

Number of Voronoi-relevant vectors in lattices with respect to arbitrary norms

Kathlén Kohn

Faculty of Electrical Engineering, Computer Science and Mathematics University of Paderborn

2015 - 07 - 15

Motivation

Definition (1)

An *n*-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^n .

An *n*-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^n .

Definition (2)

Let $b_1, \ldots, b_m \in \mathbb{R}^n$ be linearly independent. Then

$$\mathcal{L}(b_1,\ldots,b_m) \coloneqq \left\{ \sum_{i=1}^m z_i b_i \mid z_1,\ldots,z_m \in \mathbb{Z} \right\}$$

is a *lattice* with *basis* (b_1, \ldots, b_m) of *rank* m and *dimension* n.

	Lattice problems				2
		Strictly convex norms	Non-strictly convex norms	Bisectors	
c	Shortost Voct	or Broblom			

(SVP): Given lattice basis (b_1, \ldots, b_m) , find shortest vector in

 $\mathcal{L}(b_1,\ldots,b_m)\setminus\{0\}.$

Lattice problems

Lattice problems

Decision variant NP-hard (under randomized reductions) [Ajtai]

Decision variant NP-complete [Micciancio, Goldwasser]

Voulgaris:

- solves both problems for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi cell

Algorithm by Micciancio and Voulgaris:

- solves both problems for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

 $\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \left\{ x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\| \right\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| \le \|x - b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}^{\leq}_{\|\cdot\|}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| \le \|x - b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}^{\leq}_{\|\cdot\|}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda \colon \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda \colon \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda \colon \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda \colon \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}^{\leq}_{\|\cdot\|}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda \colon \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) \coloneqq \{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda : \|x\| \le \|x - v\|\}.$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right)$$
with

$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| \le \|x - b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{\nu \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, \nu)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| \le \|x - b\|\}$$

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{v \in \Lambda} \mathcal{H}^{\leq}_{\|\cdot\|}(0, v)\right)$$

with
$$\mathcal{H}_{\|\cdot\|}^{\leq}(a,b) \coloneqq \{x \in \mathbb{R}^n \mid \|x-a\| \le \|x-b\|\}$$

Definition $v \in \Lambda \setminus \{0\}$ is *Voronoi-relevant (VR)* w.r.t. $\|\cdot\|$ if

$$\exists x \in \operatorname{span}(\Lambda) : ||x|| = ||x - v||,$$

$$\forall w \in \Lambda \setminus \{0, v\} : ||x|| < ||x - w||.$$

$$\mathcal{V}(\Lambda, \|\cdot\|_2) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{v \in \Lambda VR} \mathcal{H}_{\|\cdot\|_2}^{\leq}(0, v)\right)$$
for Euclidean norm $\|\cdot\|_2$ [Agrell et al.]

Definition $v \in \Lambda \setminus \{0\}$ is *Voronoi-relevant (VR)* w.r.t. $\|\cdot\|$ if

$$\exists x \in \operatorname{span}(\Lambda) : ||x|| = ||x - v||,$$

$$\forall w \in \Lambda \setminus \{0, v\} : ||x|| < ||x - w||.$$

- distance ■ 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi cell

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

- $2^{O(n)}$ time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

- at most 2(2ⁿ 1) Voronoi-relevant vectors in *n*-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
 - essential for above algorithm

- Algorithm by Micciancio and Voulgaris: ■ solves SVP and CVP for Euclidean distance
 - $2^{O(n)}$ time and space complexity
 - core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

- at most 2(2ⁿ 1) Voronoi-relevant vectors in *n*-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
 - essential for above algorithm
 - proof uses parallelogram identity

- solves SVP and CVP for Euclidean distance
 - $2^{O(n)}$ time and space complexity
 - core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

- at most 2(2ⁿ 1) Voronoi-relevant vectors in *n*-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
 - essential for above algorithm
 - proof uses parallelogram identity
 - open problem by Micciancio and Voulgaris: extend algorithm to *p*-norms

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

- at most 2(2ⁿ 1) Voronoi-relevant vectors in *n*-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
 - essential for above algorithm
 - proof uses parallelogram identity
 - open problem by Micciancio and Voulgaris: extend algorithm to *p*-norms
- ⇒ Upper bound for number of Voronoi-relevant vectors w.r.t. arbitrary *p*-norms?

