Geometry of Linear Neural Networks that are
Equivariant / Invariant under Permutation Groups

Kathlén Kohn
FxrEY
KTH WALLENBERG Al,
(Ll \/\/\SP i,

%ﬁ

joint work with

Anna-Laura Sattelberger Vahid Shahverdi



Algebra & Geometry = Neural Network Theory



Algebra & Geometry = Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function
space?

2. How does the geometry of the function space impact the training of the
network?



Algebra & Geometry = Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function
space?

2. How does the geometry of the function space impact the training of the
network?

a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of
optimization algorithm)



Algebra & Geometry = Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function
space?

2. How does the geometry of the function space impact the training of the
network?

a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of
optimization algorithm)



Algebra & Geometry = Neural Network Theory

Algebraic settings:

network architecture

activation | network structure loss




Algebra & Geometry = Neural Network Theory

Algebraic settings:

network architecture

activation | network structure loss

identity
RelLU
polynomial




Algebra & Geometry = Neural Network Theory

Algebraic settings:

network architecture

activation | network structure loss
identity fully-connected
RelLU convolutional

polynomial | group equivariant



Algebra & Geometry = Neural Network Theory

Algebraic settings:

network architecture

activation | network structure loss
identity fully-connected squared-error loss
RelLU convolutional Wasserstein distance

polynomial | group equivariant cross-entropy




Algebra & Geometry = Neural Network Theory

Algebraic settings:

network architecture

activation | network structure loss
identity fully-connected squared-error loss
RelLU convolutional Wasserstein distance

polynomial | group equivariant cross-entropy




Linear Fully-Connected Networks

activation = identity & network structure = fully-connected




Linear Fully-Connected Networks

activation = identity & network structure = fully-connected
This network parametrizes linear maps:

W R2><4 % R3><2 L R3><4
(Wl, Wg) = W2W1.




Linear Fully-Connected Networks

activation = identity & network structure = fully-connected
This network parametrizes linear maps:
W R2X4 % R3><2 R3X4,

(Wl, W2) = W2W1.

Its function space is

Mo = {W € R¥>** | rank(W) < 2}.




Linear Fully-Connected Networks

activation = identity & network structure = fully-connected
This network parametrizes linear maps:
W R2><4 % R3><2 ]R3><47

(Wl, W2) = W2W1.

Its function space is

Mo = {W € R¥>** | rank(W) < 2}.

In general: i : RKXko o RRexki o o Rlaxki-1 __ Rkuxko,
(Wl,Wz,...,WL) st W[_ W2W1.

Its function space M, = im(u) = {W € RkXko | yank(W) < r}, where
r := min(ko, ..., k), is an algebraic variety.
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Linear Group-Equivariant Networks
Running Example
Consider an autoencoder  : R?X? x R9%2 — R (Wy, Wh) — WolW)
with function space My = im(u) = {W € R%*® | rank(W) < 2}.

a1 | 912 | 913
Its inputs and outputs are 3 x 3 images: | ap1 | ax | a3 | € R°.

d31 | 432 | 433

Consider the clockwise rotation by 90°:

a1 | a2 | a3 a3y | a»1 | aut
B )
o RIS o' dos | —+lazy1'ass F A,

d31 | 932 | 433 d33 | 923 | 413

Which W € M, are equivariant under o7
Which are invariant?
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example cont'd
W € R%%? is equivariant under o iff
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The linear space £7 of o-equivariant W € R%*? intersected with the function
space My = {W € R%*? | rank(W) < 2} of our autoencoder
is an algebraic variety with

o 10 irreducible components over C

& 4 irreducible components over R
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There is no neural network whose function space is £7 N M, |

Any neural network can parametrize at most one of the real irreducible
components of £7 N M.
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example cont'd
W e R9%9 is invariant under o iff
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The linear space Z° of o-invariant W € R%*? intersected with the function
space My = {W € R%*? | rank(W) < 2} is an irreducible algebraic variety
=~ {A € R?*3 | rank(A) < 2}.
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Invariance

Consider M, = {W € R™*" | rank(W) < r} and 0 € S,,.
Decompose 0 = w1 o mp 0 ... o 7k into disjoint cycles.

