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Stone Weierstrap I
Let compact Hansdorff space A subalgebra of CCX R containing a

nonzero constant function
A is dense in XR A separates points
in supremum norm i.e xtyeX feA f x fly

Cor X R compact f RMcontinuous TO

Fp R polynomial function such that
xeX AFCA pain e








































































































Example MLP
k multilayerperceptions

20 0 0 0 0 0 α 0 0 0 α

α learnable affine linear functions
o nonlinear activation function applied entrywise

we assume o is a univariate polynomial

Ex o x x 0 0

et o a

Which functions does this MLP parametrize








































































































Ex o x x 0 0

et o 8
Which functions does this MLP parametrize

e ax by f extdy

Caffey Layfly Lefty
Can you obtain all of R xiy 2

homogeneous quadratic polynomials in Xy
i e are all values for A B C possible








































































































Ex o x x 0 0

et o 8
Which functions does this MLP parametrize

e ax by f extdy

affix cagey Lefty
Can you obtain all of R xiy 2

homogeneous quadratic polynomials in Xy
i e are all values for A B C possible

YES

What about a x x








































































































Ex o x x 0 0

et o

Which functions does this MLP parametrize

e ax by f extdy

affix Lrgxy Labegxy t

gy
Can you obtain all of R xiy z

homogeneous cubic polynomials in Xy
i e are all values for A B C D possible








































































































Ex o x x 0 0

et o E 1
Which functions does this MLP parametrize

e ax by f extdy

affix Lrgxy Labedxy t

gy
Can you obtain all of R xiy z

homogeneous cubic polynomials in Xy
i e are all values for A B C D possible

No e g A 1
B O

C 1

D 0








































































































Neuromanifolds

A parametric machine learning model is a map µ x X Y
parameters outputs

inputs

Its neuro mainfold is M pelf Y De

Examples O o
no bias

O

O O

o xs x M RExiyte

ax x M E REX g s

o x x
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Neuromanifolds

A parametric machine learning model is a map µ xX Y
parameters outputs

inputs

Its neuromainfold is M pelf Y De

Examples O o
no bias
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Linear MLPs α 0 2202 where
α Rdi Rdi linear

M








































































































Linear MLPs α 0 2202 where
α Rdi Rdi linear

M We Rdu do I rk W min Ido dy.edu








































































































Linear MLPs α 0 202 where
α Rdi Rdi linear

M We Rdu do I rk W min dody.edu

Polynomial MLPs 22000 0 0022000 α where

α Rdi 1 Rdi affine linear
o RLXJ S

M lives in a finite dimensional vector space namely








































































































Linear MLPs α 0 202 where
α Rdi Rdi linear

M We Rdu do I rk W min dody.edu

Polynomial MLPs α 00 0 0022000 α where

α Rdi 1 Rdi affine linear
REX S

M lives in a finite dimensional vector space namely

REX do get








































































































Linear MLPs α 0 202 where
α Rdi Rdi linear

M We Rdu do I rk W min dody.edu

Polynomial MLPs α 00 0 0022000 α where

α Rdi 1 Rdi affine linear
REX S

M lives in a finite dimensional vector space namely

REX do get

Polynomial MLPs are the only ones with that property











































































Leshno Lin Pinkus Schocken Multilayer feedforwardnetworkswith a

non polynomial activation function can approximateany function
Neural Networks 6 1993











































































Leshno Lin Pinkus Schocken Multilayer feedforwardnetworkswith a
non polynomial activation function can approximateany function
Neural Networks 6 1993

A G approach

p
saethechoiceto approximate networks with algebraic nonlinearmodels in

finite dimensional models network finitedimensionalambientspaces
Stone
Weierstrap

target
network








































































































Networktraining distance minimization

Let M V R x do D
neuromanifold

S e Rdo x R finite dataset
meansquared error

MSE loss L f EyesUfca 642

dist fig o possible for f g

Proposition There is a pseudometric dist VxV Rzo and some gev
such that minimizing L f over fell is equivalent to

minimizing dist fig over fell
V

Why

g
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let y x Xd allmonomialsin X1 Xd ofdegree D
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Let M V R x do D
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Networktraining distance minimization