Section 2

Strictly convex norms

Definition

A norm is strictly convex if its unit sphere does not contain a line segment.

not strictly convex

strictly convex

2 Voronoi-relevant vectors

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

• Let $a, b \in \Lambda$ be shortest, linearly independent vectors

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

- Let $a, b \in \Lambda$ be shortest, linearly independent vectors
- $\pm a, \pm b$ are Voronoi-relevant

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

- Let $a, b \in \Lambda$ be shortest, linearly independent vectors
- $\pm a, \pm b$ are Voronoi-relevant
- at most 2 of {±(a + b), ±(a b)} are Voronoi-relevant

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex norms
- that depends only on the lattice dimension!

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex norms
- that depends only on the lattice dimension!

Q: Can a + mb for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex norms
- that depends only on the lattice dimension!

Q: Can a + mb for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

Motivation Strictly convex norms Non-strictly convex norms Bisectors

Motivation

Rotate lattice s.t.

Non-strictly convex norms

Rotate lattice s.t.

Non-strictly convex norms

Rotate lattice s.t.

Corollary Λ_m has $\Omega(\sqrt{m})$ Voronoi-relevant vectors w.r.t. 3-norm.

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex norms
- that depends only on the lattice dimension!

Section 3

Non-strictly convex norms

$$\mathcal{V}(\Lambda, \|\cdot\|_2) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{v \in \Lambda VR} \mathcal{H}_{\|\cdot\|_2}^{\leq}(0, v)\right)$$
for Euclidean norm $\|\cdot\|_2$ [Agrell et al.]

Definition $v \in \Lambda \setminus \{0\}$ is *Voronoi-relevant (VR)* w.r.t. $\|\cdot\|$ if

.

.

 $\exists x \in \operatorname{span}(\Lambda) : ||x|| = ||x - v||,$ $\forall w \in \Lambda \setminus \{0, v\} : ||x|| < ||x - w||.$

Non-strictly convex norm

Bisectors

Definition

The *bisector* between $a, b \in \mathbb{R}^n$, $a \neq b$ is $\mathcal{H}^{=}_{\|.\|}(a, b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| = \|x - b\|\}.$

Non-strictly convex norm

Bisectors

Definition

The *bisector* between $a, b \in \mathbb{R}^n$, $a \neq b$ is $\mathcal{H}^{=}_{\|.\|}(a, b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| = \|x - b\|\}.$

Non-strictly convex norm

Bisectors

Definition

The *bisector* between $a, b \in \mathbb{R}^n$, $a \neq b$ is $\mathcal{H}^{=}_{\|.\|}(a, b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| = \|x - b\|\}.$

Non-strictly convex norm

Bisectors

Definition

The *bisector* between $a, b \in \mathbb{R}^n$, $a \neq b$ is $\mathcal{H}^{=}_{\|\cdot\|}(a, b) \coloneqq \{x \in \mathbb{R}^n \mid \|x - a\| = \|x - b\|\}.$

- 2 Voronoi-relevant vectors
- x not in Voronoi-cell, BUT:
- x closer to 0 than to Voronoi-relevant vectors

Definition $v \in \Lambda \setminus \{0\}$ is *Voronoi-relevant (VR)* w.r.t. $\|\cdot\|$ if

$$\exists x \in \operatorname{span}(\Lambda) : ||x|| = ||x - v||,$$

$$\forall w \in \Lambda \setminus \{0, v\} : ||x|| < ||x - w||.$$

Definition $v \in \Lambda \setminus \{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. $\|\cdot\|$ if

$$\exists x \in \operatorname{span}(\Lambda) : \|x\| = \|x - v\|,$$

$$\forall w \in \Lambda : \|x\| \le \|x - w\|.$$

Definition $v \in \Lambda \setminus \{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. $\|\cdot\|$ if

$$\exists x \in \operatorname{span}(\Lambda) : ||x|| = ||x - v||,$$

$$\forall w \in \Lambda : ||x|| \le ||x - w||.$$

Theorem (K.)

