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M = function space / neuromanifold, L = # layers
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Geometric questions:

¢ How does the network architecture affect the geometry of the function
space?

¢ How does the geometry of the function space impact the training of the
network?
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Linear fully-connected networks
In this example:

i R2><4 % ]R3><2 S ]R3><4
(Wl, W2) Fe W2W1.

M = {W € R¥* | rank(W) < 2}

In general:
/,L:RlekO XszXkl S XRkLXkL_l RkLXkO’

(Wl,WQ,...,WL)i—> WL'~~W2W1.

M = {W € Rkxko | rank(W) < min(ko, ..., k.)} is a determinantal variety
and we know its singularities etc.
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Linear convolutional neural networks

T e A
(u,v) — T, 1T,2, where

O

up u3 up 0] 0]
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In general: | g : (wi,...,wp) = Ty, 5 - - Ty s, Where
WO e WS I Wkil
Wo DY Wk—l
Tws =

WO famare Wk—l

is a convolutional matrix of stride s with filter w
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LCNs & sparse polynomial factorization

Observation: p(wi,...,w ) = T, s, - Tuy,s is again a convolutional
matrix of stride s; - - - s;. Its filter can be computed via polynomial
multiplication:

For S € Z>0, let
rs: RF — R[xs,ys]k,l,
w—> Woxs(kfl) S Wlxs(kfz)ys 4o Wk,QXSyS(kA2) - Wk,lys(

and ms( Ty/s) := ms(w).; Then:

k—1)

71'1(,LL(W17 Wi WL)) = WSL(WL) 0 ~7'('51(W1), where 5,' ool T (R T A

Hence, we reinterpret p as

M : R[X51)y51]d1 X ... X R[XSL7ySL]dL T R[X,}’]dlsﬁ.‘.-&-dLSLa
(Pl,...,PL)'—> PL'”P]_
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LCN function spaces

t: Rx, y g x ... x R[XSL,ySL]dL — R[x, ¥4, where d := > d;5;
(Pl,...,PL)b—> PL---Pl,

Theorem: The function space Mg s = im(u) is a semi-algebraic,
Euclidean-closed subset of R[x, y]4 of dimension di + ...+ d. + 1.

o Rx, vl X R[X%, y*|i = R[x, y]a 1 R, vl X Rlx, vl x R[x?, vl = R[x, yls
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Reducing an LCN architecture

1 Rx, yl2 X R[x%, y°]1 = R[x, yla o Rlx, vl X R[x, v x R[x?, y*l1 = R[x, y]a

R[x, y]1 x R[x, y]1 X R[x?, y2]1 —— M(1,1.1),1,12)
R[x, y]2 X R[X27y2]1 Sl M(2,1),(1,2)

Given an LCN architecture (d, §),~merging neigthoriNng Ia}iers with the same
S; yields an LCN architecture (d,S) with 1 =5 < S5 < S5 < ..,
called the reduced LCN architecture.
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Singularities

Lemma: Mys C Mg and Mgs=Mj s,
where * denotes the Zariski closure inside R[x, y]q.

Theorem Let (d, S) be a reduced LCN architecture with L layers.
o If L=1 (i.e., any associated non-reduced architecture has all strides
equal 1), then My s = R[x, y]q.
o IfL>1, degﬂdﬁ > 1 and

Sing(Ma,s) = {0}U | ] Mas={0}U | ] Mas,
d'eD d'eD

where D :={d’ € Zéo | Mdf’s & ﬂd,s}
={d' €25 | d' #£d, T, diSi =, S,V T, diS > T, diSi}

=



Example
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Example

o R[x, yl2 X R[x%, y%l1 = R[x, yla o RIx, ylu X R[x, yli X R[x%, y2li = R[x, yla

Rx, yl2 x R[x%, y?]1 = M(21),1,2)
Sing(M2,1),1,2)) = M(02),1,2) = R[¥% ¥’
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Relative Boundary
OMg s = points in My s that are limits of sequences in Mg\ My s.
Recall: MgsCMgesC ﬂd,s = MJ g
¢ reduced boundary points: limits in My s of sequences in ﬂdﬁ \MJ.S
¢ stride-1 boundary points: limits in Mg s of sequences in Mj &\ My s

reduced boundary points have at least codimension 2
stride-1 boundary points (if existent) have codimension 1
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Training with the squared error loss

Given training data D = {(X;, Y;) € R® x R* | i =1,..., N}, the squared
error loss on the function space is

lp : Rft<bo 5 R

N
T— > |Yi— TX|1%
i=1
Training an LCN minimizes the squared error loss on the parameter space:

{t
Lp:RE x ... xRE 25 My C R0 2By R

W e Toge. < Tyt = Z,D(TWLasL = TW17$1)
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Training with the squared error loss
,CD:Rdl 0% ARG L)Md,s K—DHR

Theorem

Let (d, S) be a reduced LCN architecture and let N > . d;S; + 1.

For almost all data D € (R% x R*)N  every critical point w of Lp satisfies
one of the following:

* 1(w) =0, or
¢ w is a regular point of ;1 and p(w) is a smooth, interior point of Mg s
(in particular, u(w) is a critical point of €p|Reg(M§ S)).

This is known to be false for

linear fully-connected networks stride-1 LCNs
M = determinantal variety M = full-dimensional semi-algebraic
critical points are often on Sing(M) critical points are often on OM

critical points are often “spurious”, i.e. u(w) ¢ Crit(¢p| M)