Let M V R x do D
neuromanifold

S e Rdo x R finite dataset
meansquared error

MSE loss L f EyesUfca 642

dist fig o possible for fig
Proposition There is a pseudometric dist VxV Rzo and some gev

such that minimizing L f over fell is equivalent to

minimizing dist fig over fell
V

Veronese
Assume do 1 embedding

Jm
let y x Xd allmonomialsin X Xd ofdegree D

f be coefficient vector of feV such that f x Vp x Cf
g A B matrices whose rows are v a b resp overallcables

pseudoinverse

L f 11Act B12 11Cf ABAZA const

HclQ cTQc








































































































V
argmin Llf arguing

11Cf ABIATA
fell

Observations del

t

g

A'A depends only on input data
AB on bothinput output LLMs SK dimm

ATA RᵈimV dimV is rank deficient whenever IS dimV ms pseudometric








































































































V
argmin Llf arguing

11Cf ABIATA
fell

Observations del They
ATA depends only on input data
AB on bothinput output LLMs SK dimm

ATA RᵈmV
dimV

is rank deficient whenever IS dimV ms pseudometric

even when 151 dim V ATA is not an arbitrary symmetric PD matrix
while AtB yields all vectors RdimV

whichmatrices can be obtained

Why try for do 1 u x 1 x x x








































































































V
argmin Llf arguing

11Cf ABIATA
fell

Observations del They
ATA depends only on input data
AB on bothinput output

LLMs SK dimM

ATA Rᵈmv
ᵈimV

is rank deficient whenever IS dimV ms pseudometric

even when 151 dim V ATA is not an arbitrary symmetric PD matrix
while AtB yields all vectors RdimV

dimv

7
151 A full rank for At yields all vectors

generic S B whenB varies
full rank dimb








































































































V
argmin Llf arguin 11Cf ABIATA
fell fell

Observations del They
ATA depends only on input data
AB on bothinput output

LLMs SK dimm

ATA RᵈmV
dimV

is rank deficient whenever IS dimV ms pseudometric

even when 151 dim V ATA is not an arbitrary symmetric PD matrix
while AtB yields all vectors Rdm

V

ma

ATA wait wears

in
has liis entry

es Yf mia ofdegree 2Ddisi
that can befactoredinseveralways








































































































Ex do 1

v x 1 x x2 XP

A a ai a Vandermondematrix

iiiat
and

ATA 151 Ian Zai Ia Hawkelmatrix

an Eai Ear Iap

Zak Ian Ian Iapt

Eap zain Ian








































































































Ex do 1

v x 1 x x2 XP

A a ai a Vandermondematrix

iiiair id
ATA 151 Ian Zai Ia Hawkelmatrix

an Eai Ear Iap

Zak Iap Iai Iapt

in air
said

Ex do 2 D 2

v x y t x y x xy y
1 x y X xp y

ATA Σ 1 x x xy y
Xy xx x xy xy

x y Xy xy y y

pay
ppyypppp.fi

xy y x y
3
y y








































































































Networktraining distance minimization

Let M V R x do D
neuromanifold

S e Rdo Rd finite dataset
meansquared error

MSE loss L f EyesUfca 642

dist fig o possible for f g

Proposition There is a pseudometric dist VxV Rzo and some gev
such that minimizing L f over fell is equivalent to

