Sparse factorizations of real polynomials & linear convolutional neural networks

Kathlén Kohn

joint work with

Guido Montúfar MPI MiS Leipzig & UCLA

Vahid Shahverdi KTH

Matthew Trager
Amazon Alexa AI, NYC

Neural networks

Neural networks

are parametrized families of functions

$$\mu: \mathbb{R}^{N} \longrightarrow \mathcal{M},$$

$$\theta \longmapsto f_{L,\theta} \circ \ldots \circ f_{1,\theta}$$

Neural networks

are parametrized families of functions

$$\mu: \mathbb{R}^{N} \longrightarrow \mathcal{M},$$
 $\theta \longmapsto f_{L,\theta} \circ \ldots \circ f_{1,\theta}$

 $\mathcal{M} = \text{function space} / \text{neuromanifold}, L = \# \text{layers}$

Training a network

Given training data \mathcal{D} , the goal is to minimize the loss

$$\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$$

Training a network

Given training data \mathcal{D} , the goal is to minimize the loss

$$\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$$

Geometric questions:

- How does the network architecture affect the geometry of the function space?
- How does the geometry of the function space impact the training of the network?

Linear fully-connected networks

In this example:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

Linear fully-connected networks

In this example:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

$$\mathcal{M} = \{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\}$$

Linear fully-connected networks

In this example:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

$$\mathcal{M} = \{ W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \le 2 \}$$

In general:

$$\mu: \mathbb{R}^{k_1 \times k_0} \times \mathbb{R}^{k_2 \times k_1} \times \ldots \times \mathbb{R}^{k_L \times k_{L-1}} \longrightarrow \mathbb{R}^{k_L \times k_0},$$
$$(W_1, W_2, \ldots, W_L) \longmapsto W_L \cdots W_2 W_1.$$

 $\mathcal{M}=\{W\in\mathbb{R}^{k_L imes k_0}\mid \mathrm{rank}(W)\leq \min(\overline{k_0,\ldots,k_L})\}$ is a determinantal variety and we know its singularities etc.

$$\mu: \mathbb{R}^3 imes \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$$
 $(u,v) \longmapsto T_{v,1}T_{u,2}, ext{ where}$

$$T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$$
$$T_{v,1} = \begin{bmatrix} v_2 & v_2 \end{bmatrix}$$

$$\mu: \mathbb{R}^3 imes \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$$
 $(u,v) \longmapsto \mathcal{T}_{v,1}\mathcal{T}_{u,2}, ext{ where}$

$$T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$$

$$T_{v,1} = \begin{bmatrix} v_2 & v_2 \end{bmatrix}$$

In general: $\mu: (w_1,\ldots,w_L) \mapsto T_{w_L,s_L}\cdots \overline{T_{w_1,s_1}}$, where

$$T_{w,s} = \begin{bmatrix} w_0 & \cdots & w_s & \cdots & w_{k-1} \\ & w_0 & & \cdots & & w_{k-1} \\ & & & \ddots & & & \ddots \\ & & & & w_0 & & \cdots & w_{k-1} \end{bmatrix}$$

$$\mu: \mathbb{R}^3 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$$

$$(u, v) \longmapsto T_{v,1}T_{u,2}, \text{ where}$$

$$T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$$

$$T_{v,1} = \begin{bmatrix} v_2 & v_2 \end{bmatrix}$$

In general: μ : $(w_1, \ldots, w_L) \mapsto T_{w_L, s_L} \cdots T_{w_1, s_1}$, where

$$T_{w,s} = \begin{bmatrix} w_0 & \cdots & w_s & \cdots & w_{k-1} \\ & w_0 & & \cdots & & w_{k-1} \\ & & & \ddots & & & \ddots \\ & & & & w_0 & & \cdots & w_{k-1} \end{bmatrix}$$

is a convolutional matrix of stride s with filter w

Observation: $\mu(w_1, \dots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$.

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{S}: \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}, y^{S}]_{k-1},$$

$$w \longmapsto w_{0}x^{S(k-1)} + w_{1}x^{S(k-2)}y^{S} + \dots + w_{k-2}x^{S}y^{S(k-2)} + w_{k-1}y^{S(k-1)}$$

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{S}: \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}, y^{S}]_{k-1},$$

$$w \longmapsto w_{0}x^{S(k-1)} + w_{1}x^{S(k-2)}y^{S} + \dots + w_{k-2}x^{S}y^{S(k-2)} + w_{k-1}y^{S(k-1)}$$

and $\pi_S(T_{w,s}) := \pi_S(w)$. Then:

