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This tutorial is based on Chapters 6, 7 & 8 of the textbook Metric Algebraic Geometry by P. Breiding,
K. Kohn, B. Sturmfels (Oberwolfach Seminars, Birkhäuser 2024). Many results in those chapters are
due to other excellent mathematicians (see the book for references). Also several of the figures in the
following slides were created by others (M. Brandt, G. Marchetti, V. Shahverdi, M. Weinstein).
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Teaser – Training Neural Networks
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A Shallow Neural Network

µ :

[
x
y

]
7−→

[
e f

]
σ

([
a b
c d

] [
x
y

])
• the activation function σ(X) = X4 gets applied entrywise
• a, b, . . . , f are the learnable parameters

This parametrizes quartic homogeneous
polynomials in (x, y):

Ax4 +Bx3y + Cx2y2 +Dxy3 + Ey4.

The Zariski closure of the set of all
parametrized polynomials is a 3-fold in P4:

2C3 − 9BCD + 27AD2 + 27B2E − 72ACE = 0. Figure: C = 1, A+B = D + E
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Neuromanifold & Network Training

(a, b, . . . , f) 7−→ µ(x, y) =
[
e f

]
σ

([
a b
c d

] [
x
y

])
∈ Sym4(R2)

The image of this map is a proper semi-algebraic set, called the neuromanifold M of
the network (although it has singularities!)

Let’s train the network by minimizing the mean squared error loss for given training
data D = {(x1, y1, z1), . . . , (x1, y1, zd)}:

arg min
µ∈M

d∑
i=1

(zi − µ(xi, yi))
2
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Distance Minimization on Neuromanifold

Proposition:

arg min
µ∈M

d∑
i=1

(zi − µ(xi, yi))
2 = arg min

µ∈M
(µ− u)⊤Q(µ− u), where

Q := V ⊤V, u := V +z,

V :=


x41 x31y1 x21y

2
1 x1y

3
1 y41

x42 x32y2 x22y
2
2 x2y

3
2 y42

...
x4d x3dyd x2dy

2
d xdy

3
d y4d


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Curvature & Volumes of Tubes
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Plane Curves & Curvature

• Let C = {f(x1, x2) = 0} ⊂ R2,
∇f(x) ̸= 0 on C.

• Unit normal and tangent fields:

N(x) =
∇f(x)

∥∇f(x)∥
, T (x) = (N2(x), −N1(x)).

• Signed curvature

c(x) =
〈
T, T1 ∂x1N+T2 ∂x2N

〉
=

T T H T

∥∇f∥
,

where H is the Hessian of f .
T(x)

N(x) Ṅ(x)

Regions of high curvature are often critical points of distance minimization!
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Evolute, Inflections & Critical Curvature

• Radius of curvature r(x) = 1/c(x),
center of curvature

Γ(x) = x− r(x)N(x).

• The evolute / ED discriminant E is
the Zariski-closure of all centers Γ(x).

• Special points on C:

Inflection point:

c(x) = 0 ⇔ Γ(x) at infinity.

Critical curvature:

∇c(x) ⊥ T (x) ⇔ cusp on E.

On the ED discriminant, critical points of Euclidean distance collide.
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Counting Inflection & Critical Points

• Homogenize f → F (x0, x1, x2). Let H0 be its 3× 3 Hessian.
• Curvature formula

c(x) =
−detH0

(d− 1)2 (f2
1 + f2

2 )
3/2

∣∣∣
x0=1

,

where d = deg f and fi =
∂f
∂xi

.
• Inflection points: f = detH0 = 0.

By Bézout: #C = 3d(d− 2),

By Klein: #R ≤ d(d− 2).
• Critical curvature:

#C = 2d(3d− 5).

• Example (Trott curve, d = 4): 8 real
inflections, 24 real critical points.
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Curvature of Higher-Dimensional Varieties

• Let X ⊂ Rn be cut out by f1, . . . , fk, Jacobian J = (∇f1(x)··· ∇fk(x) ).
• A normal vector v = J w ̸= 0, unit normal N = v/∥v∥. Tangent t ∈ TxX.
• Curvature in direction (t, v):

c(x, t, v) =
1

∥v∥
tT
( k∑
i=1

wiHi

)
t.

• This quadratic form on TxX is the second fundamental form IIv.
• Its self-adjoint linear map is the Weingarten map Lv.

Eigenvalues = principal curvatures.
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Volumes of Tubular Neighborhoods

Tube of radius ε:

Tube(X, ε) = {u ∈ Rn | minx∈X ∥x− u∥ < ε}.

For X a neuromanifold, the volume of the tube
measures the expressivity of the neural network!

Let X ⊂ Rn be smooth and compact.

