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The exercises are divided into three parts. The first part serves as a warm up and applies the material from
the lecture to curves in the plane. The second part considers varieties arising from neural networks. The third
part lists some general open problems related to the concepts discussed in the tutorial.

1 Curves in the plane
The following exercises should be applied to the parabola

X, =V(y—2?)
and the Trott curve

Xo =V (144(z” + y*) — 225(2? + ¢?) + 3502%y> + 81).

1.1 Curvature

Compute the following data for both X; and Xs.
1. The curvature at (1,1),(0,0) € X7 and (1,0) € Xo.
2. Inflection points.
3. Critical curvature points.

4. Evolute.

1.2 Offset
Compute the following data for both X; and Xs.

1. Offset curve.

2. Bottlenecks.

3. Reach

4. Offset polynomial.

5. Offset discriminant and its decomposition.

6. The second fundamental form from the offset polynomial.

1.3 Voronoi cells

Suppose that I = (f1,..., fr) C Q[x1,...,z,] is the ideal of a real variety X = V(I) C R™ of codimension ¢,
assumed real radical and prime. Consider variables u = (uq,...,u,) and

Ni(z) :={(c+1) x (¢+ 1) minors of A),

where A = (z—u Vfi(2)- V(=) is the n x (k4 1) augmented Jacobian.



The Voronoi boundary ideal at y € X is

Vor;(y) = (Cr(y) : (x — 1)) NQ(u),

where
Ci(y) = Ni(z) + Ni(y) + (& — ul|* = [ly — u]?).

1. What is the geometric description of the zero set of Vor;(y)?

2. Compute the Voronoi boundary ideal at (1,1),(0,0) € X; and (1,0) € X5.

2 Varieties from neural networks

In the following we give four examples of varieties (or, more generally, semi-algebraic sets) describing the
neuromanifolds of some neural networks. It would be interesting to study them from the point of view of metric
algebraic geometry. Is it possible to compute critical curvature, ED discriminant, bottlenecks, reach, the offset
polynomial, or Voronoi cells/boundaries (at smooth or singular points) for these varieties? These are open
question, for which we don’t know the answer. The goal of this tutorial session is to find out.

2.1 Threefold in 4-space
Consider the following multilayer perceptron (MLP) R? — R:

< ae( 98

where 0(X) = X* gets applied entrywise. This parametrizes quartic homogeneous polynomials in (z,y):
Azt + Bady + C2y? + Day® + Eyt.
The Zariski closure of the set of all polynomials that can be obtained from the MLP is the hypersurface
2C% —9BCD + 27AD? + 27B*E — T2ACE = 0,

so it is a threefold in a P%. It is singular along the quartic curve that consists of the polynomials with a quadruple
root. For C =1 and A+ B = D + E, the resulting surface is shown in Figure 1.

Figure 1: Slice of the Zariski closure of the neuromanifold of the shallow polynomial MLP in (1).
27xy? + 27y% — 27y%2 + 27222 — 7222 — 22y + 7222 — Yyz +2 =0

2.2 Smooth quadric in 3-space

If we want smooth surfaces, we can change the MLP to be invariant under permutations:

e do ({‘g 2] [“;D where o(X) = X°. )

This parametrizes cubic polynomials Az3 + Bx?y+ Cxy? + Dy>. The Zariski closure of the set of all obtainable
polynomials is the quadric surface

B? —3AC — C?+3BD

in P3. In the affine chart A+ B + C 4+ D = 1, it is shown in Figure 2.



Figure 2: Zariski closure of the neuromanifold of the invariant MLP of degree 3 in (2).

2.3 Smooth surface in 4-space

If you think quadric surfaces are too boring, you can use the invariant MLP in (2), but with o(X) = X*. That
way, we get quartic polynomials in (z,y) as in Section 2.1. The Zariski closure of the set of polynomials that
the MLP parametrizes is now of codimension two in P*, defined by the following equations:

4C? —9BD — 9D? + 24CE =0,
BC —6AD — CD + 6BE =0,
3B% —8AC — 3D? + 8CE = 0.

This has degree three and is smooth. Hence, by projecting from a point, we get a (singular) surface in P? that
we can look at. For instance, after eliminating C, we obtain:

B® —16A°D — B°D — BD? + D* + 16ABE + 16 ADE — 16 BE* = 0.
This is depicted in Figure 3 in the affine chart A+ B+ D+ E =1.

Figure 3: Projection of the Zariski closure of the neuromanifold of the invariant MLP of degree 4.

2.4 Attention is all you need

The self-attention mechanism is the key ingredient of popular transformer architectures (used e.g. in ChatGPT).
A single-layer network of unnormalized self-attention parametrizes cubic functions of the form

dxt d' xt
R - R ,

X—»VXXTKTQX, )
where V € RY >4 and K, Q € R**? are the weight matrices of the network. So the neuromanifold is a semi-
algebraic subset of Symg(R?*!)d *t,

Let us consider the example d = 1 and d = t = a = 2. Then, the neuromanifold is a subset of the 40-
dimensional vector space Symy(R?*2)2. The neuromanifold itself has been shown to be 5-dimensional in [3].
We can see it as a hypersurface in a 6-dimensional ambient space as follows: Writing x; and zo for the two

columns of X € R?*2 and setting A := K ' Q, equation (3) becomes

V- :ci'—Axl + Vo - x;'—Aﬂcl )

(@1, 22) = ( Vay-x] Axg + Vg - 1) Axo W

The term that is quadratic in x5 and linear in xy is Vo - x; Azxy. Note that this term uniquely determines the
function (4). Writing 1 = (211, 117172)T, denoting by «; the linear form that takes the inner product with the
i-th column of A, and setting similarly v(z) := Vz, we can express that term as

Vs 'x;—Axl =211 o1(z2) - v(z2) + 1,2 - as(x2) - v(22).



¢

Figure 4: Slice of the neuromanifold of unnormalized self-attention mechanisms.

This function is uniquely determined by the two products of linear forms (v, azr) € Sym,(R?)2. Note that the
dimension of the latter space is 6, as promised. (It is in fact generally true that neuromanifolds of single-layer
attention networks are linearly isomorphic to Segre varieties on certain linear forms [3, Prop. A.5].)

To summarize, the 5-dimensional neuromanifold can be interpreted as the image of the map

(B)" x (B2)" x (R2)" — Sym, (RY)? = B,
(a1, a9,v) = (11, agr).

This semi-algebraic set is not Zariski closed and it has singularities. A generic slice is shown in Figure 4.

3 Open Problems

In addition, to the very challenging computational tasks from Section 2 (each of them being an open problem
on neuromanifolds in general), we list some open problems in metric algebraic geometry:

1. Prove that regions of high curvature on a variety M C R”™ are more likely critical points of Euclidean
distance minimization between a given point in R™ and M than flat regions of M that have comparable
size.

2. Generalize the correspondence between critical curvature points on a plane curve and cusps of its evolute
to higher-dimensional varieties.

3. What is the maximal number of real critical curvature points on plane curve of degree d?

4. Find formulas / bounds for the volume of e-tubes around singular varieties or more generally semialgebraic
sets. The most general known result so far is due to S. Basu and A. Lerario [1], while improved bounds
in several specialized settings are proven by Y. Zhang and J. Kileel in [4]. Still, we do not have exact
formulas for e-tubes around neuromanifolds in terms of the network architecture!

5. Prove that for € < reach(X), the real locus of Off x . is the boundary of Tube(X,¢). This would consid-
erably strengthen the observation in [2, Remark 7.13].

6. What is the dimension of the Voronoi cell at a singularity in terms of the singularity type?
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