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{S}: \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}, y^{S}]_{k-1},$$

$$w \longmapsto w_{0}x^{S(k-1)} + w_{1}x^{S(k-2)}y^{S} + \dots + w_{k-2}x^{S}y^{S(k-2)} + w_{k-1}y^{S(k-1)}$$

and $\pi_{\mathcal{S}}(T_{w,s}) := \pi_{\mathcal{S}}(w)$. Then:

$$\pi_1(\mu(w_1,\ldots,w_L)) = \pi_{S_L}(w_L)\cdots\pi_{S_1}(w_1), \text{ where } S_i := s_1\cdots s_{i-1}.$$

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{S}: \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}, y^{S}]_{k-1},$$

$$w \longmapsto w_{0}x^{S(k-1)} + w_{1}x^{S(k-2)}y^{S} + \ldots + w_{k-2}x^{S}y^{S(k-2)} + w_{k-1}y^{S(k-1)}$$

and $\pi_{\mathcal{S}}(T_{w,s}) := \pi_{\mathcal{S}}(w)$. Then:

$$\pi_1(\mu(w_1,\ldots,w_L)) = \pi_{S_L}(w_L)\cdots\pi_{S_1}(w_1), \text{ where } S_i := s_1\cdots s_{i-1}.$$

Hence, we reinterpret μ as

$$\mu: \mathbb{R}[x^{S_1}, y^{S_1}]_{d_1} \times \ldots \times \mathbb{R}[x^{S_L}, y^{S_L}]_{d_L} \longrightarrow \mathbb{R}[x, y]_{d_1S_1 + \ldots + d_LS_L},$$
$$(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1$$

LCN function spaces

$$\mu: \mathbb{R}[x^{S_1}, y^{S_1}]_{d_1} \times \ldots \times \mathbb{R}[x^{S_L}, y^{S_L}]_{d_L} \longrightarrow \mathbb{R}[x, y]_d$$
, where $d:=\sum_i d_i S_i$
 $(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1$,

LCN function spaces

$$\mu: \mathbb{R}[x^{S_1}, y^{S_1}]_{d_1} \times \ldots \times \mathbb{R}[x^{S_L}, y^{S_L}]_{d_L} \longrightarrow \mathbb{R}[x, y]_d$$
, where $d:=\sum_i d_i S_i$
 $(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1$,

Theorem: The function space $\mathcal{M}_{d,S} = \operatorname{im}(\mu)$ is a semi-algebraic, Euclidean-closed subset of $\mathbb{R}[x,y]_d$ of dimension $d_1 + \ldots + d_L + 1$.

$$\mu: \mathbb{R}[x,y]_2 \times \mathbb{R}[x^2,y^2]_1 \to \mathbb{R}[x,y]_4$$

$$\mu: \mathbb{R}[x,y]_1 \times \mathbb{R}[x,y]_1 \times \mathbb{R}[x^2,y^2]_1 \to \mathbb{R}[x,y]_4$$

Reducing an LCN architecture

$$\mu: \mathbb{R}[x,y]_2 \times \mathbb{R}[x^2,y^2]_1 \to \mathbb{R}[x,y]_4 \qquad \mu: \mathbb{R}[x,y]_1 \times \mathbb{R}[x,y]_1 \times \mathbb{R}[x^2,y^2]_1 \to \mathbb{R}[x,y]_4$$

$$\mathbb{R}[x,y]_1 \times \mathbb{R}[x,y]_1 \qquad \times \qquad \mathbb{R}[x^2,y^2]_1 \longrightarrow \mathcal{M}_{(1,1,1),(1,1,2)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{R}[x,y]_2 \qquad \times \qquad \mathbb{R}[x^2,y^2]_1 \longrightarrow \mathcal{M}_{(2,1),(1,2)}$$

Reducing an LCN architecture

$$\mu: \mathbb{R}[x,y]_2 \times \mathbb{R}[x^2,y^2]_1 \to \mathbb{R}[x,y]_4 \qquad \qquad \mu: \mathbb{R}[x,y]_1 \times \mathbb{R}[x,y]_1 \times \mathbb{R}[x^2,y^2]_1 \to \mathbb{R}[x,y]_4$$

$$\mathbb{R}[x,y]_1 \times \mathbb{R}[x,y]_1 \times \mathbb{R}[x,y]_1$$

$$\mathbb{R}[x,y]_{1} \times \mathbb{R}[x,y]_{1} \qquad \times \qquad \mathbb{R}[x^{2},y^{2}]_{1} \longrightarrow \mathcal{M}_{(1,1,1),(1,1,2)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{R}[x,y]_{2} \qquad \times \qquad \mathbb{R}[x^{2},y^{2}]_{1} \longrightarrow \mathcal{M}_{(2,1),(1,2)}$$

Given an LCN architecture $(\boldsymbol{d}, \boldsymbol{S})$, merging neighboring layers with the same S_i yields an LCN architecture $(\tilde{\boldsymbol{d}}, \tilde{\boldsymbol{S}})$ with $1 = \tilde{S}_1 < \tilde{S}_2 < \tilde{S}_3 < \ldots$, called the reduced LCN architecture.

