Number of Voronoi-relevant vectors in lattices with respect to arbitrary norms

Kathlén Kohn

Faculty of Electrical Engineering, Computer Science and Mathematics
University of Paderborn

$$
2015-07-15
$$

Section 1

Motivation

Lattices

Definition (1)

An n-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^{n}.

Definition (1)

An n-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^{n}.

Definition (2)

Let $b_{1}, \ldots, b_{m} \in \mathbb{R}^{n}$ be linearly independent. Then

$$
\mathcal{L}\left(b_{1}, \ldots, b_{m}\right):=\left\{\sum_{i=1}^{m} z_{i} b_{i} \mid z_{1}, \ldots, z_{m} \in \mathbb{Z}\right\}
$$

is a lattice with basis $\left(b_{1}, \ldots, b_{m}\right)$ of rank m and dimension n.

Lattice problems

Shortest Vector Problem (SVP):

Given lattice basis $\left(b_{1}, \ldots, b_{m}\right)$, find shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{m}\right) \backslash\{0\}$.

Lattice problems

Shortest Vector Problem (SVP):

Given lattice basis $\left(b_{1}, \ldots, b_{m}\right)$, find shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{m}\right) \backslash\{0\}$.

Closest Vector Problem
 (CVP):

Given lattice basis $\left(b_{1}, \ldots, b_{m}\right)$ and $x \in \mathbb{R}^{n}$, find closest vector to x in $\mathcal{L}\left(b_{1}, \ldots, b_{m}\right)$.

Shortest Vector Problem (SVP):

Given lattice basis $\left(b_{1}, \ldots, b_{m}\right)$, find shortest vector in $\mathcal{L}\left(b_{1}, \ldots, b_{m}\right) \backslash\{0\}$.

Decision variant NP-hard (under randomized reductions) [Ajtai]

Closest Vector Problem
(CVP):
Given lattice basis $\left(b_{1}, \ldots, b_{m}\right)$ and $x \in \mathbb{R}^{n}$, find closest vector to x in $\mathcal{L}\left(b_{1}, \ldots, b_{m}\right)$.

Decision variant NP-complete [Micciancio, Goldwasser]

Algorithm by Micciancio and Voulgaris:

- solves both problems for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi cell

Lattice problems

Algorithm by Micciancio and Voulgaris:

- solves both problems for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\{x \in \operatorname{span}(\Lambda) \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\} .
$$

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi-relevant vectors

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi-relevant vectors

5

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Voronoi-relevant vectors

$$
\begin{aligned}
& \mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) \\
& \quad \text { with } \\
& \mathcal{H}_{\|\cdot\|}^{\leq}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\| \leq\|x-b\|\right\}
\end{aligned}
$$

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. \|. \| if

$$
\begin{array}{r}
\exists x \in \operatorname{span}(\Lambda):\|x\|=\|x-v\|, \\
\forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
\end{array}
$$

Voronoi-relevant vectors

$$
\mathcal{V}\left(\Lambda,\|\cdot\|_{2}\right)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda V R} \mathcal{H}_{\|\cdot\|_{2}}^{\leq}(0, v)\right)
$$

for Euclidean norm $\|\cdot\|_{2}$ [Agrell et al.]

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. \| \| \| if

$$
\begin{array}{r}
\exists x \in \operatorname{span}(\Lambda):\|x\|=\|x-v\|, \\
\forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
\end{array}
$$

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:
■ solves SVP and CVP for Euclidean distance

- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi cell

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:
■ solves SVP and CVP for Euclidean distance

- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:
■ solves SVP and CVP for Euclidean distance

- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors
- at most $2\left(2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
- essential for above algorithm

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:
■ solves SVP and CVP for Euclidean distance

- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors
- at most $2\left(2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
- essential for above algorithm
- proof uses parallelogram identity

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:
■ solves SVP and CVP for Euclidean distance

- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors
- at most $2\left(2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
- essential for above algorithm
- proof uses parallelogram identity
- open problem by Micciancio and Voulgaris: extend algorithm to p-norms

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:
■ solves SVP and CVP for Euclidean distance

- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors
- at most 2 $\left.2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm [Agrell et al.]
- essential for above algorithm
- proof uses parallelogram identity
- open problem by Micciancio and Voulgaris: extend algorithm to p-norms
\Longrightarrow Upper bound for number of Voronoi-relevant vectors w.r.t. arbitrary p-norms?

