PLMP - Point-Line Minimal Problems in Complete Multi-View Visibility

Kathlén Kohn
joint work with Timothy Duff, Anton Leykin \& Tomas Pajdla

March 29, 2019

Reconstruct 3D scenes and camera poses from 2D images

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C}. (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C}. (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)
\Rightarrow The 5 -Point-Problem is a minimal problem!

Another minimal problem

- Given: 3 images of 3 points on a line, 1 attached line and 1 free line
- Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

III - X

Another minimal problem

- Given: 3 images of 3 points on a line, 1 attached line and 1 free line
- Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

This problem has 40 solutions over \mathbb{C}. (solution $=3$ camera poses and 3D coordinates of points and lines)
\Rightarrow It is a minimal problem!

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Definition

A PLP is minimal if, given m random images of p points and ℓ lines with incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}.
(solution $=m$ camera poses and 3D coordinates of points and lines)

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Definition

A PLP is minimal if, given m random images of p points and ℓ lines with incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}.
(solution $=m$ camera poses and 3D coordinates of points and lines)

Can we list all minimal PLPs? How many solutions do they have?

Minimal PLPs

m view	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	1021	10133	1005_{5}	$2011{ }_{1}$	20032	20033	10300	1022_{2}	10144	10066	$3001{ }_{1}$	110	2_{1}
(p, l, \mathcal{I})			Y					>0		$1 /$	\bullet		$\bullet \phi$
Minimal Degree	$\begin{aligned} & \mathrm{Y} \\ & 450 k^{*} \end{aligned}$	N	N	$\begin{gathered} \mathrm{Y} \\ 11306^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 26240^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 11008^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 3040^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 4524^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 1728^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 32^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$
m view	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	2102	1040	1032	10244	$1016{ }_{6}$	10088	$2021{ }_{1}$	20132	20133	2005	20054	2005	30100
(p, l, \mathcal{I})				± 14		$\frac{N / W}{} / \mathbb{N}$			$0 / 1$	$1 / 1 /$			$\bullet \bullet$
Minim Degree	$\begin{gathered} Y \\ 544^{*} \end{gathered}$	$\begin{gathered} Y \\ 360 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 552 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 480 \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 264 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 432 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 328 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 480 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 240 \end{gathered}$	Y	$\begin{gathered} Y \\ 216 \end{gathered}$
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}} p^{\mathrm{d}} \mathrm{l}^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	$3002{ }_{1}$	$3002{ }_{2}$	2111	2103_{1}	21032	21033	31000	2201	50002	4100_{3}	32003	32004	23005
(p, l, \mathcal{I})	$1 \bullet 1$	$\cdot 10$	0^{0}	$1 \phi \phi$	$9{ }_{9}$	$0 / 1$					8		$0^{\circ} 0^{\circ}$
Degree	312	224	40	144	144	144	64		20	16	12		

Joint camera map

```
    (3D-arrangement , cam}1,\ldots,\mp@subsup{\mathrm{ cam m}}{m}{}\mathrm{ )
of p}\mathrm{ points and }\ell\mathrm{ lines
    with incidences I
```


Joint camera map

$$
\left.\begin{array}{l}
\text { (3D-arrangement } \left.\quad, \quad \text { cam }_{1}, \ldots, \text { cam }_{m}\right) \longmapsto\left(2 \mathrm{D}-\text { arr }_{1}, \ldots, 2 \mathrm{D}\right. \text {-arr } \\
m
\end{array}\right)
$$

Joint camera map

- $X=\{$ 3D-arr. of p points and ℓ with incidences $\mathcal{I}\}$

Joint camera map

- $X=\{3 \mathrm{D}$-arr. of p points and ℓ with incidences $\mathcal{I}\}$
- $C=\{m$ camera poses $\}$

Joint camera map

- $X=\{3 \mathrm{D}$-arr. of p points and ℓ with incidences $\mathcal{I}\}$
- $C=\{m$ camera poses $\}$
- $Y=\{m$ 2D-arr.of p points and ℓ with incidences $\mathcal{I}\}$

Joint camera map

- $X=\{3 \mathrm{D}$-arr. of p points and ℓ with incidences $\mathcal{I}\}$
- $C=\{m$ camera poses $\}$
- $Y=\{m$ 2D-arr.of p points and ℓ with incidences $\mathcal{I}\}$

Lemma

If a PLP is minimal, then $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$.

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

Definition

The dimension of a variety is its local dimension as a manifold.

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

Definition

The dimension of a variety is its local dimension as a manifold.
X, C and Y are varieties!

Deriving the big table

 X(3D-arrangement
of p points and ℓ lines with incidences \mathcal{I}

Lemma

If a PLP is minimal, then $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$.

Lemma

If a PLP is minimal, then $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$.

Theorem

- If $m>6$, then $\operatorname{dim}(X)+\operatorname{dim}(C) \neq \operatorname{dim}(Y)$.

