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Guido Montúfar Vahid Shahverdi Matthew Trager
UCLA, MPI MiS Leipzig KTH Amazon



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities
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training a network

Given training data D, the goal is to minimize the loss

RN µ−→M `D−→ R.

D •

M

Geometric questions:

How does the network
architecture affect the geometry
of the function space?

How does the geometry of the
function space impact the
training of the network?
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understanding networks via algebraic optimization

For piecewise algebraic activation, the neuromanifold is a semi-algebraic set
(defined by polynomial equalities and inequalities).

Examples:

activation loss

identity squared-error loss = Euclidean dist

ReLU Wasserstein distance = polyhedral dist.

polynomial cross-entropy ∼= KL divergence

If the loss is also algebraic (or has at least algebraic derivatives), network
training is an algebraic optimization problem.
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baby example: linear dense networks

In this example:

µ : R2×4 × R3×2 −→ R3×4,

(W1,W2) 7−→W2W1.

M = {W ∈ R3×4 | rank(W ) ≤ 2}

In general:

µ : Rk1×k0 × Rk2×k1 × . . .× RkL×kL−1 −→ RkL×k0 ,

(W1,W2, . . . ,WL) 7−→WL · · ·W2W1.

M = {W ∈ RkL×k0 | rank(W ) ≤ min(k0, . . . , kL)} is an algebraic variety and
we know its singularities etc.
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example: attention networks

Henry,
Marchetti, K.:
ICLR 2025

A single-layer lightning self-attention network with weights Q,K ∈ Ra×d and
V ∈ Rd ′×d is

Rd×t −→ Rd ′×t ,

X 7−→ VX X>K>QX .

A slice of the 5-dimensional
neuromanifold M for
a = d = t = 2, d ′ = 1.

It is singular along the orange
curve, and has boundary
points where the curve
leaves/enters M.

It is not a variety, but a
semialgebraic set.
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a dictionary

machine learning algebraic geometry

sample complexity & expressivity dimension, degree, covering number

subnetworks & implicit bias singularities

identifiability & hidden symmetries fibers of the parametrization

optimization & gradient descent critical point theory, discriminants,
dynamical invariants
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dimension, degree, covering number
The dimension of the neuromanifold M measures how many functions can
be exactly expressed by the network.

The degree of an algebraic variety is the number of intersections (over C)
with a generic linear space (of the correct dimension).

It measures how curvy/twisted the variety is.
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dimension, degree, covering number

covering number Nε(M) = minimum number of metric balls of radius ε
required to cover M

logNε(M) = O
(

dim(M) · log
degree(M)

ε
+ C

)
(cf. Weyl’s Tube Formula)
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dimension, degree, covering number

covering number Nε(M) = minimum number of metric balls
of radius ε required to cover M

relation to sample complexity:
the number of data samples required to infer the function that best
approximates the distribution of data (with high probability, and within a
given generalization loss margin ε) scales logarithmically in Nε(M).

relation to approximative expressivity:

the volume of the ε-tube aroundM measures how many
functions can be approximated within an error of ε.

it is ≤ Nε(M) · vol(ball of radius 2ε)
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dimension, degree, covering number

Takeaway

Dimension and degree are the most fundamental invariants of an
algebraic neuromanifold.

They control metric quantities such as covering numbers,
which in turn measure approximate expressivity and sample complexity.
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singularities

Singularities of a variety are points where the variety
does not look locally like a smooth manifold.

Conjecture: The singularities of neuromanifolds correspond to subnetworks.
(known for convolutional & fully-connected networks with polynomial activation)

Potential explanation for lottery ticket hypothesis: the tendency of deep
networks to discard weights during learning.
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singularities

A singularity might, depending on its type, attract a large portion of the
ambient space during training – explaining implicit bias.

This is captured by the Voronoi cell of the singularity:
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voronoi cells

Given a set M⊆ Rn, the Voronoi cell of x ∈M consists of all u ∈ Rn such
that x is “closest” among all points in M.

M might be finite

or a manifold, variety, semi-algebraic set, etc.
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singularities

A singularity might, depending on its type, attract a large portion of the
ambient space during training – explaining implicit bias.

This is captured by the Voronoi cell of the singularity:

M ⊆ R2 is the purple curve

loss = Euclidean distance

at all smooth points x ∈M, the Voronoi cell is a
line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the closest with
positive probability
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singularities

Takeaway

Singularities of the neuromanifold can introduce implicit biases in the
learning process.

They often correspond to subnetworks, favoring the selection of simpler
models.

15 / 27



fibers of the parametrization

Recall: The neuromanifold is the image of parametrization map

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ.

Identifiability / hidden symmetries:
Which network parameters give rise to the same function?

In algebraic geometry terms:
Given f ∈M, which parameters θ are in the fiber µ−1(f )?

fiber-dimension theorem:
The dimension of the image of an algebraic map equals the co-dimension of
its generic fiber. (nonlinear version of rank-nullity theorem)
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fibers of the parametrization

Recall: The neuromanifold is the image of parametrization map

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ.

More generally: All geometric features of the neuromanifold are caused by µ.