Section 2

Strictly convex norms

Strict convexity

Definition

A norm is strictly convex if its unit sphere does not contain a line segment.

not strictly convex

strictly convex

2 Voronoi-relevant vectors

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

■ Let $a, b \in \Lambda$ be shortest, linearly independent vectors

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

- Let $a, b \in \Lambda$ be shortest, linearly independent vectors
- $\pm a, \pm b$ are Voronoi-relevant

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

- Let $a, b \in \Lambda$ be shortest, linearly independent vectors
- $\pm a, \pm b$ are Voronoi-relevant
- at most 2 of $\{ \pm(a+b), \pm(a-b)\}$ are Voronoi-relevant

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex norms
- that depends only on the lattice dimension!

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex norms
- that depends only on the lattice dimension!

Q: Can $a+m b$ for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex norms
- that depends only on the lattice dimension!

Q: Can $a+m b$ for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

Rank 3

Rotate lattice s.t.

Rotate lattice s.t.

Rank 3

Modify standard lattice:

Rank 3

Modify standard lattice:

Rank 3

Modify standard lattice:

Rank 3

Modify standard lattice:

1 Stretch in c-direction by $5 \sqrt{2} m^{5}$

Rank 3

Modify standard lattice:

1 Stretch in c-direction by $5 \sqrt{2} m^{5}$

2 Rotate around c-axis s.t. $a+m b$ lies on green axis

Modify standard lattice:
1 Stretch in c-direction by $5 \sqrt{2} m^{5}$
2 Rotate around c-axis s.t. $a+m b$ lies on green axis

Modify standard lattice:
1 Stretch in c-direction by $5 \sqrt{2} m^{5}$
2 Rotate around c-axis s.t. $a+m b$ lies on green axis
3 Rotate around green axis by 45°

Rank 3

Modify standard lattice:
1 Stretch in c-direction by $5 \sqrt{2} m^{5}$
2 Rotate around c-axis s.t. $a+m b$ lies on green axis
3 Rotate around green axis by 45°
\Longrightarrow Lattice Λ_{m}

Rotate lattice s.t.

Rank 3

Rank 3

Λ_{m} :

- Move x along
c-direction $\Longrightarrow a+m b$ Voronoi-rel. w.r.t. 3-norm

Λ_{m}

- Move x along
c-direction
$\Longrightarrow a+m b$ Voronoi-rel. w.r.t. 3-norm
- Analogous:

Theorem (K.)

For $2 \leq k \leq \sqrt{m}, a+k b$ is Voronoi-relevant in Λ_{m} w.r.t. 3-norm.

Corollary

Λ_{m} has $\Omega(\sqrt{m})$ Voronoi-relevant vectors w.r.t. 3-norm.

There is no upper bound for the number of Voronoi-relevant vectors

■ w.r.t. general strictly convex norms

- that depends only on the lattice dimension!

Section 3

Non-strictly convex norms

Voronoi-relevant vectors

$$
\mathcal{V}\left(\Lambda,\|\cdot\|_{2}\right)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda V R} \mathcal{H}_{\|\cdot\|_{2}}^{\leq}(0, v)\right)
$$

for Euclidean norm $\|\cdot\|_{2}$ [Agrell et al.]

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. \| \| \| if

$$
\begin{array}{r}
\exists x \in \operatorname{span}(\Lambda):\|x\|=\|x-v\|, \\
\forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
\end{array}
$$

Taxicab norm

Taxicab norm

Definition

The bisector between $a, b \in \mathbb{R}^{n}, a \neq b$ is $\mathcal{H}_{\|\cdot\|}^{=}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\|=\|x-b\|\right\}$.

