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Algebra & Geometry ⇒ Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function
space?

2. How does the geometry of the function space impact the training of the
network?

a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of

optimization algorithm)

I - XXIX



Algebra & Geometry ⇒ Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function
space?

2. How does the geometry of the function space impact the training of the
network?

a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of

optimization algorithm)

I - XXIX



Algebra & Geometry ⇒ Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function
space?

2. How does the geometry of the function space impact the training of the
network?

a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of

optimization algorithm)

I - XXIX



Algebra & Geometry ⇒ Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function
space?

2. How does the geometry of the function space impact the training of the
network?

a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of

optimization algorithm)

I - XXIX



Algebra & Geometry ⇒ Neural Network Theory

Algebraic settings:

network architecture

activation network structure loss

identity fully-connected squared-error loss = Euclidean dist

ReLU convolutional Wasserstein distance = polyhedral dist.

polynomial group equivariant cross-entropy ∼= KL divergence
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Linear Fully-Connected Networks
activation = identity & network structure = fully-connected

This network parametrizes linear maps:

µ : R2×4 × R3×2 −→ R3×4,

(W1,W2) 7−→W2W1.

Its function space is

M2 = {W ∈ R3×4 | rank(W ) ≤ 2}.

In general: µ : Rk1×k0 × Rk2×k1 × . . .× RkL×kL−1 −→ RkL×k0 ,

(W1,W2, . . . ,WL) 7−→WL · · ·W2W1.

Its function space Mr = im(µ) = {W ∈ RkL×k0 | rank(W ) ≤ r}, where
r := min(k0, . . . , kL), is an algebraic variety.
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Linear Group-Equivariant Networks
Running Example

Consider an autoencoder µ : R2×9 × R9×2 −→ R9×9, (W1,W2) 7−→W2W1

with function space M2 = im(µ) = {W ∈ R9×9 | rank(W ) ≤ 2}.

Its inputs and outputs are 3× 3 images:

a11 a12 a13
a21 a22 a23
a31 a32 a33

∈ R9.

Consider the clockwise rotation by 90◦:

σ : R9 −→ R9,

a11 a12 a13
a21 a22 a23
a31 a32 a33

7−→
a31 a21 a11
a32 a22 a12
a33 a23 a13

.

Which W ∈M2 are equivariant under σ?
Which are invariant?
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example cont’d

σ : R9 −→ R9,

a11 a12 a13
a21 a22 a23
a31 a32 a33

7−→
a31 a21 a11
a32 a22 a12
a33 a23 a13

is represented by the permutation matrix

Pσ =



0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0 0

0

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0

0 0 1



W ∈ R9×9

is equivariant under σ
⇔

W · Pσ = Pσ ·W .

W ∈ R9×9

is invariant under σ
⇔

W · Pσ = W .
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example cont’d
W ∈ R9×9 is equivariant under σ iff

W =



α1 α2 α3 α4

α4 α1 α2 α3

α3 α4 α1 α2

α2 α3 α4 α1

β1 β2 β3 β4
β4 β1 β2 β3
β3 β4 β1 β2
β2 β3 β4 β1

ε3
ε3
ε3
ε3

γ1 γ2 γ3 γ4
γ4 γ1 γ2 γ3
γ3 γ4 γ1 γ2
γ2 γ3 γ4 γ1

δ1 δ2 δ3 δ4
δ4 δ1 δ2 δ3
δ3 δ4 δ1 δ2
δ2 δ3 δ4 δ1

ε4
ε4
ε4
ε4

ε1 ε1 ε1 ε1 ε2 ε2 ε2 ε2 ε5


.

The linear space Eσ of σ-equivariant W ∈ R9×9 intersected with the function
space M2 = {W ∈ R9×9 | rank(W ) ≤ 2} of our autoencoder
is an algebraic variety with

10 irreducible components over C
4 irreducible components over R
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takeaway message

There is no neural network whose function space is Eσ ∩M2 !

