Algebra & Geometry
08 Newal Networks

NTK approach

target Newten in crease width oo-width

linearized modules of a linearist a to

NTK approach

target network increase width oo-width network linearized models

of a lineusian

algebraic geonetry AG approach

algebraic nonlinear models in pubsoch finite-dimensional autient spaces

StoneWeierstraß

target
Network

Stone-Wierstraß

continuous functions

Let X compact Housdorff space & A subalgebra of C(X,R) containing a nonzero constant function.

A is dense in CUXIR) in supremum nom

A separates points (i.e., Yx +y eX 3 feA: f(x) + f(y))

Con: XER compact, f: X = R continuous, E>O.

=> 3p: X => R polynomial function such that

\[
\frac{4\times \times \cdot \times \frac{1}{2} \times \times \frac{1}{2} \times \frac{1}{2} \times \times \frac{1}{2} \times \frac

Example: HLPs

Which functions does this MP parametria?

Which functions does this MP parametrib?

$$= (ax+by)^{2} + f(cx+dy)^{2}$$

$$= (a^{2}c+c^{2}f)x^{2} + 2(abe+cdf)xy + (b^{2}e+d^{2}f)y^{2}$$
A

8

Con you obtain all of R[x,y]2?

i.e., are all values for A,B,C possible?

$$E_{X}$$
: $\sigma(x) = x^2$

Which functions does this MP parametrib?

$$= (ax+by)^{2} + f(cx+dy)^{2}$$

$$= (a^{2}c+c^{2}f)x^{2} + 2(abe+cdf)xy + (b^{2}e+d^{2}f)y^{2}$$
A

8

Con you obtain all of R[x,y]2?

i.e., are all values for A.B.C possible?

YES

What about $\sigma(x) = x^3 ?$

$$E_{X}$$
: $\sigma(x) = x^2$

Which functions does this MP parametriz?

$$= (ax + by)^{3} + f(cx + dy)^{3}$$

$$= (a^{3}e + c^{3}f)x^{3} + 3(a^{2}be + c^{2}df)x^{2}y + 3(ab^{2}e + cd^{2}f)xy^{2} + (b^{3}e + d^{3}f)y^{3}$$

Can you obtain all of R[x,y]2?

i.e., are all values for A,B,C,D possible?

Which functions does this MP parametriz?

$$= (ax + by)^{3} + f(cx + dy)^{3}$$

$$= (a^{3}e + c^{3}f)x^{3} + 3(a^{2}be + c^{2}df)x^{2}y + 3(ab^{2}e + cd^{2}f)xy^{2} + (b^{3}e + d^{3}f)y^{3}$$

Con you obtain all of R[x,y]z?

i.e., are all values for A,B,C,D possible?

No, e.g.
$$A = 1$$

 $B = 0$
 $C = -1$
 $D = 0$

Macanlay 2

New omanifolds

A parametric machine learning model is a map $\mu: \Theta \times X \longrightarrow Y$.

parametris Toutputs

inputs

Its reuronamifold is $\mathcal{M} := \{ \mu(\theta, \cdot) : X \rightarrow Y \mid \theta \in \Theta \}$.

Examples:
$$O(x) = x^2$$
 \Rightarrow $M = \mathbb{R}[x_1y]_2$

$$O(x) = x^3 \Rightarrow M \nsubseteq \mathbb{R}[x_1y]_3$$

$$O(x) = x \Rightarrow 2$$

Newsomani folds

Its reuronamifold is $\mathcal{M} := \{ \mu(\theta, \cdot) : X \rightarrow Y \mid \theta \in \Theta \}$.

Examples: $O(x) = x^2$ \Rightarrow $M = \mathbb{R}[x_1y]_2$ $O(x) = x^3 \Rightarrow M \notin \mathbb{R}[x_1y]_3$ $O(x) = x \Rightarrow M = \mathbb{R}^{1 \times 2}$

Newsomani folds

It remomentaled is $\mathcal{M} := \{\mu(\theta, \cdot) : X \rightarrow Y \mid \theta \in \Theta \}$.

$$\sigma(x) = x^3$$

$$\sigma(x) = x$$

Newsomani folds

A parametric machine learning model is a map $\mu: \Theta \times X \longrightarrow Y$.

parametris parametris inputs

It remomentaled is $\mathcal{M} := \{\mu(\theta, \cdot) : X \rightarrow Y \mid \theta \in \Theta \}$.