Definition

The bisector between $a, b \in \mathbb{R}^{n}, a \neq b$ is

$$
\mathcal{H}_{\|\cdot\|}^{=}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\|=\|x-b\|\right\} .
$$

Definition

The bisector between $a, b \in \mathbb{R}^{n}, a \neq b$ is

$$
\mathcal{H}_{\|\cdot\|}^{=}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\|=\|x-b\|\right\} .
$$

Definition

The bisector between $a, b \in \mathbb{R}^{n}, a \neq b$ is

$$
\mathcal{H}_{\|\cdot\|}^{=}(a, b):=\left\{x \in \mathbb{R}^{n} \mid\|x-a\|=\|x-b\|\right\} .
$$

- 2 Voronoi-relevant vectors

- 2 Voronoi-relevant vectors
- x not in Voronoi-cell, BUT:
- x closer to 0 than to Voronoi-relevant vectors

Generalized Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. \|. \| if

$$
\begin{aligned}
& \exists x \in \operatorname{span}(\Lambda):\|x\|=\|x-v\|, \\
& \forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
\end{aligned}
$$

Generalized Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. $\|\cdot\|$ if

$$
\begin{array}{r}
\exists x \in \operatorname{span}(\Lambda):\|x\|=\|x-v\|, \\
\forall w \in \Lambda:\|x\| \leq\|x-w\| .
\end{array}
$$

Generalized Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. $\|\cdot\|$ if

$$
\begin{array}{r}
\exists x \in \operatorname{span}(\Lambda):\|x\|=\|x-v\| \\
\forall w \in \Lambda:\|x\| \leq\|x-w\|
\end{array}
$$

Generalized Voronoi-relevant vectors

Theorem (K.)

For every lattice Λ and every norm $\|\cdot\|$,

$$
\mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda G V R} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) .
$$

Generalized Voronoi-relevant vectors

Theorem (K.)

For every lattice Λ and every norm $\|\cdot\|$,

$$
\mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda G V R} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) .
$$

Conjecture

For every lattice Λ and every strictly convex norm $\|\cdot\|$,

$$
\mathcal{V}(\Lambda,\|\cdot\|)=\operatorname{span}(\Lambda) \cap\left(\bigcap_{v \in \Lambda V R} \mathcal{H}_{\|\cdot\|}^{\leq}(0, v)\right) .
$$

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has exactly 4 or 6 Voronoi-relevant vectors w.r.t. every strictly convex norm.

- Let $a, b \in \Lambda$ be shortest, linearly independent vectors
- $\pm a, \pm b$ are Voronoi-relevant
- at most 2 of $\{ \pm(a+b), \pm(a-b)\}$ are Voronoi-relevant

Theorem (Blömer, K., Teusner)

Every lattice Λ of rank 2 has at most 8 generalized Voronoi-relevant vectors w.r.t. every strictly convex norm.

■ Let $a, b \in \Lambda$ be shortest, linearly independent vectors

- $\pm a, \pm b$ are Voronoi-relevant
- at most $\pm(a+b), \pm(a-b)$ are generalized Voronoi-relevant

Rank 2

Theorem (K.)
$\mathcal{L}\left(\binom{1}{1},\binom{0}{m}\right)$ has at least $2 m$ generalized Voronoi-relevant vectors w.r.t. 1-norm.

General upper bound

Proposition (K.)

Every n-dimensional lattice Λ has at most $\left(1+4 \frac{\mu(\Lambda,\|\cdot\|)}{\lambda_{1}(\Lambda,\|\cdot\|)}\right)^{n}$ generalized Voronoi-relevant vectors w.r.t. every norm.

Definition

The covering radius of Λ w.r.t. $\|\cdot\|$ is

$$
\mu(\Lambda,\|\cdot\|):=\inf \left\{d \in \mathbb{R}_{\geq 0} \mid \forall x \in \operatorname{span}(\Lambda) \exists v \in \Lambda:\|x-v\| \leq d\right\} .
$$

The first successive minimum of Λ w.r.t. $\|\cdot\|$ is

$$
\lambda_{1}(\Lambda,\|\cdot\|):=\inf \{\|v\| \mid v \in \Lambda, v \neq 0\} .
$$

Section 4

Bisectors

Theorem (Horváth)

For every strictly convex norm, every bisector is homeomorphic to a hyperplane.

Theorem (Ma)

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{3}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to a line.

