
Algebra Geometry

of Neural Networks



neural
tangentkernel

NTK approach

target
network

increase

a width
network

linearizedmodels

of a dimension



neural algebraic
tangentkernel geometry

NTK approach AG approach

target algebraic nonlinearmodels in
network network finitedimensionalambientspaces

Stoneincrease
Weierstrap

a width target
network network

linearizedmodels

of a dimension



Stone Weierstrap I
Let compact Hansdorff space A subalgebra of CCX R containing a

nonzero constant function
A is dense in XR A separates points
in supremum norm i.e xtyeX feA f x fly

Cor X R compact f RMcontinuous TO

Fp R polynomial function such that
xeX AFCA pain e



Example MLP
k multilayerperceptions

20 0 0 0 0 0 α 0 0 0 α

α learnable affine linear functions
o nonlinear activation function applied entrywise

we assume o is a univariate polynomial

Ex o x x 0 0

et o a

Which functions does this MLP parametrize



Ex o x x 0 0

et o 8
Which functions does this MLP parametrize

e ax by f extdy

Caffey Layfly Lefty
Can you obtain all of R xiy 2

homogeneous quadratic polynomials in Xy
i e are all values for A B C possible



Ex o x x 0 0

et o 8
Which functions does this MLP parametrize

e ax by f extdy

affix cagey Lefty
Can you obtain all of R xiy 2

homogeneous quadratic polynomials in Xy
i e are all values for A B C possible

YES

What about a x x



Ex o x x 0 0

et o E
Which functions does this MLP parametrize

e ax by f extdy

Lex Lrgxy Labegxy t

gy
Can you obtain all of R xiy z

homogeneous cubic polynomials in Xy
i e are all values for A B C D possible



Ex o x x 0 0

et o E 1
Which functions does this MLP parametrize

e ax by f extdy

affix Lhgxy Labedxy t

gy
Can you obtain all of R xiy z

homogeneous cubic polynomials in Xy
i e are all values for A B C D possible

No e g A 1
B O

C 1

D 0 Macaulay



Neuromanifolds

A parametric machine learning model is a map µ x X Y
parameters outputs

inputs

Its neuro mainfold is M pelf Y De

Examples O o
no bias

O

O O

o xs x M RExiyte

ax x M E REX g s

o x x



Neuromanifolds

A parametric machine learning model is a map µ x X Y
outputsparameters

inputs

Its neuro mainfold is M pelf Y De

Examples O o
no bias

O

O O

o xs x M RExiyte

ax x M E REX g s

o x X M 421
2



Neuromanifolds

A parametric machine learning model is a map µ x X Y
parameters outputs

inputs

Its neuromainfold is M pelf Y De

Examples O o
no bias

O

O O

o xs x M RExiyte

ax x M E REX g s

o x X M 421
2

Fo
acx

a
b Y M



Neuromanifolds

A parametric machine learning model is a map µ xX Y
parameters outputs

inputs

Its neuromainfold is M pelf Y De

Examples O o
no bias

O

O O

o xs x M RExiyte

ax x M E REX g s

o x X M 421
2

a b 4 M WERE rk W 1



Linear MLPs α 0 2202 where
α Rdi Rdi linear

M



Linear MLPs α 0 2202 where
α Rdi Rdi linear

M We Rdu do I rk W min Ido dy.edu



Linear MLPs α 0 202 where
α Rdi Rdi linear

M We Rdu do I rk W min dody.edu

Polynomial MLPs 22000 0 0022000 α where

α Rdi 1 Rdi affine linear
o RLXJ S

M lives in a finite dimensional vector space namely



Linear MLPs α 0 202 where
α Rdi Rdi linear

M We Rdu do I rk W min dody.edu

Polynomial MLPs α 00 0 0022000 α where

α Rdi 1 Rdi affine linear
REX S

M lives in a finite dimensional vector space namely

REX do get



Linear MLPs α 0 202 where
α Rdi Rdi linear

M We Rdu do I rk W min dody.edu

Polynomial MLPs α 00 0 0022000 α where

α Rdi 1 Rdi affine linear
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M lives in a finite dimensional vector space namely
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Polynomial MLPs are the only ones with that property
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