Any neural network can parametrize at most one of the real irreducible
components of Eσ ∩M2.
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example cont’d

W ∈ R9×9 is invariant under σ iff

W =



α1 α1 α1 α1

α2 α2 α2 α2

α3 α3 α3 α3

α4 α4 α4 α4

β1 β1 β1 β1
β2 β2 β2 β2
β3 β3 β3 β3
β4 β4 β4 β4

γ1
γ2
γ3
γ4

α5 α5 α5 α5

α6 α6 α6 α6

α7 α7 α7 α7

α8 α8 α8 α8

β5 β5 β5 β5
β6 β6 β6 β6
β7 β7 β7 β7
β8 β8 β8 β8

γ5
γ6
γ7
γ8

α9 α9 α9 α9 β9 β9 β9 β9 γ9


.

The linear space Iσ of σ-invariant W ∈ R9×9 intersected with the function
space M2 = {W ∈ R9×9 | rank(W ) ≤ 2} is an irreducible algebraic variety

∼= {A ∈ R9×3 | rank(A) ≤ 2}.
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Invariance

Consider Mr = {W ∈ Rm×n | rank(W ) ≤ r} and σ ∈ Sn.

Decompose σ = π1 ◦ π2 ◦ . . . ◦ πk into disjoint cycles.

Lemma: The linear space Iσ of σ-invariant W ∈ Rm×n consists of all
matrices W whose columns indexed by πi are equal, for all i = 1, 2, . . . , k .
Hence, Iσ ∩Mr

∼= {W ∈ Rm×k | rank(W ) ≤ r} is an irreducible variety.

Lemma: Let G ⊂ Sn.
The set of G -invariant W ∈ Rm×n is Iσ for some σ ∈ Sn.

What are all ways to parametrize Iσ ∩Mr with autoencoders?

Lemma: {(A,B) ∈ Rm×k × Rk×n | rank(AB) = k ,AB ∈ Iσ} =
{A ∈ Rm×k | rank(A) = k} × {B ∈ Rk×n | columns indexed by πi are equal}

⇒ σ induces weight sharing on the encoder!
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running example

σ : R9 −→ R9,

a11 a12 a13
a21 a22 a23
a31 a32 a33

7−→
a31 a21 a11
a32 a22 a12
a33 a23 a13

has function space Iσ ∩M2

X - XXIX



Equivariance

Consider Mr = {W ∈ Rn×n | rank(W ) ≤ r} and σ ∈ Sn represented by
Pσ ∈ Rn×n.

Idea: Let T ∈ GLn.
W is Pσ-equivariant iff T−1WT is T−1PσT -equivariant.

This base change also preserves rank!
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running example

σ : R9 −→ R9,

a11 a12 a13
a21 a22 a23
a31 a32 a33

7−→
a31 a21 a11
a32 a22 a12
a33 a23 a13

P = Pσ

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0 0

0

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0

0 0 1
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running example

σ : R9 −→ R9,

a11 a12 a13
a21 a22 a23
a31 a32 a33

7−→
a31 a21 a11
a32 a22 a12
a33 a23 a13

P = diagonalization of Pσ

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

0 0

0

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

0

0 0 1



P-equivariant matrices

a11 0 0 0
0 c11 0 0
0 0 b11 0
0 0 0 d11

a12 0 0 0
0 c12 0 0
0 0 b12 0
0 0 0 d12

a13
0
0
0

a21 0 0 0
0 c21 0 0
0 0 b21 0
0 0 0 d21

a22 0 0 0
0 c22 0 0
0 0 b22 0
0 0 0 d22

a23
0
0
0

a31 0 0 0 a32 0 0 0 a33
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running example

W =



a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12
b21 b22

c11 c12
c21 c22

d11 d12
d21 d22


There are 10 ways how W can have rank 2:

One of the diagonal blocks has rank 2;  4 components of Eσ ∩M2

other blocks are 0

Two distinct blocks have rank 1;  6 components of Eσ ∩M2

other blocks are 0
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Equivariance
Consider Mr = {W ∈ Rn×n | rank(W ) ≤ r} and σ ∈ Sn represented by

Pσ ∈ Rn×n.

The decomposition σ = π1 ◦ . . . ◦ πk into disjoint cycles chops Pσ into blocks.
Chop W into blocks following the same pattern!