For instance, singularities on M can arise in 2 ways:

from critical points of µ

from special (i.e., non-generic) fibers of µ

17 / 27



fibers of the parametrization

Recall: The neuromanifold is the image of parametrization map

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ.

More generally: All geometric features of the neuromanifold are caused by µ.

For instance, singularities on M can arise in 2 ways:

from critical points of µ

from special (i.e., non-generic) fibers of µ

17 / 27



example: polynomial convolutional networks
We now consider convolutional networks

where the activation function is a monomial: σ(x) = x r .

Weierstrass Approximation Theorem:
Any activation function can be approximated by polynomial ones.
Any CNN neuromanifold can be approximated by polynomial ones.
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example: polynomial convolutional networks
σ(x) = x r

Shahverdi, Marchetti, K.:
AISTATS 2025

Theorem: Let r > 1.
The neuromanifold is an algebraic variety (i.e., described by polynomial
equations) and closed in Euclidean topology.

For a generic function f ∈M, the only symmetries in the fiber µ−1(f ) are
rescalings of the layers.

After modding out the layer scaling, the network parametrization map
becomes

an isomorphism almost everywhere
that has finite fibers (⇔ singularities)

and is regular (constant-rank Jacobian)

The singularities correspond
to subnetworks.
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comparison: lightning self-attention

Henry,
Marchetti, K.:
ICLR 2025

A single-layer lightning self-attention network with weights Q,K ∈ Ra×d and
V ∈ Rd ′×d is

Rd×t −→ Rd ′×t ,

X 7−→ VX X>K>QX .

The neuromanifold is
semialgebraic but not a variety
(polynomial inequalities
needed!)

It has both nodal and cuspidal
singularities.
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comparison: lightning self-attention

VXX>K>QX

Henry,
Marchetti, K.:
ICLR 2025

cusps
⇔ boundary points
⇔ Jacobian rank drops

Theorem: For generic f ∈M,
the only symmetries in the fiber
µ−1(f ) are the “obvious” ones:

layer rescalings

GL(a)-symmetries of K and
Q in each layer

GL(d)-symmetries of V and
K>Q of neighboring layers
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fibers of the parametrization

Takeaway

Fibers of the parameterization control the dimension and symmetries of
the neuromanifold.

Together with the parameterization’s critical points, they explain the
singularities of the neuromanifold.
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critical point theory & discriminants
Goal: minimize the loss

LD : RN µ−→M `D−→ R.

Critical points of LD arise in various ways:

1. they can be caused by the parametrization µ
(i.e., θ ∈ Crit(µ) such that θ ∈ Crit(LD) but µ(θ) /∈ Crit(`D))
spurios critical points

e.g. appear as local minima in polynomial MLPs with positive probability
but not in polynomial CNNs

2. they correspond to critical points of the loss in function space
(i.e., θ ∈ Crit(LD) and µ(θ) ∈ Crit(`D))
the function µ(θ) can be either a

a) singular point on M or
b) in the smooth locus of M Morse theory
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Morse theory
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critical point theory & discriminants
for algebraic optimization problems (e.g. mean squared error or cross entropy
loss), the number of complex critical points of LD is constant for generic D

 measures intrinsic optimization degree

over R, the number or type (local / global minima, strict / non-strict saddle,
etc.) of the critical points changes when D crosses an algebraic discriminant
hypersurface

over C: always 4
critical points

over R: 4 or 2 critical
points

discriminant = dashed
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critical point theory, discriminants,

dynamical invariants

Takeaway

The critical points of the loss arise from the geometry of the
neuromanifold and its parametrization.

Their number and type can change suddenly as data crosses
discriminants.

Moreover, algebraic invariants of gradient flow govern the training
dynamics...
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many future questions
Describe all singularities of attention neuromanifolds explicitly, and
compute their Voronoi cells. ( implicit bias?)

Compare the type of critical points and more generally the loss
landscape of

attention networks
polynomial convolutional networks
polynomial dense networks

How do skip connections and inhomogeneous activations regularize
µ (i.e., less spurious critical points) and smoothen out singularities?

What happens to the neuromanifold when imposing group
equivariance?

What about ReLU networks, or more generally piecewise rational
activation?

Beyond algebraic geometry: tame geometry of o-minimal structures
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thanks for your attention!
machine learning algebraic geometry

sample complexity & expressivity dimension, degree, covering number

subnetworks & implicit bias singularities

identifiability & hidden symmetries fibers of the parametrization

optimization & gradient descent critical point theory, discriminants,
dynamical invariants
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Neuroalgebraic Geometry NTK approach

algebraic NNs

target NN

polynomial
approximation

target NN

∞-width NN

increase
width

studies nonlinear models studies linearized models
in finite-dimensional ambient space in ∞-dimensional ambient space

aims to draw conclusions aims to draw conclusions
in the limit from the limit
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University of Rome

emphasis:
presentations by young
researchers

August 19-21

Axel Flinth (Ume̊a Univ), Jan E. Gerken (Chalmers), Kathlén Kohn (KTH),
Giovanni Marchetti (KTH), Stefano Mereta (KTH), Fredrik Ohlsson (Ume̊a Univ)