Smooth norms

Definition

Let $S \subseteq \mathbb{R}^{n}$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^{n}$ is a supporting hyperplane of S at s if

- $s \in H$ and

■ S is contained in one of the 2 closed halfspaces bounded by H .

Smooth norms

Definition

Let $S \subseteq \mathbb{R}^{n}$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^{n}$ is a supporting hyperplane of S at s if

- $s \in H$ and

■ S is contained in one of the 2 closed halfspaces bounded by H .

Definition

A norm is smooth if each point on its unit sphere has a unique supporting hyperplane.

Smooth norms

Intersection of bisectors

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

Intersection of bisectors

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

unit ball
$\mathcal{B}_{\|\cdot\|, 1}(0):=\left\{x \in \mathbb{R}^{n} \mid\|x\|<1\right\}$

plane H
spanned by a, b, c

Intersection of bisectors

Intersection of bisectors

Motivation

unit ball

Intersection of bisectors

$$
\begin{aligned}
& W:=(H-a)^{\perp} \text { orthogonal complement } \\
& \Longrightarrow \operatorname{dim}(W)=n-2 \\
& \Longrightarrow \operatorname{proj}_{W}: \mathbb{R}^{n}=(H-a) \oplus W \rightarrow W
\end{aligned}
$$

Intersection of bisectors

$$
\begin{aligned}
& W:=(H-a)^{\perp} \text { orthogonal complement } \\
& \Longrightarrow \operatorname{dim}(W)=n-2 \\
& \Longrightarrow \operatorname{proj}_{W}: \mathbb{R}^{n}=(H-a) \oplus W \rightarrow W
\end{aligned}
$$

$$
\begin{gathered}
p \\
\downarrow \\
\frac{a-p}{\|a-p\|}
\end{gathered}
$$

Intersection of bisectors

Intersection of bisectors

$$
\begin{aligned}
\varphi: \mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\| \| \|}^{=}(a, c) & \longrightarrow \operatorname{proj}_{W}\left(\mathcal{B}_{\|\cdot\|, 1}(0)\right), \\
x & \longmapsto \operatorname{proj}_{W}\left(\frac{a-p}{\|a-p\| \|}\right)
\end{aligned}
$$

$\Longrightarrow \varphi$ continuous bijection

Intersection of bisectors

$\Longrightarrow \varphi$ continuous bijection

Conjecture
φ^{-1} continuous

Intersection of bisectors

- $\operatorname{proj}_{W}\left(\mathcal{B}_{\|\cdot\|, 1}(0)\right)$ is open unit ball of some norm on W

Intersection of bisectors

- $\operatorname{proj}_{W}\left(\mathcal{B}_{\|\cdot\|, 1}(0)\right)$ is open unit ball of some norm on W

■ For every norm F on subspace $V \subseteq \mathbb{R}^{n}, \mathcal{B}_{F, 1}(0)$ is homeomorphic to V

Intersection of bisectors

- $\operatorname{proj}_{W}\left(\mathcal{B}_{\|\cdot\|, 1}(0)\right)$ is open unit ball of some norm on W

■ For every norm F on subspace $V \subseteq \mathbb{R}^{n}, \mathcal{B}_{F, 1}(0)$ is homeomorphic to V
$\Longrightarrow \operatorname{proj}_{W}\left(\mathcal{B}_{\|\cdot\|, 1}(0)\right)$ homeomorphic to W

Facets

34

Bisectors

Definition

$\mathcal{F} \subseteq \mathcal{V}(\Lambda,\|\cdot\|)$ facet if
$1 \exists v \in \Lambda \backslash\{0\}: \mathcal{F} \subseteq \mathcal{H}_{\|\cdot\|}^{=}(0, v)$
$2 \mathcal{F}$ at least ($m-1$)-dimensional for $m:=\operatorname{rank}(\Lambda)$
$3 \mathcal{F}$ is "maximal"

Facets

Definition

$\mathcal{F} \subseteq \mathcal{V}(\Lambda,\|\cdot\|)$ facet if
$1 \exists v \in \Lambda \backslash\{0\}: \mathcal{F} \subseteq \mathcal{H}_{\|\cdot\|}^{=}(0, v)$
$2 \mathcal{F}$ at least $(m-1)$-dimensional for $m:=\operatorname{rank}(\Lambda)$
$3 \mathcal{F}$ is "maximal"

