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Definition (2)
Let b1,...,bn € R" be linearly independent. Then

m
‘C(bla 0009 bm) o= {zzibi
i=1

zl,...,zmeZ}

is a lattice with basis (by,...,bm) of rank m and dimension n.
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Closest Vector Problem
(CVP):
Given lattice basis (by,...,bm)
and x € R", find closest vector to x
in L(b1,...,bm).
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Motivation

Shortest Vector Problem Closest Vector Problem
(SVP): (CVP):

Given lattice basis (by,...,bm), Given lattice basis (by,...,bm)
find shortest vector in and x € R", find closest vector to x
L(by,...,bn)\{0}. in L(by,...,bm).
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Decision variant NP-hard (under Decision variant NP-complete

randomized reductions) [Ajtai] [Micciancio, Goldwasser]
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Voronoi-relevant vectors

Motivation

Algorithm by Micciancio and Voulgaris:
m solves SVP and CVP for Euclidean
distance

m 29(" time and space complexity

m core of algorithm:

¢ solve CVP with additional input:
Voronoi-relevant vectors

m at most 2(2" - 1) Voronoi-relevant vectors in n-dimensional lattice
w.r.t. Euclidean norm [Agrell et al.]
& essential for above algorithm
& proof uses parallelogram identity
& open problem by Micciancio and Voulgaris:
extend algorithm to p-norms

— Upper bound for number of Voronoi-relevant vectors
w.r.t. arbitrary p-norms?
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Strict convexity

Strictly convex norms

Definition
A norm is strictly convex if its unit sphere does not contain a line
segment.

not strictly convex strictly convex



Rank 1

Strictly convex norms



Rank 1

Strictly convex norms

2 Voronoi-relevant vectors



Rank 2

Strictly convex norms

Theorem (Blémer, K., Teusner)

Every lattice \ of rank 2 has exactly 4 or 6 Vloronoi-relevant vectors
w.r.t. every strictly convex norm.



Rank 2

Strictly convex norms

Theorem (Blémer, K., Teusner)

Every lattice \ of rank 2 has exactly 4 or 6 Vloronoi-relevant vectors
w.r.t. every strictly convex norm.

m Let a,b € A be shortest, linearly
independent vectors



Rank 2

Strictly convex norms

Theorem (Blémer, K., Teusner)

Every lattice \ of rank 2 has exactly 4 or 6 Vloronoi-relevant vectors
w.r.t. every strictly convex norm.

. o o
m Let a,b € A be shortest, linearly ! . .
independent vectors o - ]
m +a,+b are Voronoi-relevant . Qe o
» ° he
[ ] L ] ¢



Rank 2

Strictly convex norms

Theorem (Blémer, K., Teusner)

Every lattice \ of rank 2 has exactly 4 or 6 Vloronoi-relevant vectors
w.r.t. every strictly convex norm.

o o .
m Let a,b € A be shortest, linearly ! o .
independent vectors o - .
m +a,+b are Voronoi-relevant . Qe o
m at most 2 of {+(a+b),+x(a-b)} J . he
are Voronoi-relevant o o L



Rank 3

Strictly convex norms

There is no upper bound for the number of Voronoi-relevant
vectors

m w.r.t. general strictly convex norms
m that depends only on the lattice dimension!



Rank 3

Strictly convex norms

There is no upper bound for the number of Voronoi-relevant
vectors

m w.r.t. general strictly convex norms
m that depends only on the lattice dimension!

Q: Can a+ mb for a, b € \ and large m € N be Voronoi-relevant?



Rank 3

Strictly convex norms

There is no upper bound for the number of Voronoi-relevant
vectors

m w.r.t. general strictly convex norms
m that depends only on the lattice dimension!

Q: Can a+ mb for a, b € \ and large m € N be Voronoi-relevant?




3-norm

Strictly convex norms




3-norm

Strictly convex norms




3-norm

Strictly convex norms




Rank 3

Strictly convex norms




Rank 3

Strictly convex norms

Rotate lattice s.t.