Lemma: The linear space Z7 of g-invariant W € R™*" consists of all
matrices W whose columns indexed by 7; are equal, for all i =1,2,..., k.
Hence, Z° N M, = {W € R™* | rank(W) < r} is an irreducible variety.

Lemma: Let G C S,
The set of G-invariant W € R™*" is Z¢ for some o € S,,.

What are all ways to parametrize Z° N M, with autoencoders?

Lemma: {(A, B) € R™k x R¥*" | rank(AB) = k,AB € I°} =
{A € R™k | rank(A) = k} x {B € R¥*" | columns indexed by ; are equal}

= ¢ induces weight sharing on the encoder!
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Equivariance

Consider M, = {W € R™" | rank(W) < r} and 0 € S, represented by
P, € R™",

Idea: Let T € GL,,.
W is P,-equivariant iff T-'WT is TP, T-equivariant.

This base change also preserves rank!
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da11 | d12 | 913 da31 | d21 | d11

o:R%— ng az1 | @2 | @23 [F——|ad32 | a2 | 312

431 | 432 | a33 a33 | d23 | d13

P = diagonalization of P, P-equivariant matrices

(ls(0) 1 0) 0] _811 0] (0] 0] a1 (0] (0] (0] di13
0/ 0/0 0 0 (O o 0 (0] 0 ¢c» 0 O 0]
00 -1 0 (020 om0 0 0 b O 0]
00 0 —i 00 00 dip 000 =0 dip -0
10 0 0] ani 0 0] 0 ano 0] 0] 0] dans
0 O = 0550 0 0 o1 0 O 0 ¢ 0 -0 0]
00 -1 0 0 0 by O 0 0 by O 0]
00 0 —i 08 00" a5y [0 00 a0
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P = diagonalization of P, P-equivariant matrices

d11 d12 413
1 a1 ax a3
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[a11 a12 a13
dp1 dzp 43
d31 d32 433
b1 bio
Ye— bo1 b
C11 C12
€1 C»
di di
do1 x|

There are 10 ways how W can have rank 2:
o One of the diagonal blocks has rank 2;  ~» 4 components of £ N M,
other blocks are 0
¢ Two distinct blocks have rank 1; ~> 6 components of £ N M
other blocks are 0
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Chop W into blocks following the same pattern!
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Equivariance
Consider M, = {W € R™" | rank(W) < r} and 0 € S,.

Decompose 0 = 71 ... o 7 into disjoint cycles and let ¢; := length(7;).
Diagonalize P, and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W € R™" is P-equivariant iff its block diagonal with
#(Z/mZ)* many blocks of size dy, x dp, Where dy, := #{j such that m|{;} .

1 a1 ap ai
1 ap ap ax
1 3 a31 a3 as3 g
= 11 b2
P Sk W = by1 by
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jestf di1 di2
=i dy1 dy
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Equivariance
Consider M, = {W € R™" | rank(W) < r} and 0 € S,.

Decompose 0 = 71 ... o 7 into disjoint cycles and let ¢; := length(7;).
Diagonalize P, and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W € R™" is P-equivariant iff its block diagonal with
#(Z/mZ)* many blocks of size dy, x dp, Where dy, := #{j such that m|{;} .

1 a1 ap ai
1 ap ap ax
1 3 a31 a3 as3 g
= 11 b2
P Sk W = by1 by
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=4 06=403=1
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H(ZJ1Z)* = 1, #(Z/22)* = 1, #(Z/AZ)* = 2
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Equivariance
Consider M, = {W € R™" | rank(W) < r} and 0 € S,.

Decompose 0 = 71 ... o 7 into disjoint cycles and let ¢; := length(7;).
Diagonalize P, and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W € R™" is P-equivariant iff its block diagonal with
#(Z/mZ)* many blocks of size dy, x dp, Where dy, := #{j such that m|{;} .

