Geometry of Linear Neural Networks that are Equivariant / Invariant under Permutation Groups

Kathlén Kohn
joint work with

Anna-Laura Sattelberger
Vahid Shahverdi

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebra \& Geometry \Rightarrow Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function space?
2. How does the geometry of the function space impact the training of the network?

Algebra \& Geometry \Rightarrow Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function space?
2. How does the geometry of the function space impact the training of the network?
a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of optimization algorithm)

Algebra \& Geometry \Rightarrow Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function space?
2. How does the geometry of the function space impact the training of the network?
a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of optimization algorithm)

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture		
activation	network structure	loss

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture		
activation	network structure	loss
identity		
ReLU		
polynomial		

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture		
activation	network structure	loss
identity	fully-connected	
ReLU	convolutional	
polynomial	group equivariant	

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture			
activation	network structure	loss	
identity	fully-connected	squared-error loss	$=$ Euclidean dist
ReLU	convolutional	Wasserstein distance	$=$ polyhedral dist.
polynomial	group equivariant	cross-entropy	$\simeq \mathrm{KL}$ divergence

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture			
activation	network structure	loss	
identity	fully-connected	squared-error loss	$=$ Euclidean dist
ReLU	convolutional	Wasserstein distance	$=$ polyhedral dist.
polynomial	group equivariant	cross-entropy	\simeq KL divergence

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

This network parametrizes linear maps:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

$$
f_{1,0} \quad f_{2, \theta}
$$

This network parametrizes linear maps:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

Its function space is

$$
\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\right\}
$$

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

This network parametrizes linear maps:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

Its function space is

$$
\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\right\}
$$

In general: $\mu: \mathbb{R}^{k_{1} \times k_{0}} \times \mathbb{R}^{k_{2} \times k_{1}} \times \ldots \times \mathbb{R}^{k_{L} \times k_{L-1}} \longrightarrow \mathbb{R}^{k_{L} \times k_{0}}$,

$$
\left(W_{1}, W_{2}, \ldots, W_{L}\right) \longmapsto W_{L} \cdots W_{2} W_{1} .
$$

Its function space $\mathcal{M}_{r}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{k_{L} \times k_{0}} \mid \operatorname{rank}(W) \leq r\right\}$, where $r:=\min \left(k_{0}, \ldots, k_{L}\right)$, is an algebraic variety.

Linear Group-Equivariant Networks

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$

Linear Group-Equivariant Networks

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Linear Group-Equivariant Networks

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Linear Group-Equivariant Networks

Running Example
Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Its inputs and outputs are 3×3 images: | a_{11} | a_{12} | a_{13} |
| :---: | :---: | :---: |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$\in \mathbb{R}^{9}$.

Consider the clockwise rotation by 90° :

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |.

Linear Group-Equivariant Networks

Running Example
Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Its inputs and outputs are 3×3 images: | a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$\in \mathbb{R}^{9}$.

Consider the clockwise rotation by 90° :

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |.

Which $W \in \mathcal{M}_{2}$ are equivariant under σ ?

Linear Group-Equivariant Networks

Running Example
Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Its inputs and outputs are 3×3 images: | a_{11} | a_{12} | a_{13} |
| :---: | :---: | :---: |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$\in \mathbb{R}^{9}$.

Consider the clockwise rotation by 90° :

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |.

Which $W \in \mathcal{M}_{2}$ are equivariant under σ ? Which are invariant?