$$\sigma(x) = x$$
 $\Rightarrow \mathcal{M} = \mathbb{R}^{1 \times 2}$

Linear MLPs: $\alpha_{1} \circ \alpha_{2} \circ \alpha_{1}$, where $\alpha_{i} : \mathbb{R}^{d_{i-1}} \to \mathbb{R}^{d_{i}}$ linear

Linear MLPs: $\alpha_{1} \circ \alpha_{2} \circ \alpha_{1}$, where $\alpha_{1} : \mathbb{R}^{d_{1}-1} \rightarrow \mathbb{R}^{d_{1}}$ linear $\alpha_{1} : \mathbb{R}^{d_{1}-1} \rightarrow \mathbb{R}^{d_{1}}$ linear $\alpha_{1} : \mathbb{R}^{d_{1}-1} \rightarrow \mathbb{R}^{d_{1}}$ \(\text{\text{Linear}} \) $\Rightarrow \mathcal{H} = \left\{ \left. \text{We } \mathbb{R}^{d_{1} \times d_{0}} \mid \mathbb{r} \times (\mathbb{W}) \in \min \left\{ d_{0}, d_{1}, \dots, d_{1} \right\} \right\}$

Linear MLPs: $\alpha_{1} \circ \alpha_{2} \circ \alpha_{1}$, where $\alpha_{1} : \mathbb{R}^{d_{1}-1} \rightarrow \mathbb{R}^{d_{1}}$ linear $M = \{ W \in \mathbb{R}^{d_{1} \times d_{2}} \mid rk(W) \notin \min \{ d_{0}, d_{1}, \dots, d_{n} \} \}$

Polynomial MLPs: $\alpha_1 \circ \sigma \circ \ldots \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_1$, where $\alpha_1 \circ R^{d_{1-1}} \rightarrow R^{d_1}$ affine linear $\sigma \in R[x]_{28}$

=> Il lives in a finite-dimensional vector space, namely ?

Linear MLPs: $\alpha_{1} \circ \alpha_{2} \circ \alpha_{1}$, where $\alpha_{1} : \mathbb{R}^{d_{1}-1} \rightarrow \mathbb{R}^{d_{1}}$ linear $M = \{ W \in \mathbb{R}^{d_{1} \times d_{2}} \mid rk(W) \notin \min \{ d_{0}, d_{1}, \dots, d_{n} \} \}$

Polynomial MLPs: $\alpha_1 \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_1$, where $\alpha_1 \circ R^{d_{1-1}} \rightarrow R^{d_1}$ affine linear $\sigma \in R[x]_{28}$ $\Rightarrow M$ lives in a finite-dimensional vector space, namely $(R[x_1,...,x_d]_{28}^{L_1})^{d_L}$

Linear MLPs: $\alpha_{1} \circ \alpha_{2} \circ \alpha_{1}$, where $\alpha_{1} : \mathbb{R}^{d_{1}-1} \to \mathbb{R}^{d_{1}}$ linear $A = \{ W \in \mathbb{R}^{d_{1} \times d_{2}} \mid \nabla k(W) \in \text{min} \{ d_{0}, d_{1}, \dots, d_{2} \} \}$

Polynomial MLPs: $\alpha_1 \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_1$, where $\alpha_1 \circ R^{d_{1-1}} \rightarrow R^{d_1}$ affine linear $\sigma \in R[\times]_{28}$ $\Rightarrow M$ lives in a finite-dimensional vector space, namely $\left[R[\times_{1,\dots,1} \times_{d_0}]_{28}^{L_{1}}\right]^{d_{1}}$

Polynomial MLPs are the only ones with that property!

Leshno, Lin, Pinkus, Schocken: Multilayer teedforward networks with a non-polynomial activation timetion can approximate any function. Neural Networks 6, 1993:

Theorem 1:

Let $\sigma \in M$. Set

$$\Sigma_n = \operatorname{span} \{ \sigma(\mathbf{w} \cdot \mathbf{x} + \theta) : \mathbf{w} \in \mathbb{R}^n, \theta \in \mathbb{R} \}.$$

Then Σ_n is dense in $C(\mathbb{R}^n)$ if and only if σ is not an algebraic polynomial (a.e.).