X	\times	C	\longrightarrow
(3D-arrangement of p points and ℓ lines			
with incidences \mathcal{I}			

Lemma

If a PLP is minimal, then $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$.

Theorem

- If $m>6$, then $\operatorname{dim}(X)+\operatorname{dim}(C) \neq \operatorname{dim}(Y)$.
- There are exactly 39 PLPs with $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$:

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{r}} p^{\text {d }} l^{\text {f }} l_{\alpha}^{\mathrm{a}}$	1021_{1}	10133	10055	$2011{ }_{1}$	20032	20033	1030_{0}	1022_{2}	$1014{ }_{4}$	$1006{ }_{6}$	30011	2110_{0}	21021
(p, l, \mathcal{I})		$><$	$\begin{aligned} & N / K \\ & M \end{aligned}$	$\bar{\theta}$	1%	\cdots		$\geq<$	$\geqslant<$	$\begin{aligned} & v / 2 \\ & N \end{aligned}$			
Minimal Degree	$\begin{gathered} \mathrm{Y} \\ >450 k^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 11306^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 26240^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 11008^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 3040^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 4524^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 1728^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 32^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{f} p^{\mathrm{d}} l^{f} l_{\alpha}^{a}$	2102	1040_{0}	10322	10244	1016_{6}	1008_{8}	2021_{1}	20132	20133	20053	20054	20055	30100
(p, l, \mathcal{I})				$\geqslant \leqslant$	$\begin{array}{ll} 1 / 2 \\ \hline \text { N } \end{array}$	$\begin{aligned} & \text { WV/ } \\ & \text { ZNA } \end{aligned}$					$\frac{1}{\pi}$	$\frac{1}{1}$	
Minimal	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	Y	Y
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{a s}^{a}$	30021	30022	2111_{1}	2103_{1}	21032	21033	3100_{0}	22011	50002	$4100{ }_{3}$	$3200{ }_{3}$	32004	23005
(p, l, \mathcal{I})	$\phi \bullet \phi$	$+1$			$\$$	$\%$		$\bullet^{\circ} 1^{\circ}$	$\bullet \bullet$	\bullet			
Degree	312	224	40	144	144	144	64		20	16	12		

```
                ~
    (3D-arrangement , cam}1,\ldots,\mp@subsup{cam}{m}{})\longmapsto(2D-\mp@subsup{\mathrm{ arr }}{1}{},\ldots,2D-arr m)
of p}\mathrm{ points and }\ell\mathrm{ lines
    with incidences }\mathcal{I
```


Lemma

A PLP with $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$ is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

```
            Deriving the big table
(3D-arrangement , cam}1,\ldots,\mp@subsup{cam}{m}{})\longmapsto(\mp@code{(2D-arr}1,\ldots,2D-arr m)
of p points and \ell lines
    with incidences I
```


Lemma

A PLP with $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$ is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

Definition

A map $\varphi: A \rightarrow B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Definition

A map $\varphi: A \rightarrow B$ is dominant if
for almost every $b \in B$ there is an $a \in A$
such that $\varphi(a)=b$.
\quad Deriving the big table

(3D-arrangement
of p points and ℓ lines
with incidences \mathcal{I}

Lemma

A PLP with $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$ is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

Definition

A map $\varphi: A \rightarrow B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Definition

A map $\varphi: A \rightarrow B$ is dominant if
for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Fact

A map $\varphi: A \rightarrow B$ between variety A and B is dominant if and only if for almost every $a \in A$ the differential $D_{a} \varphi: T_{a} A \rightarrow T_{\varphi(a)} B$ is surjective.

Deriving the big table		
(3D-arrangement	cam $_{1}, \ldots$, cam $_{m}$)	$\left(2 \mathrm{D}-\mathrm{arr}_{1}, \ldots, 2 \mathrm{D}-\mathrm{arr}_{m}\right)$
of p points and ℓ lines with incidences \mathcal{I}		

Lemma

A PLP with $\operatorname{dim}(X)+\operatorname{dim}(C)=\operatorname{dim}(Y)$ is minimal if and only if its joint camera map $X \times C \rightarrow Y$ is dominant.

Definition

A map $\varphi: A \rightarrow B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Definition

A map $\varphi: A \rightarrow B$ is dominant if
for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Fact

A map $\varphi: A \rightarrow B$ between variety A and B is dominant if and only if for almost every $a \in A$ the differential $D_{a} \varphi: T_{a} A \rightarrow T_{\varphi(a)} B$ is surjective.

Can check this computationally! It is only linear algebra!

- For $m \in\{2,3\}$: compute number of solutions with Gröbner bases (standard technique in algebraic geometry)

- For $m \in\{2,3\}$: compute number of solutions with Gröbner bases (standard technique in algebraic geometry)
- For $m \in\{4,5,6\}$: compute number of solutions with homotopy continuation and monodromy (state-of-the-art method in numerical algebraic geometry)