example cont'd

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

is represented by the permutation matrix

$$
P_{\sigma}=\left[\begin{array}{llll|llll|l}
0 & 0 & 0 & 1 & & & & & \\
1 & 0 & 0 & 0 & & & 0 & & 0 \\
0 & 1 & 0 & 0 & & & & & \\
0 & 0 & 1 & 0 & & & & & \\
\hline & & & & 0 & 0 & 0 & 1 & \\
& & 0 & & 1 & 0 & 0 & 0 & \\
& & & 0 & 1 & 0 & 0 & 0 \\
& & & 0 & 0 & 1 & 0 & \\
\hline & 0 & & & 0 & & 1
\end{array}\right]
$$

example cont'd

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

is represented by the permutation matrix

$$
P_{\sigma}=\left[\begin{array}{llll|llll|l}
0 & 0 & 0 & 1 & & & & & \\
1 & 0 & 0 & 0 & & & 0 & & 0 \\
0 & 1 & 0 & 0 & & & & & 0 \\
0 & 0 & 1 & 0 & & & & & \\
\hline & & & & 0 & 0 & 0 & 1 & \\
& & 0 & & 1 & 0 & 0 & 0 & \\
& & & 0 & 1 & 0 & 0 & 0 \\
& & & & 0 & 0 & 1 & 0 & \\
\hline & 0 & & & 0 & & 1
\end{array}\right]
$$

$$
W \in \mathbb{R}^{9 \times 9}
$$

is equivariant under σ

$$
\begin{gathered}
\Leftrightarrow \\
W \cdot P_{\sigma}=P_{\sigma} \cdot W .
\end{gathered}
$$

example cont'd

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

is represented by the permutation matrix
$P_{\sigma}=\left[\begin{array}{llll|llll|l}0 & 0 & 0 & 1 & & & & & \\ 1 & 0 & 0 & 0 & & & 0 & & \\ 0 & 1 & 0 & 0 & & & & 0 \\ 0 & 0 & 1 & 0 & & & & & \\ \hline & & & & 0 & 0 & 0 & 1 & \\ & 0 & & 1 & 0 & 0 & 0 & \\ & & & 0 & 1 & 0 & 0 & 0 \\ & & 0 & & 0 & 1 & 0 & \\ \hline & 0 & & 0 & & 1\end{array}\right]$

$$
W \in \mathbb{R}^{9 \times 9}
$$

is equivariant under σ

$$
\begin{gathered}
\Leftrightarrow \\
W \cdot P_{\sigma}=P_{\sigma} \cdot W .
\end{gathered}
$$

$$
W \in \mathbb{R}^{9 \times 9}
$$

is invariant under σ

$$
\begin{gathered}
\Leftrightarrow \\
W \cdot P_{\sigma}=W
\end{gathered}
$$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right] .
$$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right]
$$

The linear space \mathcal{E}^{σ} of σ-equivariant $W \in \mathbb{R}^{9 \times 9}$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right] .
$$

The linear space \mathcal{E}^{σ} of σ-equivariant $W \in \mathbb{R}^{9 \times 9}$ intersected with the function space $\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$ of our autoencoder is an algebraic variety with

- 10 irreducible components over \mathbb{C}
- 4 irreducible components over \mathbb{R}

takeaway message

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$

takeaway message

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$!

Any neural network can parametrize at most one of the real irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$.

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is invariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{1} & \alpha_{1} & \alpha_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \alpha_{2} & \alpha_{2} & \alpha_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \alpha_{3} & \alpha_{3} & \alpha_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \gamma_{3} \\
\alpha_{4} & \alpha_{4} & \alpha_{4} & \alpha_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \gamma_{4} \\
\alpha_{5} & \alpha_{5} & \alpha_{5} & \alpha_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \gamma_{5} \\
\alpha_{6} & \alpha_{6} & \alpha_{6} & \alpha_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \gamma_{6} \\
\alpha_{7} & \alpha_{7} & \alpha_{7} & \alpha_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \gamma_{7} \\
\alpha_{8} & \alpha_{8} & \alpha_{8} & \alpha_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \gamma_{8} \\
\alpha_{9} & \alpha_{9} & \alpha_{9} & \alpha_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \gamma_{9}
\end{array}\right] .
$$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is invariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{1} & \alpha_{1} & \alpha_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \alpha_{2} & \alpha_{2} & \alpha_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \alpha_{3} & \alpha_{3} & \alpha_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \gamma_{3} \\
\alpha_{4} & \alpha_{4} & \alpha_{4} & \alpha_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \gamma_{4} \\
\alpha_{5} & \alpha_{5} & \alpha_{5} & \alpha_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \gamma_{5} \\
\alpha_{6} & \alpha_{6} & \alpha_{6} & \alpha_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \gamma_{6} \\
\alpha_{7} & \alpha_{7} & \alpha_{7} & \alpha_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \gamma_{7} \\
\alpha_{8} & \alpha_{8} & \alpha_{8} & \alpha_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \gamma_{8} \\
\alpha_{9} & \alpha_{9} & \alpha_{9} & \alpha_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \gamma_{9}
\end{array}\right] .
$$