Lemma: $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} = \overline{\mathcal{M}}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$, where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x,y]_d$.

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x,y]_d$.

Theorem Let (d, S) be a reduced LCN architecture with L layers.

• If L=1 (i.e., any associated non-reduced architecture has all strides equal 1), then $\overline{\mathcal{M}}_{d,S}=\mathbb{R}[x,y]_d$.

Lemma: $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} = \overline{\mathcal{M}}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$, where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x,y]_d$.

Theorem Let (d, S) be a reduced LCN architecture with L layers.

- If L=1 (i.e., any associated non-reduced architecture has all strides equal 1), then $\overline{\mathcal{M}}_{d,S}=\mathbb{R}[x,y]_d$.
- If L > 1, $\deg \overline{\mathcal{M}}_{d,S} > 1$ and

$$\operatorname{Sing}(\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}}) = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \mathcal{M}_{\boldsymbol{d}',\boldsymbol{S}},$$

where
$$D:=\{m{d}'\in\mathbb{Z}_{\geq 0}^L\mid \overline{\mathcal{M}}_{m{d}',m{S}}\subsetneq \overline{\mathcal{M}}_{m{d},m{S}}\}$$

Lemma: $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}\subseteq\mathcal{M}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}}=\overline{\mathcal{M}}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}},$ where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x,y]_d$.

Theorem Let (d, S) be a reduced LCN architecture with L layers.

- If L=1 (i.e., any associated non-reduced architecture has all strides equal 1), then $\overline{\mathcal{M}}_{d,S}=\mathbb{R}[x,y]_d$.
- If L > 1, $\deg \overline{\mathcal{M}}_{d,S} > 1$ and

$$\operatorname{Sing}(\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}}) = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \mathcal{M}_{\boldsymbol{d}',\boldsymbol{S}},$$

where
$$D := \{ \mathbf{d}' \in \mathbb{Z}_{\geq 0}^L \mid \overline{\mathcal{M}}_{\mathbf{d}', \mathbf{S}} \subsetneq \overline{\mathcal{M}}_{\mathbf{d}, \mathbf{S}} \}$$

= $\{ \mathbf{d}' \in \mathbb{Z}_{\geq 0}^L \mid \mathbf{d}' \neq \mathbf{d}, \sum_{i=1}^L d_i' S_i = \sum_{i=1}^L d_i S_i, \forall I : \sum_{i=1}^L d_i' S_i \geq \sum_{i=1}^L d_i S_i \}$

Example

$$\mathbb{R}[x, y]_2 \times \mathbb{R}[x^2, y^2]_1 \to \mathcal{M}_{(2,1),(1,2)}$$

 $\operatorname{Sing}(\overline{\mathcal{M}}_{(2,1),(1,2)}) =$

Example

$$\begin{split} \mathbb{R}[x,y]_2 \times \mathbb{R}[x^2,y^2]_1 &\to \mathcal{M}_{(2,1),(1,2)} \\ \mathrm{Sing}(\overline{\mathcal{M}}_{(2,1),(1,2)}) &= \mathcal{M}_{(0,2),(1,2)} = \mathbb{R}[x^2,y^2]_2 \end{split}$$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

 $\text{Recall: } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}} \subseteq \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} = \overline{\mathcal{M}}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$

 $\partial \mathcal{M}_{d,S} = \text{points in } \mathcal{M}_{d,S} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{d,S} \setminus \mathcal{M}_{d,S}.$

Recall: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}} \subseteq \overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$

- ullet reduced boundary points: limits in $\mathcal{M}_{m{d},m{S}}$ of sequences in $\overline{\mathcal{M}}_{m{d},m{S}}\setminus\mathcal{M}_{m{ ilde{d}},m{ ilde{S}}}$
- ullet stride-1 boundary points: limits in $\mathcal{M}_{d,S}$ of sequences in $\mathcal{M}_{\tilde{d},\tilde{S}}\setminus\mathcal{M}_{d,S}$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

Recall: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}} \subseteq \overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$

- ullet reduced boundary points: limits in $\mathcal{M}_{m{d},m{S}}$ of sequences in $\overline{\mathcal{M}}_{m{d},m{S}}\setminus\mathcal{M}_{m{ ilde{d}},m{ ilde{S}}}$
- ullet stride-1 boundary points: limits in $\mathcal{M}_{d,S}$ of sequences in $\mathcal{M}_{\tilde{d},\tilde{S}}\setminus\mathcal{M}_{d,S}$

reduced boundary points have at least codimension 2 stride-1 boundary points (if existent) have codimension 1

