PLMP - Point-Line Minimal Problems in Complete Multi-View Visibility

Kathlén Kohn

joint work with Timothy Duff, Anton Leykin & Tomas Pajdla

March 29, 2019

Reconstruct 3D scenes and camera poses from 2D images

Reconstruct 3D scenes and camera poses from 2D images

• Step 1: Identify common points and lines on given images

Reconstruct 3D scenes and camera poses from 2D images

• Step 1: Identify common points and lines on given images

 Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

• Step 1: Identify common points and lines on given images

 Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C} . (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C} . (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

 \Rightarrow The 5-Point-Problem is a minimal problem!

Another minimal problem

Given: 3 images of 3 points on a line, 1 attached line and 1 free line
Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

Another minimal problem

Given: 3 images of 3 points on a line, 1 attached line and 1 free line
Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

This problem has 40 solutions over \mathbb{C} . (solution = 3 camera poses and 3D coordinates of points and lines)

 \Rightarrow It is a minimal problem!

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number *m* of cameras,
- a number p of points,
- \diamond a number ℓ of lines,
- \blacklozenge a set $\mathcal I$ of incidences between points and lines.

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number *m* of cameras,
- a number p of points,
- a number ℓ of lines,
- ullet a set $\mathcal I$ of incidences between points and lines.

Definition

A PLP is minimal if,

given *m* random images of *p* points and ℓ lines with incidences \mathcal{I} , it has a positive and finite number of solutions over \mathbb{C} .

(solution = m camera poses and 3D coordinates of points and lines)

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number *m* of cameras,
- a number p of points,
- a number ℓ of lines,
- \blacklozenge a set $\mathcal I$ of incidences between points and lines.

Definition

A PLP is minimal if,

given *m* random images of *p* points and ℓ lines with incidences \mathcal{I} , it has a positive and finite number of solutions over \mathbb{C} .

(solution = m camera poses and 3D coordinates of points and lines)

Can we list all minimal PLPs? How many solutions do they have?

Minimal PLPs

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	1021_{1}	1013_{3}	1005_{5}	2011_{1}	2003_{2}	2003_{3}	1030_{0}	1022_{2}	1014_{4}	1006_{6}	3001_{1}	2110_{0}	2102_{1}
(p,l,\mathcal{I})	\bullet	\times	$ \mathbb{X} $	•_•	†×	×	•	\mathbf{X}	\times	*	•••	•••	•++
Minimal	Y	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ
Degree	$> 450k^{*}$			11306^{*}	26240^*	11008^*	3040^*	4524*			1728^{*}	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_1	2013_2	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p,l,\mathcal{I})	•	•	$\parallel \mid$	\gg		\ast	•_•		•	∮∕ ∦	€_¥	•	••
Minimal	Y	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Y	Y
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	3002_{1}	3002_{2}	2111_{1}	2103_{1}	2103_{2}	2103_{3}	3100_{0}	2201_{1}	5000_{2}	4100_{3}	3200_{3}	3200_{4}	2300_{5}
(p,l,\mathcal{I})	†• †	•/•		∤ ∕†		\mathbf{A}	•••	••*	•••		•••	•••	
Degree	312	224	40	144	144	144	64		20	16	12		

V - X

(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}

(3D-arrangement , cam_1, \ldots, cam_m)

of p points and ℓ lines with incidences ${\cal I}$

 $(3D-arrangement , cam_1, \dots, cam_m) \mapsto (2D-arr_1, \dots, 2D-arr_m)$

 $\begin{array}{cccc} X & \times & C & \longrightarrow & Y \\ (3D\text{-arrangement} & , & \operatorname{cam}_1, \dots, \operatorname{cam}_m) & \longmapsto & (2D\text{-arr}_1, \dots, 2D\text{-arr}_m) \\ \text{of } p \text{ points and } \ell \text{ lines} \\ \text{with incidences } \mathcal{I} \end{array}$

• $X = \{$ 3D-arr. of p points and ℓ with incidences $\mathcal{I}\}$

 $\begin{array}{cccc} X & \times & C & \longrightarrow & Y \\ (3D\text{-arrangement} & , & \operatorname{cam}_1, \dots, \operatorname{cam}_m) & \longmapsto & (2D\text{-arr}_1, \dots, 2D\text{-arr}_m) \\ \text{of } p \text{ points and } \ell \text{ lines} \\ \text{with incidences } \mathcal{I} \end{array}$

X = { 3D-arr. of p points and ℓ with incidences I }
C = {m camera poses }

 $\begin{array}{cccc} X & \times & C & \longrightarrow & Y \\ (3D\text{-arrangement} & , & \operatorname{cam}_1, \dots, \operatorname{cam}_m) & \longmapsto & (2D\text{-arr}_1, \dots, 2D\text{-arr}_m) \\ \text{of } p \text{ points and } \ell \text{ lines} \\ \text{with incidences } \mathcal{I} \end{array}$