The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{9 \times 9}$ intersected with the function space $\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$ is an irreducible algebraic variety

$$
\cong\left\{A \in \mathbb{R}^{9 \times 3} \mid \operatorname{rank}(A) \leq 2\right\}
$$

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.
What are all ways to parametrize $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r}$ with autoencoders?

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.
What are all ways to parametrize $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r}$ with autoencoders?
Lemma: $\left\{(A, B) \in \mathbb{R}^{m \times k} \times \mathbb{R}^{k \times n} \mid \operatorname{rank}(A B)=k, A B \in \mathcal{I}^{\sigma}\right\}=$

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.
What are all ways to parametrize $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r}$ with autoencoders?
Lemma: $\left\{(A, B) \in \mathbb{R}^{m \times k} \times \mathbb{R}^{k \times n} \mid \operatorname{rank}(A B)=k, A B \in \mathcal{I}^{\sigma}\right\}=$ $\left\{A \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(A)=k\right\} \times\left\{B \in \mathbb{R}^{k \times n} \mid\right.$ columns indexed by π_{i} are equal $\}$ $\Rightarrow \sigma$ induces weight sharing on the encoder!

running example

$\sigma: \mathbb{R}^{\mathbf{9}} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Idea: Let $T \in \mathrm{GL}_{n}$.
W is $P_{\sigma^{-}}$equivariant iff $T^{-1} W T$ is $T^{-1} P_{\sigma} T$-equivariant.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Idea: Let $T \in \mathrm{GL}_{n}$.
W is $P_{\sigma^{-}}$equivariant iff $T^{-1} \mathrm{~W} T$ is $T^{-1} P_{\sigma} T$-equivariant.
This base change also preserves rank!

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$$
P=P_{\sigma}
$$

P-equivariant matrices
$\left[\begin{array}{llll|llll|l}0 & 0 & 0 & 1 & & & & & \\ 1 & 0 & 0 & 0 & & & & & \\ 0 & 1 & 0 & 0 & & & & & 0 \\ 0 & 0 & 1 & 0 & & & & & \\ \hline & & & & 0 & 0 & 0 & 1 & \\ & & 0 & & 1 & 0 & 0 & 0 & \\ & & & 0 & 1 & 0 & 0 & 0 \\ & & & & 0 & 0 & 1 & 0 & \\ \hline & 0 & & & & 0 & & 1\end{array}\right]$
$\left[\begin{array}{llll|llll|l}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\ \alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\ \alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\ \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\ \hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\ \gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\ \gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\ \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\ \hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}\end{array}\right]$