For every lattice Λ and every norm $\|\cdot\|$,

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{v \in \Lambda GVR} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right).$$

Theorem (K.) For every lattice Λ and every norm $\|\cdot\|$,

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{v \in \Lambda GVR} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right).$$

Conjecture

For every lattice Λ and every strictly convex norm $\|\cdot\|$,

$$\mathcal{V}(\Lambda, \|\cdot\|) = \operatorname{span}(\Lambda) \cap \left(\bigcap_{v \in \Lambda VR} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right).$$

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

- Let $a, b \in \Lambda$ be shortest, linearly independent vectors
- $\pm a, \pm b$ are Voronoi-relevant
- at most 2 of {±(a + b), ±(a b)} are Voronoi-relevant

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has at most 8 generalized Voronoi-relevant vectors w.r.t. every strictly convex norm.

- Let $a, b \in \Lambda$ be shortest, linearly independent vectors
- $\pm a, \pm b$ are Voronoi-relevant
- at most ±(a + b), ±(a b) are generalized Voronoi-relevant

 $\mathcal{L}\left(\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}0\\m\end{pmatrix}\right) \text{ has at least } 2m \text{ generalized Voronoi-relevant vectors} \\ w.r.t. 1-norm.$

Proposition (K.)

Every n-dimensional lattice Λ has at most $\left(1 + 4\frac{\mu(\Lambda, \|\cdot\|)}{\lambda_1(\Lambda, \|\cdot\|)}\right)^n$ generalized Voronoi-relevant vectors w.r.t. every norm.

Definition

The covering radius of Λ w.r.t. $\|\cdot\|$ is

 $\mu(\Lambda, \|\cdot\|) \coloneqq \inf\{d \in \mathbb{R}_{\geq 0} \mid \forall x \in \operatorname{span}(\Lambda) \exists v \in \Lambda : \|x - v\| \le d\}.$

The first successive minimum of Λ w.r.t. $\|\cdot\|$ is

$$\lambda_1(\Lambda, \|\cdot\|) \coloneqq \inf \{ \|v\| \mid v \in \Lambda, v \neq 0 \}.$$

Bisectors

Theorem (Horváth)

For every strictly convex norm, every bisector is homeomorphic to a hyperplane.

Theorem (Ma)

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^3$ non-collinear, $\mathcal{H}^{=}_{\|\cdot\|}(a, b) \cap \mathcal{H}^{=}_{\|\cdot\|}(a, c)$ is homeomorphic to a line.

Definition

Let $S \subseteq \mathbb{R}^n$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^n$ is a supporting hyperplane of S at s if

• $s \in H$ and

• S is contained in one of the 2 closed halfspaces bounded by H.

Definition

Let $S \subseteq \mathbb{R}^n$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^n$ is a supporting hyperplane of S at s if

- $s \in H$ and
- S is contained in one of the 2 closed halfspaces bounded by H.

Definition

A norm is smooth if each point on its unit sphere has a unique supporting hyperplane.

not strictly convex

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^n$ non-collinear, $\mathcal{H}^{=}_{\|\cdot\|}(a, b) \cap \mathcal{H}^{=}_{\|\cdot\|}(a, c)$ is homeomorphic to \mathbb{R}^{n-2} .