- $X = \{ \text{ 3D-arr. of } p \text{ points and } \ell \text{ with incidences } \mathcal{I} \}$
- $C = \{m \text{ camera poses }\}$
- $Y = \{m \text{ 2D-arr.of } p \text{ points and } \ell \text{ with incidences } \mathcal{I}\}$

 $\begin{array}{cccc} X & \times & C & \longrightarrow & Y \\ (3D\text{-arrangement} & , & \operatorname{cam}_1, \dots, \operatorname{cam}_m) & \longmapsto & (2D\text{-arr}_1, \dots, 2D\text{-arr}_m) \\ \text{of } p \text{ points and } \ell \text{ lines} \\ \text{with incidences } \mathcal{I} \end{array}$

- $X = \{ \text{ 3D-arr. of } p \text{ points and } \ell \text{ with incidences } \mathcal{I} \}$
- C = {m camera poses }
- $Y = \{m \text{ 2D-arr.of } p \text{ points and } \ell \text{ with incidences } \mathcal{I}\}$

Lemma

If a PLP is minimal, then dim(X) + dim(C) = dim(Y).

Algebraic varieties

Definition A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Algebraic varieties

Definition A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition The **dimension** of a variety is its local dimension as a manifold.

Algebraic varieties

Definition A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition The **dimension** of a variety is its local dimension as a manifold.

X, C and Y are varieties!

(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}

X

 $\begin{array}{cccc} \times & \mathcal{C} & \longrightarrow & Y \\ \text{,} & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (2\mathsf{D}\operatorname{-arr}_1, \dots, 2\mathsf{D}\operatorname{-arr}_m) \end{array}$

Lemma

If a PLP is minimal, then dim(X) + dim(C) = dim(Y).

(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}

X

 $\begin{array}{cccc} \times & C & \longrightarrow & Y \\ , & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (\mathsf{2D}\operatorname{-arr}_1, \dots, \mathsf{2D}\operatorname{-arr}_m) \end{array}$

Lemma

If a PLP is minimal, then dim(X) + dim(C) = dim(Y).

Theorem

• If m > 6, then $\dim(X) + \dim(C) \neq \dim(Y)$.

of p points and ℓ lines with incidences ${\cal I}$

X

$(3D-arrangement , cam_1, \dots, cam_m) \mapsto (2D-arr_1, \dots, 2D-arr_m)$

Lemma

If a PLP is minimal, then dim(X) + dim(C) = dim(Y).

Theorem

• If m > 6, then dim $(X) + \dim(C) \neq \dim(Y)$.

There are exactly 39 PLPs with dim(X) + dim(C) = dim(Y):

-	100000000000000000000000000000000000000						(/				/	
m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{f}p^{d}l^{f}l^{h}_{\alpha}$			1005_{5}		2003_{2}	2003_{3}	1030_{0}	1022_{2}		1006_{6}	3001_{1}		2102_{1}
(p, l, I)	$\downarrow \downarrow$	X	*	•>*	tΧ	×	•	X	st	*	•••	••	•\†
Minimal													
Degree	> 450Å*			11306^*	26240*	11008^{*}	3040*	4524^{*}			1728^{*}	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{f}p^{d}l^{f}l^{*}_{\alpha}$	2102_{2}	1040_{0}	1032_2	1024_{4}	1016_{6}	1008_8	2021_{1}	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_0
(p,l,\mathcal{I})	×	•	\mathbb{X}	*	₩	▓	•>	ŕ	•*	¥,*	é,*	•**	••
Minimal													
Degree		360											
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{f}p^{d}l^{f}l^{s}_{\alpha}$	3002_1	3002_{2}		2103_{1}	2103_{2}	2103_{3}	3100_0	2201_{1}	5000_{2}	4100_{3}	3200_{3}	3200_{4}	2300_{5}
(p, l, I)	1.1	•/	$\tilde{\mathbf{x}}$	1/1	×	×	•••	.•*	•••		•		
Degree													

(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}

X

 $\stackrel{\wedge}{,} \quad \operatorname{cam}_1, \ldots, \operatorname{cam}_m) \quad \longmapsto \quad (2D\operatorname{-arr}_1, \ldots, 2D\operatorname{-arr}_m)$

Lemma

A PLP with dim(X) + dim(C) = dim(Y) is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}

X

Lemma

A PLP with dim(X) + dim(C) = dim(Y) is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

Definition

A map $\varphi : A \to B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

Definition

A map $\varphi : A \to B$ is **dominant** if for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}

X

Lemma

A PLP with dim(X) + dim(C) = dim(Y) is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

Definition

A map $\varphi : A \to B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

Definition

A map $\varphi : A \to B$ is **dominant** if for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

Fact

A map $\varphi : A \to B$ between variety A and B is dominant if and only if for almost every $a \in A$ the differential $D_a \varphi : T_a A \to T_{\varphi(a)} B$ is surjective.