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$P=$ diagonalization of P_{σ}
P-equivariant matrices
$\left[\begin{array}{cccc|cccc|c}1 & 0 & 0 & 0 & & & & & \\ 0 & i & 0 & 0 & & & 0 & & \\ 0 & 0 & -1 & 0 & & 0 & & 0 \\ 0 & 0 & 0 & -i & & & & & \\ \hline & & & 1 & 0 & 0 & 0 & \\ & 0 & & 0 & i & 0 & 0 & \\ & 0 & & 0 & -1 & 0 & 0 \\ & & & 0 & 0 & 0 & -i & \\ & & 0 & & & 0 & & 1\end{array}\right]\left[\begin{array}{cccc|cccc|c}a_{11} & 0 & 0 & 0 & a_{12} & 0 & 0 & 0 & a_{13} \\ 0 & c_{11} & 0 & 0 & 0 & c_{12} & 0 & 0 & 0 \\ 0 & 0 & b_{11} & 0 & 0 & 0 & b_{12} & 0 & 0 \\ 0 & 0 & 0 & d_{11} & 0 & 0 & 0 & d_{12} & 0 \\ \hline a_{21} & 0 & 0 & 0 & a_{22} & 0 & 0 & 0 & a_{23} \\ 0 & c_{21} & 0 & 0 & 0 & c_{22} & 0 & 0 & 0 \\ 0 & 0 & b_{21} & 0 & 0 & 0 & b_{22} & 0 & 0 \\ 0 & 0 & 0 & d_{21} & 0 & 0 & 0 & d_{22} & 0 \\ \hline a_{31} & 0 & 0 & 0 & a_{32} & 0 & 0 & 0 & a_{33}\end{array}\right]$

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$$
P=\text { diagonalization of } P_{\sigma} \quad P \text {-equivariant matrices }
$$

running example

There are 10 ways how W can have rank 2 :

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; other blocks are 0

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 4$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 4$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two distinct blocks have rank 1; other blocks are 0

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 4$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two distinct blocks have rank $1 ; \quad \rightsquigarrow 6$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$
P_{\sigma}=\left[\begin{array}{llll|llll|l}
0 & 0 & 0 & 1 & & & & & \\
1 & 0 & 0 & 0 & & & & & \\
0 & 1 & 0 & 0 & & & 0 & & 0 \\
0 & 0 & 1 & 0 & & & & & \\
\hline & & & 0 & 0 & 0 & 1 & \\
& 0 & & 1 & 0 & 0 & 0 & 0 \\
& & & 0 & 1 & 0 & 0 & 0 \\
& 0 & & & 0 & 1 & 0 & \\
\hline & 0 & & 0 & & 1
\end{array}\right]
$$

$$
\boldsymbol{W}=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right]
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$
P_{\sigma}=\left[\begin{array}{llll|lll|l}
0 & 0 & 0 & 1 & & & & \\
1 & 0 & 0 & 0 & & & & \\
0 & 1 & 0 & 0 & & 0 & & 0 \\
0 & 0 & 1 & 0 & & & & \\
\hline & & & 0 & 0 & 0 & 1 & \\
& 0 & & 1 & 0 & 0 & 0 & \\
& & & 0 & 1 & 0 & 0 & 0 \\
\hline & 0 & & 0 & 1 & 0 & & \\
\hline
\end{array}\right]
$$

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right]
$$

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is σ-equivariant iff each block is a (possibly non-square) circulant matrix.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by
$P_{\sigma} \in \mathbb{R}^{n \times n}$.
The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$
P_{\sigma}=\left[\begin{array}{llll|lllll}
0 & 0 & 0 & 1 & & & & \\
1 & 0 & 0 & 0 & & & & \\
0 & 1 & 0 & 0 & & 0 & & 0 \\
0 & 0 & 1 & 0 & & & & \\
\hline & & & 0 & 0 & 0 & 1 & \\
& 0 & & 0 & 0 & 0 & \\
& 0 & 1 & 0 & 0 & 0 \\
\hline & & & 0 & 0 & 1 & 0 & \\
\hline 0 & & 0 & & 1
\end{array}\right]
$$

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{2} & \varepsilon_{1} \\
\gamma_{2} & \varepsilon_{1} & \varepsilon_{3} & \delta_{2} & \delta_{3} & \varepsilon_{4} & \varepsilon_{2} & \delta_{1} & \varepsilon_{4} \\
\varepsilon_{4} & \varepsilon_{5}
\end{array}\right]
$$

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is σ-equivariant iff each block is a (possibly non-square) circulant matrix.