 $\implies \varphi$ continuous bijection

 φ^{-1} continuous

■ $\operatorname{proj}_W(\mathcal{B}_{\|\cdot\|,1}(0))$ is open unit ball of some norm on W

- $\operatorname{proj}_W(\mathcal{B}_{\|\cdot\|,1}(0))$ is open unit ball of some norm on W
- For every norm *F* on subspace $V \subseteq \mathbb{R}^n$, $\mathcal{B}_{F,1}(0)$ is homeomorphic to *V*

- $\operatorname{proj}_W \left(\mathcal{B}_{\|\cdot\|,1}(0) \right)$ is open unit ball of some norm on W
- For every norm F on subspace $V \subseteq \mathbb{R}^n$, $\mathcal{B}_{F,1}(0)$ is homeomorphic to V
- $\implies \operatorname{proj}_{W} \left(\mathcal{B}_{\|\cdot\|,1}(0) \right)$ homeomorphic to W

• *v* Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda, \|\cdot\|) \cap \mathcal{H}^{=}_{\|\cdot\|}(0, v)$ facet

	Facets				35
_	Motivation	Strictly convex norms	Non-strictly convex norms		
		6 A			

- v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda, \|\cdot\|) \cap \mathcal{H}^{=}_{\|\cdot\|}(0, v)$ facet
- Λ 2-dimensional, strictly convex norm
 - every facet has above form

- *v* Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda, \|\cdot\|) \cap \mathcal{H}^{=}_{\|\cdot\|}(0, v)$ facet
- Λ 2-dimensional, strictly convex norm
 - every facet has above form
 - \implies bijection between Voronoi-relevant vectors and facets

- *v* Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda, \|\cdot\|) \cap \mathcal{H}^{=}_{\|\cdot\|}(0, v)$ facet
- Λ 2-dimensional, strictly convex norm
 - every facet has above form
 - \implies bijection between Voronoi-relevant vectors and facets
 - every facet is connected

- *v* Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda, \|\cdot\|) \cap \mathcal{H}^{=}_{\|\cdot\|}(0, v)$ facet
- Λ 2-dimensional, strictly convex norm
 - every facet has above form
 - \implies bijection between Voronoi-relevant vectors and facets
 - every facet is connected
- general dimension, strictly convex and smooth norm

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^n$ non-collinear, $\mathcal{H}^{=}_{\|.\|}(a, b) \cap \mathcal{H}^{=}_{\|.\|}(a, c)$ is homeomorphic to \mathbb{R}^{n-2} .

- v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda, \|\cdot\|) \cap \mathcal{H}^{=}_{\|\cdot\|}(0, v)$ facet
- Λ 2-dimensional, strictly convex norm
 - every facet has above form
 - \implies bijection between Voronoi-relevant vectors and facets
 - every facet is connected
- general dimension, strictly convex and smooth norm
 - ◆ If conjecture below is true: every facet has above form
 ⇒ bijection between Voronoi-relevant vectors and facets

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^n$ non-collinear, $\mathcal{H}^{=}_{\|.\|}(a, b) \cap \mathcal{H}^{=}_{\|.\|}(a, c)$ is homeomorphic to \mathbb{R}^{n-2} .

- v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda, \|\cdot\|) \cap \mathcal{H}^{=}_{\|\cdot\|}(0, v)$ facet
- Λ 2-dimensional, strictly convex norm
 - every facet has above form
 - \implies bijection between Voronoi-relevant vectors and facets
 - every facet is connected
- general dimension, strictly convex and smooth norm
 - ◆ If conjecture below is true: every facet has above form
 ⇒> bijection between Voronoi-relevant vectors and facets
 - facets probably not necessarily connected
 ∀ p ∈ N, p ≥ 3 ∃a, b, c, d ∈ R³: Voronoi diagram of a, b, c, d w.r.t.
 p-norm has unconnected facet

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^n$ non-collinear, $\mathcal{H}^{=}_{\|\cdot\|}(a, b) \cap \mathcal{H}^{=}_{\|\cdot\|}(a, c)$ is homeomorphic to \mathbb{R}^{n-2} .

Thank you!

not strictly convex

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^n$ non-collinear, $\mathcal{H}^{=}_{\|\cdot\|}(a, b) \cap \mathcal{H}^{=}_{\|\cdot\|}(a, c)$ is homeomorphic to \mathbb{R}^{n-2} .

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^n$ non-collinear, $\mathcal{H}^{=}_{\|.\|}(a, b) \cap \mathcal{H}^{=}_{\|.\|}(a, c)$ is homeomorphic to \mathbb{R}^{n-2} .

Thank you!