PLMP - Point-Line Minimal Problems
in Complete Multi-View Visibility

Kathlén Kohn

joint work with Timothy Duff, Anton Leykin & Tomas Pajdla

March 29, 2019



Reconstruct 3D scenes and camera poses
from 2D images



Reconstruct 3D scenes and camera poses
from 2D images

o Step 1: Identify common points and lines on given images

* 1, NS @/ )
i

P “
\

e




Reconstruct 3D scenes and camera poses
from 2D images

o Step 1: Identify common points and lines on given images

o Step 2: Reconstruct coordinates of 3D points and lines
as well as camera poses



Reconstruct 3D scenes and camera poses
from 2D images

o Step 1: Identify common points and lines on given images

o Step 2: Reconstruct coordinates of 3D points and lines .
as well as camera poses



5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.
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5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over, C.
(Given 2 images, a solution is 5 points in 3D and 2 camera poses.)



5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over, C.
(Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

= The 5-Point-Problem is a minimal problem!



Another minimal problem

o Given: 3 images of 3 points on a line, 1 attached line and 1 free line

& Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses




Another minimal problem

o Given: 3 images of 3 points on a line, 1 attached line and 1 free line

& Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

This problem has 40 solutions over C.
(solution = 3 camera poses and 3D coordinates of points and lines)

= It is a minimal problem!



Minimal Problems
A Point-Line-Problem (PLP) consists of

¢ a number m of cameras,
¢ a number p of points,
¢ a number £ of lines,

& a set 7 of incidences between points and lines.
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Minimal Problems
A Point-Line-Problem (PLP) consists of

& a number m of cameras,

¢ a number p of points,

o a number ¢ of lines,

& a set 7 of incidences between points and lines.
Definition
A PLP is minimal if,

given m random images of p points and ¢ lines with incidences Z,
it has a positive and finite number of solutions over C.

(solution = m camera poses and 3D coordinates of points and lines)

Can we list all minimal PLPs?
How many solutions do they have?



Minimal PLPs
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Joint camera map

(3D-arrangement , camgy,...,camp,)
of p points and ¢ lines
with incidences 7



Joint camera map
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of p points and ¢ lines
with incidences 7
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¢ X = { 3D-arr. of p points and ¢ with incidences Z}
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Joint camera map

X X C =
(3D-arrangement , camgy,...,camy) +—— (2D-arry,...,2D-arry)
of p points and ¢ lines
with incidences 7

¢ X = { 3D-arr. of p points and ¢ with incidences Z}
¢ C = {m camera poses }

* Y = {m 2D-arr.of p points and ¢ with incidences Z}

Lemma
If a PLP is minimal, then dim(X) + dim(C) = dim(Y).



Algebraic varieties

Definition
A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:
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Algebraic varieties

Definition
A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition
The dimension of a variety is its local dimension as a manifold.

X, C and Y are varieties!



Deriving the big table
X X G e Y.

(3D-arrangement , cami,...,cam,) +—— (2D-arry,...,2D-arry)
of p points and / lines

with incidences 7

Lemma
If a PLP is minimal, then dim(X) + dim(C) = dim(Y).



Deriving the big table
X X G e Y.

(3D-arrangement , cami,...,cam,) +—— (2D-arry,...,2D-arry)
of p points and / lines

with incidences 7

Lemma
If a PLP is minimal, then dim(X) + dim(C) = dim(Y).

Theorem
e If m > 6, then dim(X) 4 dim(C) # dim(Y).



Deriving the big table
C

X X ——— Y.
(3D-arrangement , cami,...,cam,) +—— (2D-arry,...,2D-arry)

of p points and / lines
with incidences Z

Lemma
If a PLP is minimal, then dim(X) + dim(C) = dim(Y).
Theorem

& If m > 6, then dim(X) + dim(C) # dim(Y).

& There are exactly 39 PLPs Wlth dlm( ) —|— dlm(C) = gm0
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Deriving the big table
X X G e Y.

(3D-arrangement , cami,...,cam,) +—— (2D-arry,...,2D-arry)
of p points and / lines

with incidences 7

Lemma
A PLP with dim(X) 4 dim(C) = dim(Y') is minimal if and only if
its joint camera map X x C — Y is dominant.



Deriving the big table
C

X X — Y
(3D-arrangement , camp,...,camy,) +—>

of p points and / lines

(2D-arrq, . .., 2D-arrp,)

with incidences 7
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A PLP with dim(X) 4 dim(C) = dim(Y') is minimal if and only if
its joint camera map X x C — Y is dominant.

Definition Definition

A map ¢ : A — B is surjective if A map ¢ : A— B is dominant if

for every b € B there isan a€ A  for almost every b € B there is an a € A
such that p(a) = b. such that p(a) = b.



Deriving the big table
C

X X — Y
(3D-arrangement , camp,...,camy,) +—>

of p points and / lines

(2D-arrq, . .., 2D-arrp,)

with incidences 7
Lemma
A PLP with dim(X) 4 dim(C) = dim(Y') is minimal if and only if
its joint camera map X x C — Y is dominant.

Definition Definition

A map ¢ : A — B is surjective if A map ¢ : A— B is dominant if

for every b € B there isan a€ A  for almost every b € B there is an a € A
such that p(a) = b. such that p(a) = b.

Fact

A map ¢ : A — B between variety A and B is dominant if and only if

for almost every a € A the differential Dyp : T,A — T, 5)B is surjective.



Deriving the big table
C

X X — Y
(3D-arrangement , camp,...,camy,) +—>

of p points and / lines

(2D-arrq, . .., 2D-arrp,)

with incidences 7

Lemma
A PLP with dim(X) 4 dim(C) = dim(Y') is minimal if and only if
its joint camera map X x C — Y is dominant.

Definition Definition

A map ¢ : A — B is surjective if A map ¢ : A— B is dominant if

for every b € B there isan a€ A  for almost every b € B there is an a € A
such that p(a) = b. such that p(a) = b.

Fact

A map ¢ : A — B between variety A and B is dominant if and only if

for almost every a € A the differential Dyp : T,A — T, 5)B is surjective.

Can check this computationally! It is only linear algebra!
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(standard technique in algebraic geometry)
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o For m € {2,3} : compute number of solutions with Grébner bases

(standard technique in algebraic geometry)

o For m € {4,5,6} : compute number of solutions with homotopy

continuation and monodromy
(state-of-the-art method in numerical algebraic geometry)