$$
\left[\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right], \quad\left[\begin{array}{lll}
a & a & a \\
a & a & a
\end{array}\right], \quad\left[\begin{array}{llll}
a & b & a & b \\
b & a & b & a
\end{array}\right], \quad \cdots
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=\operatorname{length}\left(\pi_{j}\right)$.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=\operatorname{length}\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

$$
\begin{aligned}
& \ell_{1}=4, \ell_{2}=4, \ell_{3}=1
\end{aligned}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

$$
\begin{aligned}
& \ell_{1}=4, \ell_{2}=4, \ell_{3}=1 \\
& d_{1}=3, d_{2}=2, d_{3}=0, d_{4}=2, d_{5}=0, \ldots
\end{aligned}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=\operatorname{length}\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

$$
\begin{aligned}
& \ell_{1}=4, \ell_{2}=4, \ell_{3}=1 \\
& d_{1}=3, d_{2}=2, d_{3}=0, d_{4}=2, d_{5}=0, \ldots \\
& \#(\mathbb{Z} / 1 \mathbb{Z})^{\times}=1, \#(\mathbb{Z} / 2 \mathbb{Z})^{\times}=1, \#(\mathbb{Z} / 4 \mathbb{Z})^{\times}=2
\end{aligned}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.
Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$ over \mathbb{C} are in 1-to-1 correspondence with the integer solutions $\left(r_{m, u}\right)$ of

$$
\sum_{m \in \mathbb{Z}>0} \sum_{u \in(\mathbb{Z} / m \mathbb{Z})^{\times}} r_{m, u}=r, \quad \text { where } 0 \leq r_{m, u} \leq d_{m}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.
Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$ over \mathbb{C} are in 1-to-1 correspondence with the integer solutions $\left(r_{m, u}\right)$ of

$$
\sum_{m \in \mathbb{Z}} \sum_{>0} r_{u \in(\mathbb{Z} / m \mathbb{Z})^{\times}} r_{m, u}=r, \quad \text { where } 0 \leq r_{m, u} \leq d_{m}
$$

The component indexed by $\left(r_{m, u}\right)$ is

$$
\cong \prod_{m \in \mathbb{Z}>0} \prod_{u \in(\mathbb{Z} / m \mathbb{Z})^{\times}}\left\{A \in \mathbb{C}^{d_{m} \times d_{m}} \mid \operatorname{rank}(A) \leq r_{m, u}\right\} .
$$

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

This new basis can be scaled to become orthonormal!

Example: to diagonalize
$\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$, use base change
$\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right]$

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

This new basis can be scaled to become orthonormal!

Example: to diagonalize
$\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$, use base change $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right]$

$$
\rightsquigarrow \frac{1}{2}\left[\begin{array}{cccc}
1 & \sqrt{2} & 1 & 0 \\
1 & 0 & -1 & -\sqrt{2} \\
1 & -\sqrt{2} & 1 & 0 \\
1 & 0 & -1 & \sqrt{2}
\end{array}\right] \in O_{4}(\mathbb{R})
$$

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$P=P_{\sigma}$ after $O_{9}(\mathbb{R})$-base change
P-equivariant matrices

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; other blocks are 0

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2;
$\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two first 2 blocks have rank 1; last block is 0

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two first 2 blocks have rank 1;
$\rightsquigarrow 1$ component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ last block is 0

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 d \times 2 d$ matrices consisting of d^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 d \times 2 d$ matrices consisting of d^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Blocks of the latter kind have even rank!

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 d \times 2 d$ matrices consisting of d^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Blocks of the latter kind have even rank!

Definition:

For $z=a+i b \in \mathbb{C}$, define $\mathcal{R}(z):=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
For $M \in \mathbb{C}^{d \times e}$, let $\mathcal{R}(M) \in \mathbb{R}^{2 d \times 2 e}$ be obtained by replacing each entry $m_{i j}$ of M by $\mathcal{R}\left(m_{i j}\right)$. We call $\mathcal{R}(M)$ the realization of M.