Rank 3

Strictly convex norms




Rank 3

Strictly convex norms

Modify standard lattice:




Rank 3

Strictly convex norms

Modify standard lattice:



Rank 3

Strictly convex norms

Modify standard lattice:




Rank 3

Strictly convex norms

Modify standard lattice:

Stretch in c-direction
by 5v2m°

Q




Rank 3

Strictly convex norms

Modify standard lattice:
Stretch in c-direction
by 5v2m°
Rotate around c-axis
s.t. a+ mb lies on
green axis

Q




Rank 3

Strictly convex norms

Modify standard lattice:
Stretch in c-direction
by 5v2m°

Rotate around c-axis
s.t. a+ mb lies on
green axis




R
S X
/0404/44 /O/&O
SR /040000
SN S
00/ rOrr/Iz/
=) 3
//0" ///’0
XS X
N N
AR
AN
m .m5m mmm mw
mmﬁmjmmm
: = RVJJ S ...w. W X ©



Modify standard lattice:

Stretch in c-direction
by 5v2m°

Rotate around c-axis
s.t. a+ mb lies on
green axis

Rotate around green
axis by 45°

— Lattice A,




Rank 3

Strictly convex norms













Rank 3

Strictly convex norms

Corollary
Am has Q(\/m) Voronoi-relevant vectors w.r.t. 3-norm.

There is no upper bound for the number of Voronoi-relevant
vectors

m w.r.t. general strictly convex norms

m that depends only on the lattice dimension!
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Voronoi-relevant vectors

Non-strictly convex norms

VAl =soan(mn (), 00)

for Euclidean norm || - |2 [Agrell et al.]

Definition
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Y € {0,V ] < b= wl.
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Non-strictly convex norms

Definition
The bisector between a,beR", a+ b is
H7y(a,b) = {x e R" | [x~a] =[x~ b[}.

- - - -
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Taxicab norm

Voronoi cell

Non-strictly convex norms

°
°
p m 2 Voronoi-relevant vectors
m x not in Voronoi-cell, BUT:
°
m x closer to 0 than to
° Voronoi-relevant vectors
° °® «
° ™ °



Generalized Voronoi-relevant vectors

Non-strictly convex norms

Definition
v e A\\{0} is Voronoi-relevant (VR) w.r.t. |- | if

Ax espan(A) :|x|| = [x - v,
Vw e A\{0, v} :||x| < |x - w]|.
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Non-strictly convex norms

Definition
v € A\{0} is generalized Voronoi-relevant (GVR) w.r.t. | -| if

3x e span(A) :|x| =[x = v/,

Vw e Afx] < lx = wl.
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Non-strictly convex norms

Definition
v e A\\{0} is generalized Voronoi-relevant (GVR) w.r.t. | -| if

3x e span(A) :|x| =[x = v/,

Vw e A:x] < [x - w].
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Non-strictly convex norms

Theorem (K.)

For every lattice N and every norm | -

’

VD =snn( O #00).

Conjecture
For every lattice A and every strictly convex norm | - ||,

VD =W () #E,0.0).
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Theorem (Blémer, K., Teusner)
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Non-strictly convex norms

Theorem (Blémer, K., Teusner)

Every lattice \ of rank 2 has at most 8 generalized Vioronoi-relevant
vectors w.r.t. every strictly convex norm.

m Let a, b € A be shortest, linearly ! . . . . .
independent vectors . - )

m +a,+b are Voronoi-relevant . Oe .

m at most +(a+ b),+(a-b) are J . e
generalized Voronoi-relevant o . «
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Non-strictly convex norms

® [ ] L J
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m=3

Theorem (K.)

L ((i) , (r?v)) has at least 2m generalized Voronoi-relevant vectors

w.r.t. 1-norm.



General upper bound

Non-strictly convex norms

Proposition (K.)

. n .
Every n-dimensional lattice \ has at most (1 +4 ;1 ((/X”H-HH))) generalized
Voronoi-relevant vectors w.r.t. every norm.

Definition
The covering radius of A w.r.t. | -] is

w(A||-]) :=inf{d e Ryg | Vx espan(A)IveA: |x—v|<d}.
The first successive minimum of A w.r.t. |- | is

AL(A -1 s=inf {{v][veA v+0}.
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Bisectors

Theorem (Horvath)

For every strictly convex norm, every bisector is homeomorphic to a
hyperplane.

Theorem (Ma)

For every strictly convex and smooth norm and every a, b, c € R3
non-collinear, H, (a,b)n H (a, c) is homeomorphic to a line.
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Definition
Let SCR" and s € 0S. A hyperplane H € R” is a supporting hyperplane
of S at s if

m scH and

m S is contained in one of the 2 closed halfspaces bounded by H.