Pσ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0 0

0

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0

0 0 1

 W =


α1 α2 α3 α4
α4 α1 α2 α3
α3 α4 α1 α2
α2 α3 α4 α1

β1 β2 β3 β4
β4 β1 β2 β3
β3 β4 β1 β2
β2 β3 β4 β1

ε3
ε3
ε3
ε3

γ1 γ2 γ3 γ4
γ4 γ1 γ2 γ3
γ3 γ4 γ1 γ2
γ2 γ3 γ4 γ1

δ1 δ2 δ3 δ4
δ4 δ1 δ2 δ3
δ3 δ4 δ1 δ2
δ2 δ3 δ4 δ1

ε4
ε4
ε4
ε4

ε1 ε1 ε1 ε1 ε2 ε2 ε2 ε2 ε5


Lemma: A matrix W ∈ Rn×n is σ-equivariant iff

each block is a (possibly non-square) circulant matrix.

a a a
a a a
a a a
a a a

 , [
a a a
a a a

]
,

[
a b a b
b a b a

]
, . . .
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Equivariance
Consider Mr = {W ∈ Rn×n | rank(W ) ≤ r} and σ ∈ Sn.

Decompose σ = π1 ◦ . . . ◦ πk into disjoint cycles and let `j := length(πj).

Diagonalize Pσ and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W ∈ Rn×n is P-equivariant iff its block diagonal with
#(Z/mZ)× many blocks of size dm× dm, where dm := #{j such that m|`j} .

P =


1

1
1
−1
−1

i
i
−i
−i

 W =


a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12
b21 b22

c11 c12
c21 c22

d11 d12
d21 d22


`1 = 4, `2 = 4, `3 = 1

d1 = 3, d2 = 2, d3 = 0, d4 = 2, d5 = 0, . . .

#(Z/1Z)× = 1, #(Z/2Z)× = 1, #(Z/4Z)× = 2
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Equivariance
Consider Mr = {W ∈ Rn×n | rank(W ) ≤ r} and σ ∈ Sn.

Decompose σ = π1 ◦ . . . ◦ πk into disjoint cycles and let `j := length(πj).

Diagonalize Pσ and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W ∈ Rn×n is P-equivariant iff its block diagonal with
#(Z/mZ)× many blocks of size dm× dm, where dm := #{j such that m|`j} .

Theorem: The irreducible components of Eσ ∩Mr over C are in 1-to-1
correspondence with the integer solutions (rm,u) of∑

m∈Z>0

∑
u∈(Z/mZ)×

rm,u = r , where 0 ≤ rm,u ≤ dm.

The component indexed by (rm,u) is

∼=
∏

m∈Z>0

∏
u∈(Z/mZ)×

{A ∈ Cdm×dm | rank(A) ≤ rm,u}.
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Equivariance over R
Consider Mr = {W ∈ Rn×n | rank(W ) ≤ r} and σ ∈ Sn.

To diagonalize Pσ, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and
imaginary parts.

This new basis can be scaled to become orthonormal!

Example: to diagonalize


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

, use base change


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



 
1

2


1
√

2 1 0

1 0 −1 −
√

2

1 −
√

2 1 0

1 0 −1
√

2

 ∈ O4(R)
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running example

σ : R9 −→ R9,

a11 a12 a13
a21 a22 a23
a31 a32 a33

7−→
a31 a21 a11
a32 a22 a12
a33 a23 a13

P = Pσ after O9(R)-base change

1
1

1
−1

−1
0 1
−1 0

0 1
−1 0



P-equivariant matrices

a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12
b21 b22

c1 −c2 d1 −d2
c2 c1 d2 d1
e1 −e2 f1 −f2
e2 e1 f2 f1
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running example

W =



a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12
b21 b22

c1 −c2 d1 −d2
c2 c1 d2 d1
e1 −e2 f1 −f2
e2 e1 f2 f1


There are 4 ways how W can have rank 2:

One of the diagonal blocks has rank 2;  3 components of Eσ ∩M2

other blocks are 0

Two first 2 blocks have rank 1;  1 component of Eσ ∩M2

last block is 0
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Equivariance over R
In general: After the On(R)-base change, the σ-equivariant matrices become
block diagonal:

at most 2 blocks are arbitrary (corresponding to eigenvalues ±1 of Pσ);

all other blocks are 2d × 2d matrices consisting of d2 matrices of the

form

[
a −b
b a

]
.