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 d \times 2 d$ matrices consisting of d^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right] . \quad \mathcal{R}\left(\mathbb{C}^{d \times d}\right)$

Blocks of the latter kind have even rank!

$$
\operatorname{rank}(\mathcal{R}(M))=2 \cdot \operatorname{rank}(M)
$$

Definition:

For $z=a+i b \in \mathbb{C}$, define $\mathcal{R}(z):=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
For $M \in \mathbb{C}^{d \times e}$, let $\mathcal{R}(M) \in \mathbb{R}^{2 d \times 2 e}$ be obtained by replacing each entry $m_{i j}$ of M by $\mathcal{R}\left(m_{i j}\right)$. We call $\mathcal{R}(M)$ the realization of M.

Equivariance over \mathbb{R}

Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$ over \mathbb{R} are in 1-to-1 correspondence with the integer solutions $\left(r_{m, u}\right)$ of

$$
r_{1,1}+r_{2,1}+\sum_{m>2} \sum_{\substack{u \in(\mathbb{Z} / m \mathbb{Z})^{x}, \frac{1}{2}<\frac{u}{m}<1}} 2 \cdot r_{m, u}=r, \quad \text { where } 0 \leq r_{m, u} \leq d_{m} .
$$

Equivariance over \mathbb{R}

Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$ over \mathbb{R} are in 1-to-1 correspondence with the integer solutions $\left(r_{m, u}\right)$ of

$$
r_{1,1}+r_{2,1}+\sum_{m>2} \sum_{\substack{u \in(\mathbb{Z} / m \mathbb{Z})^{\times}, \frac{1}{2}<\frac{u}{m}<1}} 2 \cdot r_{m, u}=r, \quad \text { where } 0 \leq r_{m, u} \leq d_{m} .
$$

The component indexed by $\left(r_{m, u}\right)$ is

$$
\begin{aligned}
& \cong\left\{A \in \mathbb{R}^{d_{1} \times d_{1}} \mid \operatorname{rank}(A) \leq r_{1,1}\right\} \times\left\{A \in \mathbb{R}^{d_{2} \times d_{2}} \mid \operatorname{rank}(A) \leq r_{2,1}\right\} \\
& \quad \times \prod_{m>2} \prod_{\substack{u \in(\mathbb{Z} / m \mathbb{Z})^{\times} \\
\frac{1}{2}<\frac{u}{m}<1}} \mathcal{R}\left(\left\{A \in \mathbb{C}^{d_{m} \times d_{m}} \mid \operatorname{rank}(A) \leq r_{m, u}\right\}\right) .
\end{aligned}
$$

Which of these 4 components is best ??

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2;
$\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two first 2 blocks have rank 1;
$\rightsquigarrow 1$ component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ last block is 0

Parametrizing equivariant functions with autoencoders

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$!

Parametrizing equivariant functions with autoencoders

 There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$!But: Each irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ is the function space of an autoencoder.

Parametrizing equivariant functions with autoencoders

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$!
But: Each irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ is the function space of an autoencoder. In the block-diagonal representation:

Parametrizing equivariant functions with autoencoders

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$!
But: Each irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ is the function space of an autoencoder. In the block-diagonal representation:

This works in general for $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r} \subset \mathbb{R}^{n \times n}$

Euclidean distance optimization

Consider a function space $\mathcal{M} \subset \mathbb{R}^{m \times n}$. Given training data $X \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^{m \times d}$, the squared-error loss is

$$
\mathcal{M} \rightarrow \mathbb{R}, \quad W \mapsto\|W X-Y\|_{F}^{2}
$$

Euclidean distance optimization

Consider a function space $\mathcal{M} \subset \mathbb{R}^{m \times n}$. Given training data $X \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^{m \times d}$, the squared-error loss is

$$
\mathcal{M} \rightarrow \mathbb{R}, \quad W \mapsto\|W X-Y\|_{F}^{2}
$$

Lemma: If $\operatorname{rank}\left(X X^{\top}\right)=n$ (which holds for a sufficient amount of training data that is sufficiently generic), minimizing the squared-error loss is equivalent to minimizing the weighted Euclidean distance

$$
\min _{W \in \mathcal{M}}\|W-U\|_{X X^{\top}}^{2}, \quad \text { where } U=Y X^{\top}\left(X X^{\top}\right)^{-1}
$$