minimizing dist fig over fell
V

dust

M f f Fdd Cf d

g f x v x Cf HCI tr CQC

L f1 11ACfBMros 11Cf AtbIta const








































































































Loss Landscape µ.FI
M plo GO

ICO Lifo be If








































































































Loss Landscape a I
M pco GO

ICO Lifo be If

can be studied in a decoupledway

M R
1 fo

loss landscape in functionspace

f f f fer V R








































































































Loss Landscape a I
M p o GO

Q L fol be If

can be studied in a decoupledway

M R
1 fo

loss landscape in functionspace

f f f fer V R

Geometry of M affects loss landscape

How

Which geometricpropertiesdoesM have








































































































Geometry of Neuromanifolds

pr x X Y polynomial in bothOEO xeX

M What kindof object is M
1

pe








































































































Geometry of Neuromanifolds

pr x X Y polynomial in bothOEO xeX

M What kindof object is M
1

pe

A semialgebraic set

describableby
polynomial equations

inequalities








































































































Geometry of Neuromanifolds

pr x X Y polynomial in bothOEO xeX

M What kindof object is M
1

p

A semialgebraic set

describableby
polynomial equations

inequalities

Euclidean distance
minimization can be

implicitly biased to

singularities boundaries of M










































































































Voronoi cells

For SER theVoronoi cell at pes is
Vors p Euer I geS ftp

p ull Uq all

2
42 1 430

M What is the Voronoi cell at me

R What is the Voronoi cell at me










































































































Voronoi cells

For SER theVoronoi cell at pes is
Vors p Euer I geS ftp

p ullz Uq all

2
42 1 420

Vory
M so

ER The 2 relative boundary points are theonly
points on M with full dimensionalVoronoi cells

Vory as implicit bias towards 2M

points in 2M are globalminima
with positive probability on data a








































































































singularities

What are the Voronoi cells at and








































































































singularities

a

Challenge Compute
this cave

44
3
0

the tits

f

me implicit bias towards singer

What are the Voronoi cells at and








































































































singularities

44
3
0 J

Thallenge Computethis cave

the t 3 as implicit bias towards singM

What are the Voronoi cells at and

Tradeoff

learningclose to singularity singular solution generalizesbetter
ms slow numerical instability stableglobalminimumwhenperturbing data

Amari et al Conjecture singularitiesofneuromanifolds

are sparsesubnetworks

we'veproventhis for MPs CNNS








































































































singularities

44
3
0 J

Thallenge Computethis cave

the t 3 as implicit bias towards singM

What are the Voronoi cells at and

Tradeoff

learningclose to singularity singular solution generalizesbetter
ms slow numerical instability stableglobalminimumwhenperturbing data

Amarietal Conjecture singularitiesofneuromanifolds

are sparsesubnetworks

AvprthisfMPs CNNs
In general dependson type of singularity








































































































o x generic
polynomial
oflarge
degree

Thesesingularities have thattradeoff while these don't

In both cases they are sparsesubnetworks








































































































What aboutsmooth interior points

MER algebraic variety i.es describedbypolynomial equations

Q symmetric PD nxn matrix

Fact For almost all we R the numberof complex critical points of

min Ax alla
EMISingM

is the same called the Euclidean DistaneDegree EDDQ M

What is EDDE
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Lightning Self Attention singlehead singlelayer

part s Rd'xt MERE
VXXTKTQX

learnableparameters
Verd'xd K QERaxd

d 1
d t a 2

For almost all PD matrices Q
EDDQ M 14

Whathappens if Q becomes degenerate
ie Q is symmetricpositivesetidefinite
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Lightning Self Attention singlehead singlelayer

part s Rd'xt MERE
VXXTKTQX

learnableparameters
Verd'xd K QERad

d 1
d t a 2

For almost all PD matrices Q

EDDQ M 14

Whathappens if Q becomes degenerate K dimberQ
ie Q is symmetricpositivesetidefinite

Mn kerQ tu

zerolosssolutions
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Q symmetric positive semi definite nxn matrix I R K
K her Q turns Q into nondegenerate quadric
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MER algebraic variety d dimm

Q symmetric positive semi definite nxn matrix I R K
K her Q turns Q into nondegenerate quadric

Case1 let ke n d
For almost all Q with K dink andalmost all UER

ontEDDQ M critical points of xentisinger Hx all

I M

EDDIQ talus critical points of ethtisinger HX tall cQ
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kt
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MER algebraic variety d dimm
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In general

MER algebraic variety d dimm

Q symmetric positive semi definite nxn matrix I R K
K her Q turns Q into nondegenerate quadric

Case2 let Ken d
For almost all Q with K dink and almost all UER wehave
2types of criticalpoints of ehlinger Hx all

Ktu n M zero less solutions on

M
finitelymany on the ramification loans Ram Ty

criticalpointsof T

1 t

EDDca Br critical points of min Hx T a Ufca
XeBrTIX Branchlocus I Ram



In general

MER algebraic variety d dimm

Q symmetric positive semi definite nxn matrix I R K
K her Q turns Q into nondegenerate quadric

Case2 let Ken d

a ok

2g

tram

Br

Induced bias towardsRgm
dependsonlyon K not on Q1 not on u