Theorem: The irreducible components of £2 N M, over C are in 1-to-1
correspondence with the integer solutions (rp, ) of

Z Z I'my=1r, Wwhere 0 < ry, <dn.
mEZx>o ue(Z/mL)*

The component indexed by (rpm,,) is

=T} ] JacClie|ank(Ay<r,,}.

me&Zxo u€(Z/mZ)*
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Equivariance over R
Consider M, = {W € R™" | rank(W) < r} and ¢ € S,.

To diagonalize P,, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and
imaginary parts.

This new basis can be scaled to become orthonormal!

Q.20 20, 5k e 1™ 1.1
4 : 1000 Logi =1 —i
Example: to diagonalize 01 0 ol use base change A
OE 08 180 1 —j -1 |

14~ Wi -0

1L 0 a0

ol e
lhsac 0

_1\@



running example

ail | a2 | 413 as1 | a21 | 311
. ™9 9
o: R —»R", | a1 | as | as3 [—>| @32 | 3 |/a12
431 | 932 | 433 d33 | 923 | 413
P = P, after Og(R)-base change P-equivariant matrices
M1 T [aur a2 a3 ]
az1 dxp 43
d31 d32 433
=1l b1 bio
-1 bo1 b

G =€ d1 —d2
€2 "CY. d2 d1
el =t =
=R il G




running example
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ax1 ax ax
d31 432 433
by i:bio
W = b1 b2

There are 4 ways how W can have rank 2:
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()] (5]
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aii
an1
431

running example

ai2
az
d32

a3

a3

az3
b11
b1

bio
b2

There are 4 ways how W can have rank 2:

& One of the diagonal blocks has rank 2;
other blocks are 0

& Two first 2 blocks have rank 1;

last block is 0

a
2
€
€2

-
C1
—e
€1

d
d>
f

~~ 3 components of £7 N M>

~ 1 component of £72 N M>
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In general: After the O,(R)-base change, the o-equivariant matrices become
block diagonal:
& at most 2 blocks are arbitrary (corresponding to eigenvalues +1 of P,);

& all other blocks are 2d x 2d matrices consisting of d? matrices of the
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Equivariance over R
In general: After the O,(R)-base change, the o-equivariant matrices become
block diagonal:
& at most 2 blocks are arbitrary (corresponding to eigenvalues +1 of P,);

& all other blocks are 2d x 2d matrices consisting of d? matrices of the

a —b dxd
form [b a]' REB 4y

Blocks of the latter kind have even rank!
rank(R(M)) = 2 - rank(M)

Definition:

For z=a+ ib € C, define R(z) := [Z _ab].

For M € C9%¢, let R(M) € R29*2¢ be obtained by replacing each entry m;
of M by R(mj;). We call R(M) the realization of M.
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Equivariance over R

Theorem: The irreducible components of £7 N M, over R are in 1-to-1
correspondence with the integer solutions (rp, ,) of

f11+f21+z Z 2‘rm7u:r, where 0 < rp y < dpy.
m>2 ye(Z/mZ)*

1
2<m<1

The component indexed by (rpm,,) is
~{A € RA%U | rank(A) < ri 1} x {A € R%*% | rank(A) < a1}
<[ = T RAAE E o njank(A) < 1, . 18

m>2 ye(Z/mz)*,

14
§<E<1



Which of these 4 components is best ?7

a11. ameeaiy
a1 ax ax
a3 d3g. 438

by i:bio
W = b1 b2
€1 —Ca. dy e
() (5] CI'2 d1
S €D fl —f2
& e @ LI

There are 4 ways how W can have rank 2:

& One of the diagonal blocks has rank 2; ~~ 3 components of £7 N M>
other blocks are 0

¢ Two first 2 blocks have rank 1; ~> 1 component of £2 N M
last block is 0
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Parametrizing equivariant functions with autoencoders
There is no neural network whose function space is £ N My |