Euclidean distance optimization

Consider a function space $\mathcal{M} \subset \mathbb{R}^{m \times n}$. Given training data $X \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^{m \times d}$, the squared-error loss is

$$
\mathcal{M} \rightarrow \mathbb{R}, \quad W \mapsto\|W X-Y\|_{F}^{2}
$$

Lemma: If $\operatorname{rank}\left(X X^{\top}\right)=n$ (which holds for a sufficient amount of training data that is sufficiently generic), minimizing the squared-error loss is equivalent to minimizing the weighted Euclidean distance

$$
\min _{W \in \mathcal{M}}\|W-U\|_{X X^{\top}}^{2}, \quad \text { where } U=Y X^{\top}\left(X X^{\top}\right)^{-1}
$$

$$
\text { recall: }\|A\|_{X X^{\top}}^{2}=\left\|A\left(X X^{\top}\right)^{1 / 2}\right\|_{F}^{2}
$$

Euclidean distance optimization

Consider a function space $\mathcal{M} \subset \mathbb{R}^{m \times n}$. Given training data $X \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^{m \times d}$, the squared-error loss is

$$
\mathcal{M} \rightarrow \mathbb{R}, \quad W \mapsto\|W X-Y\|_{F}^{2}
$$

Lemma: If $\operatorname{rank}\left(X X^{\top}\right)=n$ (which holds for a sufficient amount of training data that is sufficiently generic), minimizing the squared-error loss is equivalent to minimizing the weighted Euclidean distance

$$
\min _{W \in \mathcal{M}}\|W-U\|_{X X^{\top}}^{2}, \quad \text { where } U=Y X^{\top}\left(X X^{\top}\right)^{-1}
$$

$$
\text { recall: }\|A\|_{X X^{\top}}^{2}=\left\|A\left(X X^{\top}\right)^{1 / 2}\right\|_{F}^{2}
$$

Now let's assume that $X X^{\top}$ is (close to) a multiple of the identity, and \mathcal{M} is an irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$.

Euclidean distance optimization

Orthogonal base changes do not affect the standard Euclidean distance! Hence, our task is

$$
\begin{equation*}
\min _{\tilde{W} \in \tilde{\mathcal{M}}}\|\tilde{W}-\tilde{U}\|_{F}^{2} \tag{1}
\end{equation*}
$$

where $\tilde{\mathcal{M}}$ and \tilde{U} are obtained from \mathcal{M} and U by applying our orthogonal base change.

Euclidean distance optimization

Orthogonal base changes do not affect the standard Euclidean distance! Hence, our task is

$$
\begin{equation*}
\min _{\tilde{W} \in \tilde{\mathcal{M}}}\|\tilde{W}-\tilde{U}\|_{F}^{2} \tag{1}
\end{equation*}
$$

where $\tilde{\mathcal{M}}$ and \tilde{U} are obtained from \mathcal{M} and U by applying our orthogonal base change.
The matrices in $\tilde{\mathcal{M}}$ are block diagonal. By orthogonally projecting \tilde{U}, we can assume that \tilde{U} has the same block-diagonal structure.

Euclidean distance optimization

Orthogonal base changes do not affect the standard Euclidean distance! Hence, our task is

$$
\begin{equation*}
\min _{\tilde{W} \in \tilde{\mathcal{M}}}\|\tilde{W}-\tilde{U}\|_{F}^{2} \tag{1}
\end{equation*}
$$

where $\tilde{\mathcal{M}}$ and \tilde{U} are obtained from \mathcal{M} and U by applying our orthogonal base change.
The matrices in $\tilde{\mathcal{M}}$ are block diagonal. By orthogonally projecting \tilde{U}, we can assume that \tilde{U} has the same block-diagonal structure.
$\Rightarrow(1)$ can be solved on each block independently!