Smooth norms

Bisectors

Definition
Let SCR" and s € 0S. A hyperplane H € R” is a supporting hyperplane
of S at s if

msecH and

m S is contained in one of the 2 closed halfspaces bounded by H.

Definition
A norm is smooth if each point on its unit sphere has a unique
supporting hyperplane.



Smooth norms

Bisectors

smooth not smooth

strictly convex

not strictly convex
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Bisectors

Conjecture

For every strictly convex and smooth norm and every a, b, c € R"
non-collinear, H, (a,b)n H (a,c) is homeomorphic to R"2.
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Bisectors

Conjecture

For every strictly convex and smooth norm and every a, b, c € R"
non-collinear, H |, (a,b)n Hiy (a,c) is homeomorphic to R"2.

unit ball plane H

B 1(0) = {x e R" [ |x] <1} spanned by a, b, ¢




Intersection of bisectors

30

Bisectors




Intersection of bisectors

30

Bisectors

unit ball



Intersection of bisectors

30

Bisectors

unit ball unit ball



Intersection of bisectors

31

Bisectors

unit ball



Intersection of bisectors

31

Bisectors

W := (H - a)* orthogonal complement
= dim(W)=n-2
= projyy :R"=(H-a)e W - W

unit ball



Intersection of bisectors

31

Bisectors

W := (H - a)* orthogonal complement
= dim(W)=n-2
= projyy :R"=(H-a)e W - W

unit ball



Intersection of bisectors

31

Bisectors

W := (H - a)* orthogonal complement
= dim(W)=n-2
= projyy :R"=(H-a)e W - W

unit ball



Intersection of bisectors

31

Bisectors

W := (H - a)* orthogonal complement
= dim(W)=n-2
= projyy :R"=(H-a)e W - W

SO 8
p HEH(a, b)n HM(a, c)
]
o] l
]
proju (7357 W

unit ball
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32

Bisectors

@e ’Hﬁ.”(‘?, b) n ’Hﬁ_”(a, ) — projyy (B||~|\,1(O)) )

. a-p
X PRIW g

= ¢ continuous bijection Conjecture

¢ continuous
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m projyy (B\|.||,1(0)) is open unit ball of some norm on W

m For every norm F on subspace V ¢ R", Br 1(0) is homeomorphic to
Vv
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33

Bisectors

m projyy (BH.”,l(O)) is open unit ball of some norm on W

m For every norm F on subspace V ¢ R", Br 1(0) is homeomorphic to
Vv

= projy (BH.”J(O)) homeomorphic to W
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F at least (m — 1)-dimensional for
m := rank(A)
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m A 2-dimensional, strictly convex norm
¢ every facet has above form
— bijection between Voronoi-relevant vectors and facets
& every facet is connected
m general dimension, strictly convex and smooth norm

¢ If conjecture below is true: every facet has above form
— bijection between Voronoi-relevant vectors and facets

Conjecture

For every strictly convex and smooth norm and every a, b, c € R"
non-collinear, H (a,b)n H (a,c) is homeomorphic to R"2.
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m v Voronoi-relevant = V(A, | -||) n ’HE”(O, v) facet

m A 2-dimensional, strictly convex norm
¢ every facet has above form
— bijection between Voronoi-relevant vectors and facets
& every facet is connected
m general dimension, strictly convex and smooth norm
¢ If conjecture below is true: every facet has above form
— bijection between Voronoi-relevant vectors and facets
o facets probably not necessarily connected
VpeN,p>33a,b,c,deR3: Voronoi diagram of a, b,c,d w.r.t.
p-norm has unconnected facet

Conjecture

For every strictly convex and smooth norm and every a, b, c € R"
non-collinear, H (a,b)n H (a,c) is homeomorphic to R"2.
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Smooth norms

Bisectors

smooth not smooth

strictly convex

not strictly convex
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Conjecture

For every strictly convex and smooth norm and every a, b, c € R"
non-collinear, H |, (a,b) N Hiy (a,c) is homeomorphic to R"2.
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Conjecture

For every strictly convex and smooth norm and every a, b, c € R"
non-collinear, H |, (a,b)n Hiy (a,c) is homeomorphic to R"2.

unit ball plane H

B 1(0) = {x e R" [ |x] <1} spanned by a, b, ¢
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Conjecture

For every strictly convex and smooth norm and every a, b, c € R"
non-collinear, H, (a,b)n Hiy (a,c) is homeomorphic to R™ 2.
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