But: Each irreducible component of £2 N M5 is the function space of an
autoencoder. In the block-diagonal representation:
o

o
/O O O
o O

o o O ©

o o

o o o o o
O o o o
O o o o
o o o o
o o o O
o o O\A%O
o o Q o o
o o o o
o o OVO
o o o
S /O\\ o o
o o
o o o S

This works in general for £ N M, C R™" |
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Euclidean distance optimization

Consider a function space M C R™*". Given training data X € R"*9 and
Y € R™%4 the squared-error loss is

MR, We [WX = Y|2.

Lemma: If rank(XX ") = n (which holds for a sufficient amount of training
data that is sufficiently generic), minimizing the squared-error loss is
equivalent to minimizing the weighted Euclidean distance

: 2 T Ty—1
Mr;nelRAHW— US> where st =MBEROOGEE T
recall: [|A||2,+ = [JA(XXT)1/2)12.

Now let's assume that XX T is (close to) a multiple of the identity,
and M is an irreducible component of £ N M,.
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Euclidean distance optimization

Orthogonal base changes do not affect the standard Euclidean distance!
Hence, our task is

min [|W — 0|z, )
WeM

where M and U are obtained from M and U by applying our orthogonal
base change.

The matrices in M are block diagonal. By orthogonally projecting U, we can
assume that U has the same block-diagonal structure.
= (1) can be solved on each block independently!

Each block is of the form {A € R9*9 | rank(A) < s} or
R({A € C?*9 | rank(A) < s}) = {A € R?¥*? | rank(A) < s} (by deleting
every other column).

Euclidean distance minimization on these blocks typically has a unique local
minimum, easily found by SVD (Eckart-Young theorem)!



Data science requires us to
rethink the schism between
mathematical disciplines!

differential geometry =
algebraic geometry =

data science =

Bernd Sturmfels

Kathlén Kohn

Metric
Algebraic
Geometry

Polars

Historical Snapshot
Foci
Envelopes

Critical Equations

uclidean istance Degree
ve-Rank Mt Approsimation

Imitation t polor bagres

Perameter Continuation Theorom
Polynomial Homotopy Continuation

Polar Degrees
Polar v
rojct Doty

Compulutlons
Grobner

Polyhedral Norms
Optimal Transport &
Independence Models

l Wasserstein Distance
Wosserstein meets Segre-Veronese

Oberwolfach Seminars

Curvature

Plane Curves

Algebraic Varieties

Volumes of Tubular Neighborhoods

Reach and Offset
Offset Discriminant

Voronoi Cells
Voronoi Basics
Algebraic Boundaries

Kart-Young

Condition Numbers
Errors in Numerical Computations
Matrix inversion and Eckart-Young
Condition Number Theorems
Distance to the Discriminant

Muchine Leurning
Neural Net

Convolutionai Networks
Learning Varieties

Paul Breiding

Maximum Likelihood
Kulloack-Leibler Divergence
Maximum Likelihood Degree
scaterng equatons

Gaussian Mode!

ensors
Tensors and their Rank
Eigenvectors and Singular Vectors
Volumes of Rank-One Varieties

Computer Vision
iview Varieties
Tensors
S meconciruction rom
Unknown Cameras

Volumes of
Semialgebraic Sets
Calculus and Beyond
D-Modules

SOP Hierarchies

Sampling

Homology from Finite Samples
Samping wih Densy Gucraniees
Markov Chain: oties
ChowgGoes o Mente Carlo




Open PhD and Postdoc Positions!

PhD position in Algebraic Geometry & Computer Vision
https://kathlenkohn.github.io/phd

PhD position in Geometric Combinatorics
with Katharina Jochemko

Postdoc position in Algebraic Geometry applied to Machine
Learning & Computer Vision
https://kathlenkohn.github.io/postdoc

Researcher position in Graphical Models and Algebraic Statistics
with Liam Solus



