n-d$.

For almost all Q with $k = \dim K$ and almost all $u \in \mathbb{R}^n$, we have 2 types of critical points of $\min_{x \in M \setminus \text{Sing}(u)} \|x-u\|_Q^2$:

(A) $(K+u) \cap M$: zero loss solutions



In general

$M \subseteq \mathbb{R}^n$ algebraic variety, $d := \dim M$.

Q symmetric positive semi-definite $n \times n$ matrix	$\pi: \mathbb{R}^n \rightarrow K^\perp$
$K := \ker Q$	turns Q into nondegenerate quadric

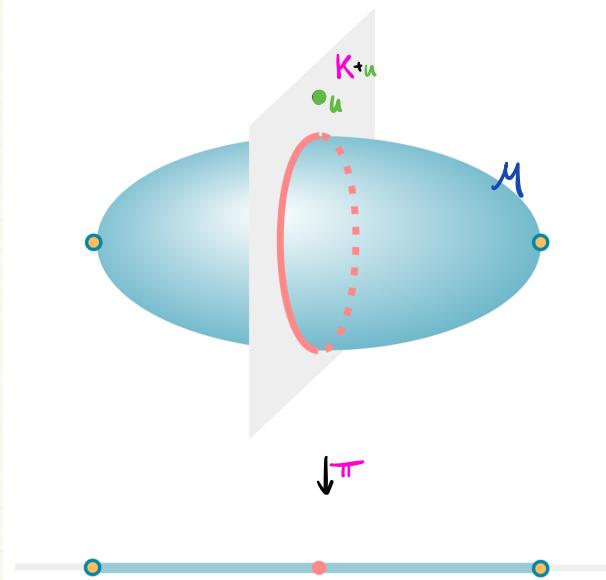
Case 2: let $k \geq n-d$.

For almost all Q with $k = \dim K$ and almost all $u \in \mathbb{R}^n$, we have

2 types of critical points of $\min_{x \in M \setminus \text{Sing}(M)} \|x-u\|_Q^2$:

A $(K+u) \cap M$: zero less solutions

B finitely many on the ramification locus $\text{Ram}(\pi|_X)$
 $:= \{\text{critical points of } \pi|_X\}$



In general

$M \subseteq \mathbb{R}^n$ algebraic variety, $d := \dim M$.

Q symmetric positive semi-definite $n \times n$ matrix
 $K := \ker Q$

$$\pi: \mathbb{R}^n \rightarrow \mathbb{K}^\perp$$

Case 2: Let $k \geq n - d$.

For almost all Q with $k = \dim K$ and almost all $u \in \mathbb{R}^n$, we have

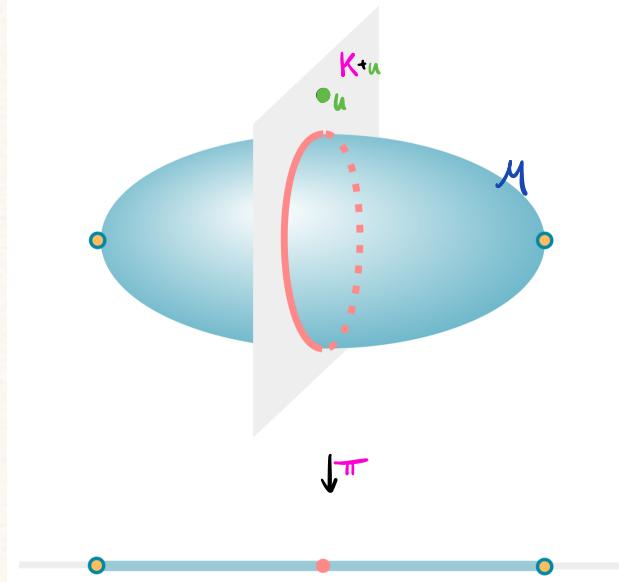
2 types of critical points of $\min_{x \in M \cap \text{Sing}(u)} \|x - u\|^2_Q$

(A) $(K+u) \cap M$: zero less solutions

③ finitely many on the ramification locus $\text{Ram}(\pi|_X)$
 $\quad := \{\text{critical points of } \pi|_X\}$

1 : 1

$\text{EDD}_{\pi(Q)}(\text{Br}) \leftarrow$ critical points of $\min_{x \in \text{Br}(\pi|_X)} \|x - \pi(u)\|_{\pi(Q)}^2$



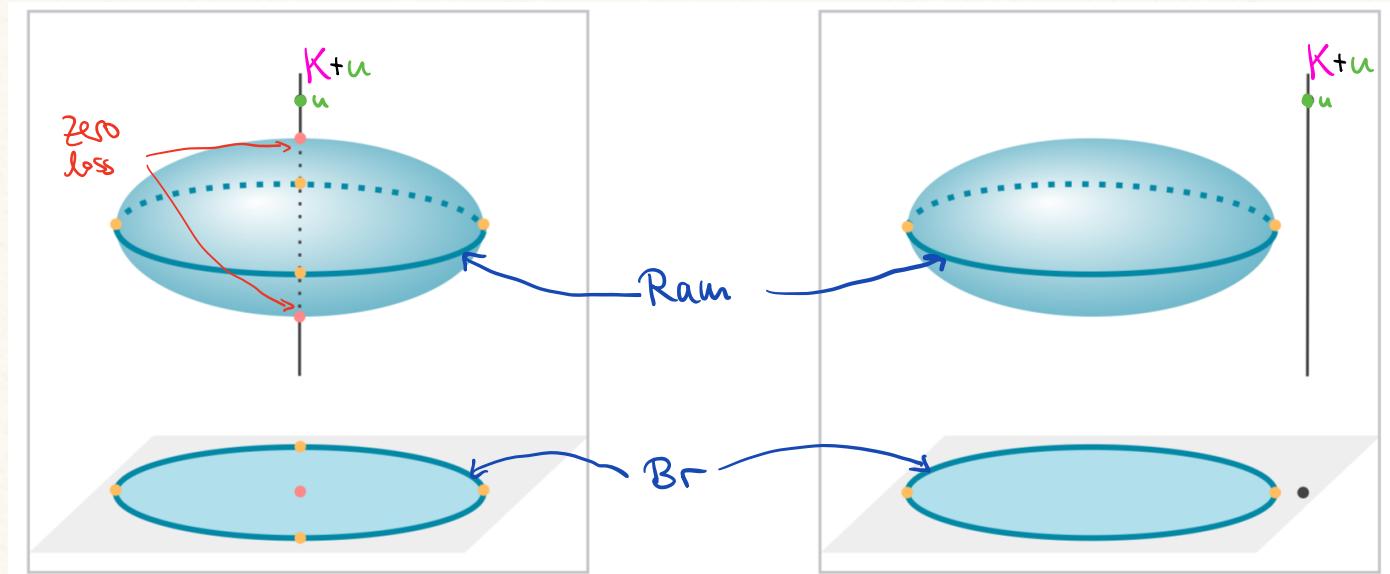
In general

$M \subseteq \mathbb{R}^n$ algebraic variety, $d := \dim M$.

Q symmetric positive semi-definite $n \times n$ matrix
 $K := \ker Q$

$\pi: \mathbb{R}^n \rightarrow K^\perp$
turns Q into nondegenerate quadric

Case 2: let $k \geq n-d$.



Induced bias towards Ram!

depends only on K (not on Q) \uparrow & not on u