R(Cd×d)

Blocks of the latter kind have even rank!

rank(R(M)) = 2 · rank(M)

Definition:

For z = a + ib ∈ C, define R(z) :=

[
a −b
b a

]
.

For M ∈ Cd×e , let R(M) ∈ R2d×2e be obtained by replacing each entry mij

of M by R(mij). We call R(M) the realization of M.
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Equivariance over R

Theorem: The irreducible components of Eσ ∩Mr over R are in 1-to-1
correspondence with the integer solutions (rm,u) of

r1,1 + r2,1 +
∑
m>2

∑
u∈(Z/mZ)×,

1
2<

u
m<1

2 · rm,u = r , where 0 ≤ rm,u ≤ dm.

The component indexed by (rm,u) is

∼={A ∈ Rd1×d1 | rank(A) ≤ r1,1} × {A ∈ Rd2×d2 | rank(A) ≤ r2,1}

×
∏
m>2

∏
u∈(Z/mZ)×,

1
2<

u
m<1

R({A ∈ Cdm×dm | rank(A) ≤ rm,u}).
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Which of these 4 components is best ??

W =



a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12
b21 b22

c1 −c2 d1 −d2
c2 c1 d2 d1
e1 −e2 f1 −f2
e2 e1 f2 f1


There are 4 ways how W can have rank 2:

One of the diagonal blocks has rank 2;  3 components of Eσ ∩M2

other blocks are 0

Two first 2 blocks have rank 1;  1 component of Eσ ∩M2

last block is 0
XXIV - XXIX



Parametrizing equivariant functions with autoencoders
There is no neural network whose function space is Eσ ∩M2 !

But: Each irreducible component of Eσ ∩M2 is the function space of an
autoencoder. In the block-diagonal representation:

This works in general for Eσ ∩Mr ⊂ Rn×n !
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Euclidean distance optimization

Consider a function space M⊂ Rm×n. Given training data X ∈ Rn×d and
Y ∈ Rm×d , the squared-error loss is

M→ R, W 7→ ‖WX − Y ‖2F .

Lemma: If rank(XX>) = n (which holds for a sufficient amount of training
data that is sufficiently generic), minimizing the squared-error loss is
equivalent to minimizing the weighted Euclidean distance

min
W∈M

‖W − U‖2XX> , where U = YX>(XX>)−1.

recall: ‖A‖2
XX>

= ‖A(XX>)1/2‖2F .

Now let’s assume that XX> is (close to) a multiple of the identity,
and M is an irreducible component of Eσ ∩Mr .
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Euclidean distance optimization
Orthogonal base changes do not affect the standard Euclidean distance!
Hence, our task is

min
W̃∈M̃

‖W̃ − Ũ‖2F , (1)

where M̃ and Ũ are obtained from M and U by applying our orthogonal
base change.

The matrices in M̃ are block diagonal. By orthogonally projecting Ũ, we can
assume that Ũ has the same block-diagonal structure.
⇒ (1) can be solved on each block independently!

Each block is of the form {A ∈ Rd×d | rank(A) ≤ s} or
R({A ∈ Cd×d | rank(A) ≤ s}) ∼= {A ∈ R2d×d | rank(A) ≤ s} (by deleting

every other column).

Euclidean distance minimization on these blocks typically has a unique local
minimum, easily found by SVD (Eckart-Young theorem)!
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Data science requires us to
rethink the schism between
mathematical disciplines!

differential geometry ⇒

algebraic geometry ⇒

data science ⇒
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Open PhD and Postdoc Positions!

PhD position in Algebraic Geometry & Computer Vision
https://kathlenkohn.github.io/phd

PhD position in Geometric Combinatorics
with Katharina Jochemko

Postdoc position in Algebraic Geometry applied to Machine
Learning & Computer Vision
https://kathlenkohn.github.io/postdoc

Researcher position in Graphical Models and Algebraic Statistics
with Liam Solus
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