Facets

Definition

$\mathcal{F} \subseteq \mathcal{V}(\Lambda,\|\cdot\|)$ facet if
$1 \exists v \in \Lambda \backslash\{0\}: \mathcal{F} \subseteq \mathcal{H}_{\|\cdot\|}^{=}(0, v)$
$2 \mathcal{F}$ at least $(m-1)$-dimensional for $m:=\operatorname{rank}(\Lambda)$
$3 \mathcal{F}$ is "maximal"

Facets

Definition

$\mathcal{F} \subseteq \mathcal{V}(\Lambda,\|\cdot\|)$ facet if
$1 \exists v \in \Lambda \backslash\{0\}: \mathcal{F} \subseteq \mathcal{H}_{\|\cdot\|}^{=}(0, v)$
$2 \mathcal{F}$ at least $(m-1)$-dimensional for $m:=\operatorname{rank}(\Lambda)$
$3 \mathcal{F}$ is "maximal"

Facets

■ v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda,\|\cdot\|) \cap \mathcal{H}_{\|\cdot\|}^{=}(0, v)$ facet

Facets

■ v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda,\|\cdot\|) \cap \mathcal{H}_{\|\cdot\|}^{=}(0, v)$ facet

- \wedge 2-dimensional, strictly convex norm
- every facet has above form

Facets

■ v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda,\|\cdot\|) \cap \mathcal{H}_{\|\cdot\|}^{=}(0, v)$ facet

- \wedge 2-dimensional, strictly convex norm
- every facet has above form
\Longrightarrow bijection between Voronoi-relevant vectors and facets

Facets

■ v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda,\|\cdot\|) \cap \mathcal{H}_{\|\cdot\|}^{=}(0, v)$ facet

- \wedge 2-dimensional, strictly convex norm
- every facet has above form
\Longrightarrow bijection between Voronoi-relevant vectors and facets
- every facet is connected

Facets

■ v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda,\|\cdot\|) \cap \mathcal{H}_{\|\cdot\|}^{=}(0, v)$ facet

- \wedge 2-dimensional, strictly convex norm
- every facet has above form
\Longrightarrow bijection between Voronoi-relevant vectors and facets
- every facet is connected
- general dimension, strictly convex and smooth norm

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

Facets

■ v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda,\|\cdot\|) \cap \mathcal{H}_{\|\cdot\|}^{=}(0, v)$ facet

- \wedge 2-dimensional, strictly convex norm
- every facet has above form \Longrightarrow bijection between Voronoi-relevant vectors and facets
- every facet is connected
- general dimension, strictly convex and smooth norm
- If conjecture below is true: every facet has above form \Longrightarrow bijection between Voronoi-relevant vectors and facets

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

Facets

■ v Voronoi-relevant $\Rightarrow \mathcal{V}(\Lambda,\|\cdot\|) \cap \mathcal{H}_{\|\cdot\|}^{=}(0, v)$ facet

- \wedge 2-dimensional, strictly convex norm
- every facet has above form \Longrightarrow bijection between Voronoi-relevant vectors and facets
- every facet is connected
- general dimension, strictly convex and smooth norm
- If conjecture below is true: every facet has above form \Longrightarrow bijection between Voronoi-relevant vectors and facets
- facets probably not necessarily connected $\forall p \in \mathbb{N}, p \geq 3 \exists a, b, c, d \in \mathbb{R}^{3}$: Voronoi diagram of a, b, c, d w.r.t. p-norm has unconnected facet

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

Thank you!

Smooth norms

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

plane H
spanned by a, b, c

Conjecture

For every strictly convex and smooth norm and every $a, b, c \in \mathbb{R}^{n}$ non-collinear, $\mathcal{H}_{\|\cdot\|}^{=}(a, b) \cap \mathcal{H}_{\|\cdot\|}^{=}(a, c)$ is homeomorphic to \mathbb{R}^{n-2}.

Thank you!