• The reach of X is the supremum over all ε > 0 such that the exponential map

φε : NεX = {(x, v) | x ∈ X, v ⊥ TxX, ∥v∥ < ε} → Tube(X, ε), (x, v) 7→ x+ v

is a diffeomorphism.

• For ε < the reach of X: Weyl’s tube formula:

vol
(
Tube(X, ε)

)
=

∑
0≤2i≤m

κ2i(X) εn−m+2i, m = dim(X),

where κ2i are integrals of the 2i-minors of the Weingarten map Lw.
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Medial Axis & Offset
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Medial Axis

The medial axis Med(X) ⊂ Rn is the set of points
having at least two distinct closest points on X.

If X is semialgebraic then so is Med(X).

Proposition:

dist
(
X,Med(X)

)
= reach(X).

Hence points within distance < reach(X) from X
have a unique nearest point on X.
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Bottlenecks, Curvature, and Reach

• A bottleneck is a pair {x, y} ⊂ X, x ̸= y, for
which x− y is normal to both TxX and TyX.

• Its width is b(x, y) = 1
2∥x− y∥.

B(X) = min
bottlenecks

b(x, y).

• The maximal curvature of X is

C(X) = max
x∈X

max
i

|ci(x)|,

where ci(x) are principal curvatures at x.

Trott curve
bottlenecks

Theorem: For X smooth,

reach(X) = min{B(X), 1/C(X)}.
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Offset Hypersurfaces & Offset Polynomial

• Let X ⊂ Rn be irreducible. Its ED correspondence is

EX = {(x, u) | x ∈ X, u− x ⊥ TxX} ⊂ X × Cn.

• Offset correspondence:

OCX = {(x, u, ε) ∈ EX × C | ∥u− x∥2 = ε2}.

• The closure of its projection to (u, ε) is the offset hypersurface

OffX ⊂ Cn × C, codim = 1.

• Hence there is a defining offset polynomial

gX(u, ε) = 0.
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Offset Hypersurface of the Parabola
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Offset Discriminant & its Decomposition

Define the offset discriminant δX(u) = Discε
(
gX(u, ε)

)
and

∆Off
X = V (δX) ⊂ Cn.

• A point u lies in ∆Off
X iff

▶ it has a multiple critical value
(u ∈ ΣX , the ED discriminant),

▶ or two distinct critical points lie at
equal distance (the bisector
hypersurface BisX).

• Theorem (Horobeţ–Weinstein): Write
MX := Med(X). Then

∆Off
X = BisX ∪ ΣX ⊇ X∪MX ∪ΣX .
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Computing Normals & Curvature from the Offset Polynomial

• For u ̸∈ ∆Off
X , let ε(u) be a local real root of gX(u, ε) = 0. Suppose that x ∈ X is

the critical point corresponding to (u, ε). By implicit differentiation,

∇u ε(u) = −
(
∂gX
∂ε

)−1
∂gX
∂u ,

which is a unit normal vector at x on X.

• Differentiating ∇u ε(u) in direction t ∈ TxX gives the second fundamental form
evaluated at t. This means:

IIu−x(t) = lim
s→0
s>0

t⊤
(
∂2ε

∂u2
(x+ s(u− x), sε)

)
t.

• Conclusion: from gX one extracts both the normal field and all principal
curvatures of X.
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example: parabola

For X = V (x2 − x21), we find dε
du(u, ε) =

1
p(h1, h2), where

example:

• for u = (0, 14) and ε = 1
4 , this computes the unit normal (0, 1) at x = (0, 0)

• the Hessian matrix of ε(u) is a large expression

• evaluated at (su, sε) = (0, s4 ,
s
4) and letting s → 0 yields A =

[
−2 0
0 0

]
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Voronoi Cells
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Voronoi Cells

Definition: Let X ⊂ Rn and fix y ∈ X. The Voronoi cell of y is

VorX(y) = {u ∈ Rn | y ∈ argmin
x∈X

∥u− x∥}.

The union of the boundaries of the
Voronoi cells is the medial axis.

Proposition: X ⊂ Rn algebraic
variety, y ∈ X is smooth. Then
VorX(y) is a full-dimensional,
convex, semialgebraic subset of
the affine normal space

NX(y) = y +NyX

= {u | u− y ⊥ TyX}.
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Voronoi Cells & Singularities

at a smooth point of a space curve the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the closest
with positive probability! (medial axis)

Singularities of neuromanifolds can cause implicit biases.
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Voronoi Cells & ED discriminant

The number or type of critical points change when crossing the medial axis or the
ED discriminant.
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An Overview

Curvature

Reach Volume(tube)

ED discriminant

Offset hypersurfaces

Medial axisVoronoi cells
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Open Problems

Many theoretical and computational questions remain!
Check out our accompanying exercises. :)
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