Leshno, Lin, Pinkus, Schocken: Multilayer teedforward networks with a non-polynomial activation function can approximate any function. Neural Networks 6, 1993:

Theorem 1:

Let $\sigma \in M$. Set

$$\Sigma_n = \operatorname{span} \{ \sigma(\mathbf{w} \cdot \mathbf{x} + \theta) : \mathbf{w} \in \mathbb{R}^n, \theta \in \mathbb{R} \}.$$

Then Σ_n is dense in $C(\mathbb{R}^n)$ if and only if σ is not an algebraic polynomial (a.e.).

polynomials are the choice to approximate networks with finite-dimensional models

AG approach

Let $M \subseteq V := (\mathbb{R}[X_{1/2}, Xdo] \leq D)^{d_L}$,

Neuromanifold

S = Rdo x RdL finite dataset,

, mean squared error

 MSE^{e} Loss: $L(f) := \sum_{(a,b) \in S} ||f(a)-b||^2$

[dist(f,0) =0 possible for f #g]

Proposition: There is a pseudometric dist: VXV > R zo and some geV such that unimizing L(f) over fell is equivalent to minimizing dist (fig) over fell.

V

M

Why 2.

Let $M \subseteq V := (R[x_1, ..., Xdo] \leq D)^{d_L}$,

Neuromanifold

S = Rdo x RdL finite dataset,

mean squared error

 MSE^{\prime} Loss: $L(f) := \sum_{(a,b) \in S} ||f(a)-b||^2$

[dist(f,0) =0 possible for f #g]

Proposition: There is a pseudometric dist: VXV >R zo and some geV such that uniminizing L(f) over fell is equivalent to minimizing dist (fig) over fell.

V

M

Assume: $d_L = 1$ Let $v_S(x_1, ..., x_d) \longrightarrow (all monomicals in <math>x_1, ..., x_d$. of degree $\leq D$), c_f be coefficient vector of $f \in V$ such that $f(x) = v_D(x) \cdot c_f$,

Let $M \subseteq V := (R[x_1,..., Xdo] \leq D)^{d_L}$,

Neuromanifold

S & Rdo x RdL finite dataset,

mean squared error

 MSE^{\prime} Loss: $L(f) := \sum_{(a,b) \in S} ||f(a)-b||^2$

[dist(f,0) =0 possible for f #g]

Proposition: There is a pseudometric dist: VXV >R zo and some geV such that uninimizing L(f) over fell is equivalent to minimizing dist (fig) over fell.

V

M

Assume: de=1

Let $V_0: (X_1,...,X_d) \longrightarrow (all monomicals in X_1,...,X_d) of degree \(\frac{1}{2} \),

Cf be coefficient vector of \(\frac{1}{2} \) \(\text{Such that } \(\frac{1}{2} \) \(\frac{1}{2} \) \(\text{Such that } \) \(\text{Such that } \(\frac{1}{2} \) \(\text{Such that } \(\frac{1}{2} \) \(\text{Such that } \) \(\text{Such that } \(\frac{1}{2} \) \(\text{Such that } \) \(\text{S$

=> &(f) = ||Act-B||2

Let $M \subseteq V := (R[x_1,..., Xdo] \leq D)^{d_L}$,

Neuromanifold

S & Rdo x RdL finite dataset,

mean squared error

MSE loss: $L(f) := \sum_{(a,b) \in S} ||f(a)-b||^2$

[dist(f,0) =0 possible for f #g]

Proposition: There is a pseudometric dist: VXV => R zo and some geV such that uniminiting L(f) over fell is equivalent to unumizing dist (fig) over fell.

M

Assume: de=1

Let Di (X,,, Xd.) -> (all monomicals in X,,, Xd. of degree & D), Cf be coefficient vector of feV such that f(x) = vo(x). Cf, A & B matrices whose rows are vola) & b, resp., over all (a, b) & S

=> &(f) = || A cf-B||2 = || Cf-A+B||2 + const. ~ \| c\| 0:= cTQc

arguin
$$L(f) = \underset{f \in \mathcal{M}}{\operatorname{arguin}} \| C_f - A^{\dagger} B \|_{A^{T} A}^{2}$$

Observations (de=1):

- (1) ATA depends only on in put data, ATB on both input & output
- 2) ATA ERdinV x dinV is rank-deficient whenever 151 < dinV >>> pseudo metric

3

arguin L(f) = arguin || Cf-A+B||2/ATA

- (1) ATA depends only on in put data, ATB on both input & output
- (LLMs: 181<dim M)

 (ATA ERdim V x dim V is rounk-deficient whenever 151<dim V ~> pseudo metric
- even when 181 >> dim V, ATA is not an arbitrary symmetric PD matrix, while A+B yields all vectors $\in \mathbb{R}^{\dim V}$ Which matrices can be obtained? Why?