(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}

X

 $c \longrightarrow r$ $cam_1, \ldots, cam_m) \longmapsto (2D-arr_1, \ldots, 2D-arr_m)$

Lemma

A PLP with dim(X) + dim(C) = dim(Y) is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

Definition

A map $\varphi : A \to B$ is **surjective** if for every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$. Definition

A map $\varphi : A \to B$ is **dominant** if for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

Fact

A map $\varphi : A \to B$ between variety A and B is dominant if and only if for almost every $a \in A$ the differential $D_a \varphi : T_a A \to T_{\varphi(a)} B$ is surjective.

Can check this computationally! It is only linear algebra!

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{lpha}$	1021_{1}		1005_{5}		-				1014_{4}		3001_{1}		2102_1
(p,l,\mathcal{I})	\bullet	\times	$ \mathbb{X} $	•_*	†×	×	•	\times	\times	*	••	•••	•+†
Minimal	Y	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ
Degree	$> 450k^{*}$			11306^*	26240^*	11008^*	3040^*	4524^*			1728^*	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_{1}	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p,l,\mathcal{I})	•×	•	\mathbb{X}			\ast	•_*		• *	¥/¥	€_¥	•	••
Minimal	Y	Υ	Y	Y	Ν	Ν	Y	Y	Υ	Y	Y	Y	Y
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	3002_{1}	3002_{2}	2111_1	2103_1	2103_{2}	2103_{3}	3100_0	2201_{1}	5000_{2}	4100_3	3200_3	3200_{4}	2300_{5}
(p,l,\mathcal{I})	†• †	•/•		+ / +		\mathbf{A}	•••	••*	•••		•	•••	
Degree	312	224	40	144	144	144	64		20	16	12		

X - X

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	1021_{1}	1013_{3}	1005_{5}	2011_{1}	2003_{2}	2003_{3}	1030_{0}	1022_{2}	1014_{4}	1006_{6}	3001_{1}	2110_{0}	2102_{1}
(p,l,\mathcal{I})	\bullet	\times	*	•_•	†×	×	•	X	\times	*	•••	•••	•+†
Minimal	Y	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Y
Degree	$> 450k^{*}$			11306^*	26240^*	11008^*	3040^*	4524^*			1728^*	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_{1}	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p,l,\mathcal{I})	•×	•	\mathbb{X}	\ast		\gg	•_*		•	¥/¥	e *	•)*	••
Minimal	Y	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Y
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	3002_{1}	3002_{2}	2111_1	2103_{1}	2103_{2}	2103_{3}	3100_0	2201_{1}	5000_{2}	4100_3	3200_{3}	3200_4	2300_{5}
(p,l,\mathcal{I})	†• †	•/•		∤ ∕+		•	•••	••*	•••		•••	•••	
Degree	312	224	40	144	144	144	64		20	16	12		

 ◆ For *m* ∈ {2,3} : compute number of solutions with Gröbner bases (standard technique in algebraic geometry)

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	1021_{1}		1005_{5}	2011_1	-	2003_{3}					3001_{1}	2110_{0}	2102_1
(p,l,\mathcal{I})	\bullet	\times	$ \mathbb{X} $	•_*	ţ×	×	•	\times	\times	*	••	•••	•+†
Minimal	Y	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Y
Degree	$> 450k^{*}$			11306^*	26240^*	11008^*	3040^*	4524^{*}			1728^*	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_{1}	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p,l,\mathcal{I})	•	•	$\parallel \mid$			\gg	•_*	Ĩ. Ĩ	•	۲×۲	€_¥	•	••
Minimal	Y	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Y
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	3002_{1}	3002_{2}	2111_{1}	2103_{1}	2103_{2}	2103_{3}	3100_{0}	2201_{1}	5000_{2}	4100_{3}	3200_{3}	3200_{4}	2300_{5}
(p,l,\mathcal{I})	†• †	•/•		+ / +		•	•••	••*	•••		•	•••	
Degree	312	224	40	144	144	144	64		20	16	12		

- ◆ For m ∈ {2,3} : compute number of solutions with Gröbner bases (standard technique in algebraic geometry)
- ◆ For m ∈ {4,5,6} : compute number of solutions with homotopy continuation and monodromy
 (state-of-the-art method in numerical algebraic geometry)