Given training data $\mathcal{D} = \{(X_i, Y_i) \in \mathbb{R}^{k_0} \times \mathbb{R}^{k_L} \mid i = 1, ..., N\}$, the squared error loss on the function space is

$$\ell_{\mathcal{D}}: \mathbb{R}^{k_L \times k_0} \longrightarrow \mathbb{R},$$

$$T \longmapsto \sum_{i=1}^{N} \|Y_i - TX_i\|^2.$$

Given training data $\mathcal{D} = \{(X_i, Y_i) \in \mathbb{R}^{k_0} \times \mathbb{R}^{k_L} \mid i = 1, ..., N\}$, the squared error loss on the function space is

$$\ell_{\mathcal{D}}: \mathbb{R}^{k_{L} \times k_{0}} \longrightarrow \mathbb{R},$$

$$T \longmapsto \sum_{i=1}^{N} \|Y_{i} - TX_{i}\|^{2}.$$

Training an LCN minimizes the squared error loss on the parameter space:

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} \times \ldots \times \mathbb{R}^{d_L} \xrightarrow{\mu} \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathbb{R}^{k_L \times k_0} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R},$$
$$(w_1, \ldots, w_L) \longmapsto T_{w_L,s_L} \cdots T_{w_1,s_1} \longmapsto \ell_{\mathcal{D}}(T_{w_L,s_L} \cdots T_{w_1,s_1})$$

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN architecture and let $N \geq \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN architecture and let $N \geq \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\mathbf{w}) = 0$, or
- ullet $m{w}$ is a regular point of μ and $\mu(m{w})$ is a smooth, interior point of $\mathcal{M}_{m{d},m{S}}$

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN architecture and let $N \geq \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\mathbf{w}) = 0$, or
- \boldsymbol{w} is a regular point of μ and $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}$ (in particular, $\mu(\boldsymbol{w})$ is a critical point of $\ell_{\mathcal{D}}|_{\operatorname{Reg}(\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}^{\circ})}$).

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN architecture and let $N \geq \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\mathbf{w}) = 0$, or
- \boldsymbol{w} is a regular point of μ and $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}$ (in particular, $\mu(\boldsymbol{w})$ is a critical point of $\ell_{\mathcal{D}}|_{\operatorname{Reg}(\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}^{\circ})}$).

This is known to be false for

linear fully-connected networks

stride-1 LCNs

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN architecture and let $N \geq \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\mathbf{w}) = 0$, or
- \boldsymbol{w} is a regular point of μ and $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}$ (in particular, $\mu(\boldsymbol{w})$ is a critical point of $\ell_{\mathcal{D}}|_{\mathrm{Reg}(\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}^{\circ})}$).

This is known to be false for

linear fully-connected networks

 $\mathcal{M} = \mathsf{determinantal} \ \mathsf{variety}$

stride-1 LCNs

 $\mathcal{M}=\mathsf{full}\text{-}\mathsf{dimensional}$ semi-algebraic

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN architecture and let $N \geq \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\mathbf{w}) = 0$, or
- \boldsymbol{w} is a regular point of μ and $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}$ (in particular, $\mu(\boldsymbol{w})$ is a critical point of $\ell_{\mathcal{D}}|_{\mathrm{Reg}(\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}^{\circ})}$).

This is known to be false for

linear fully-connected networks

 $\mathcal{M} = \mathsf{determinantal} \ \mathsf{variety}$ critical points are often on $\mathrm{Sing}(\mathcal{M})$

stride-1 LCNs

 $\mathcal{M}=$ full-dimensional semi-algebraic critical points are often on $\partial\mathcal{M}$

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN architecture and let $N \geq \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- \bullet $\mu(\mathbf{w}) = 0$, or
- \boldsymbol{w} is a regular point of μ and $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{d,S}$ (in particular, $\mu(\mathbf{w})$ is a critical point of $\ell_{\mathcal{D}}|_{\text{Reg}(\mathcal{M}_{\mathbf{c}}^{\circ})}$).

This is known to be **false** for

linear fully-connected networks

 $\mathcal{M} = \text{determinantal variety}$ critical points are often on $\operatorname{Sing}(\mathcal{M})$

stride-1 LCNs

 $\mathcal{M} = \text{full-dimensional semi-algebraic}$ critical points are often on $\partial \mathcal{M}$ critical points are often "spurious", i.e. $\mu(\mathbf{w}) \notin \operatorname{Crit}(\ell_{\mathcal{D}}|\mathcal{M})$