Euclidean distance optimization

Orthogonal base changes do not affect the standard Euclidean distance! Hence, our task is

$$
\begin{equation*}
\min _{\tilde{W} \in \tilde{\mathcal{M}}}\|\tilde{W}-\tilde{U}\|_{F}^{2} \tag{1}
\end{equation*}
$$

where $\tilde{\mathcal{M}}$ and \tilde{U} are obtained from \mathcal{M} and U by applying our orthogonal base change.
The matrices in $\tilde{\mathcal{M}}$ are block diagonal. By orthogonally projecting \tilde{U}, we can assume that \tilde{U} has the same block-diagonal structure.
$\Rightarrow(1)$ can be solved on each block independently!
Each block is of the form $\left\{A \in \mathbb{R}^{d \times d} \mid \operatorname{rank}(A) \leq s\right\}$ or $\mathcal{R}\left(\left\{A \in \mathbb{C}^{d \times d} \mid \operatorname{rank}(A) \leq s\right\}\right)$

Euclidean distance optimization

Orthogonal base changes do not affect the standard Euclidean distance! Hence, our task is

$$
\begin{equation*}
\min _{\tilde{W} \in \tilde{\mathcal{M}}}\|\tilde{W}-\tilde{U}\|_{F}^{2} \tag{1}
\end{equation*}
$$

where $\tilde{\mathcal{M}}$ and \tilde{U} are obtained from \mathcal{M} and U by applying our orthogonal base change.
The matrices in $\tilde{\mathcal{M}}$ are block diagonal. By orthogonally projecting \tilde{U}, we can assume that \tilde{U} has the same block-diagonal structure.
$\Rightarrow(1)$ can be solved on each block independently!
Each block is of the form $\left\{A \in \mathbb{R}^{d \times d} \mid \operatorname{rank}(A) \leq s\right\}$ or $\mathcal{R}\left(\left\{A \in \mathbb{C}^{d \times d} \mid \operatorname{rank}(A) \leq s\right\}\right) \cong\left\{A \in \mathbb{R}^{2 d \times d} \mid \operatorname{rank}(A) \leq s\right\}$ (by deleting every other column).

Euclidean distance optimization

Orthogonal base changes do not affect the standard Euclidean distance! Hence, our task is

$$
\begin{equation*}
\min _{\tilde{W} \in \tilde{\mathcal{M}}}\|\tilde{W}-\tilde{U}\|_{F}^{2} \tag{1}
\end{equation*}
$$

where $\tilde{\mathcal{M}}$ and \tilde{U} are obtained from \mathcal{M} and U by applying our orthogonal base change.
The matrices in $\tilde{\mathcal{M}}$ are block diagonal. By orthogonally projecting \tilde{U}, we can assume that \tilde{U} has the same block-diagonal structure.
$\Rightarrow(1)$ can be solved on each block independently!
Each block is of the form $\left\{A \in \mathbb{R}^{d \times d} \mid \operatorname{rank}(A) \leq s\right\}$ or $\mathcal{R}\left(\left\{A \in \mathbb{C}^{d \times d} \mid \operatorname{rank}(A) \leq s\right\}\right) \cong\left\{A \in \mathbb{R}^{2 d \times d} \mid \operatorname{rank}(A) \leq s\right\}$ (by deleting every other column).

Euclidean distance minimization on these blocks typically has a unique local minimum, easily found by SVD (Eckart-Young theorem)!

Data science requires us to rethink the schism between mathematical disciplines!
differential geometry \Rightarrow algebraic geometry \Rightarrow data science \Rightarrow

Open PhD and Postdoc Positions!

- PhD position in Algebraic Geometry \& Computer Vision https://kathlenkohn.github.io/phd
- PhD position in Geometric Combinatorics with Katharina Jochemko
- Postdoc position in Algebraic Geometry applied to Machine Learning \& Computer Vision
https://kathlenkohn.github.io/postdoc
- Researcher position in Graphical Models and Algebraic Statistics with Liam Solus