 (try for do = 1: $\nu(x) = (1, x, x^2, --, x^3)$)

M & &

Observations (de=1):

- (1) ATA depends only on in put data, ATB on both input & output
- (LLMs: 181< dim M)

 (ATA ERdim V x dim V

 is rank-deficient whenever 181< dim V ~> pseudo metric
- ② even when ISI >>dim V, ATA is not an arbitrary symmetric PD matrix, while A+B yields all vectors & Rdim V

arguin
$$L(f) = \underset{f \in \mathcal{M}}{\operatorname{arguin}} \| C_f - A^{\dagger} B \|_{A^{\dagger} A}^{2}$$

Observations (de=1):

- (1) A'A depends only on in put data, A'B on both input & output
- (LLMs: 181< dim M)

 (ATA ERdim V x dim V is rank-deficient whenever 181< dim V ~> pseudo metric
- even when ISI >> dim V, ATA is not an arbitrary symmetric PD matrix, while A+B yields all vectors & Rdim V

that can be factored in several ways

Ex .: do = 1

$$\Rightarrow A = \begin{cases} (1, x_1, x_1, \dots, x_n) \\ (1, x_1, x_1, \dots, x_n) \end{cases}$$

$$\Rightarrow A = \begin{cases} (1, x_1, x_1, \dots, x_n) \\ (1, x_1, x_1, \dots, x_n) \\ (1, x_1, x_1, \dots, x_n) \end{cases}$$

$$\begin{cases} (1, x_1, x_1, \dots, x_n) \\ (1, x_1, x_1, \dots, x_n) \\ (1, x_1, x_1, \dots, x_n) \\ (1, x_1, x_1, \dots, x_n) \end{cases}$$

ATA =
$$\begin{bmatrix} 1S1 & Za_k & Za_k^2 & Za_k^2 \\ Za_k & Za_k^2 & Za_k^3 & Za_k^{Dri} \\ Za_k^2 & Za_k^3 & Za_k^4 & Za_k^{Dri} \\ Za_k^2 & Za_k^{Dri} & Za_k^{Dri} & Za_k^{Dri} \\ Za_k^3 & Za_k^{Dri} & Za_k^{Dri} & Za_k^{Dri} & Za_k^{Dri} \end{bmatrix}$$

$$\Rightarrow V(x) = (1, x_1 x_1^2, x_2^3)$$

$$\Rightarrow A = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \alpha_1^2 \\ 1 & \alpha_1 & \alpha_1^2 & \alpha_1^2 \end{bmatrix} \quad \text{Vandermonde matrix}$$

$$= \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \alpha_1^2 \\ 1 & \alpha_2 & \alpha_1^2 & \alpha_2^2 \\ 2 & \alpha_k & 2 & \alpha_k^2 & 2 & \alpha_k^2 \\$$

Let $M \subseteq V := (\mathbb{R}[x_1, ..., Xdo] \leq D)^{d_L}$,

Neuromanifold

S = Rdo x RdL finite doubset,

mean squared error

 MSE^{\prime} Loss: $L(f) := \sum_{(a,b) \in S} ||f(a)-b||^2$

[dist(f,0) =0 possible for f #g]

Proposition: There is a pseudometric dist: $V \times V \rightarrow \mathbb{R}_{\geq 0}$ and some $g \in V$ such that unimizing L(f) over $f \in M$ is equivalent to minimizing dist (f,g) over $f \in M$.

V

M

 $d_{L} > 1$ $f = (f_{1/...}, f_{dL}), \quad C_{f} := \begin{bmatrix} c_{f_{1}} & ... & c_{f_{dL}} \\ c_{f_{1}} & ... & c_{f_{dL}} \end{bmatrix}$ $\Rightarrow f(x) = v_{D}(x) \cdot C_{f}$ $\Rightarrow f(x) = ||C||_{Q}^{2} := f_{f}(C^{T}QC)$ $\Rightarrow f(x) = ||A \cdot C_{f} - B||_{F_{fob}}^{2} = ||C_{f} - A^{\dagger}B||_{A^{T}A}^{2} + const.$

Loss Landscape = 2(0, L(fo)) | De 0] params input output $\mu: \Theta \times X \rightarrow Y$ $\mathcal{M} = \{ \mu(\theta, \cdot) \mid \theta \in \Theta \}$

Loss Landscape = {(0, L(fo)) | De @}

can be studied in a descripted way:

loss land scape in function space.

=
$$\{(f, L(f)) \mid feM\} \subseteq VxR$$

Loss Landscape = 2(0, 2(fg)) | De O]

can be studied in a descripted way:

loss landscape in function space.

=
$$\{(t, l(t)) \mid teM\} \subseteq VxR$$

How? Geometry of M affects loss landscape!

Which geometric properties does I have ?