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Linear algebra

All undergraduate students learn about Gaussian elimination, a general
method for solving linear systems of algebraic equations:

Inpute X+2y+3z=5
x4+ 1ly + 13z =17
19x 4+ 23y + 29z = 31
Output: %= £35/18
y=2/9
7=:13/6

Solving very large linear systems is central to applied mathematics.



Non-linear algebra

Lucky students also learn about Grobner bases, a general method for non-linear
systems of algebraic equations:

Input: X2 ry2472=2
Xty +22=3
*t+yt+zt=4



Non-linear algebra

Lucky students also learn about Grobner bases, a general method for non-linear
systems of algebraic equations:
Input: X2 ry2472=2

*oHyE L =g

Ayttt =4
Output: 372 910 a0> | 1D oot 660" 1oMm oz~ 0

4yF + (36211 54210 695° — o578 EngiRalt 57350 ) >

— 1228 00> = 1Dz 230yl £ 367 N1 48T = RRS
—234z° _1922F Thp42° — 4827 1 962" - 062"+ 102 ™EEET(

4y 1 367 54 0E 6077 DR DTG
LB73 S0 128 90,3 10743 =10

This is very hard for large systems, but . ..



The world is non-linear!

Many models in the sciences and engineering are characterized by polynomial
equations. Such a set is an algebraic variety X C R".

computer vision

algebraic statistics

.
.
& machine learning
& optimization

.
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Computer Vision



Structure from Motion

Reconstruct 3D scenes and camera poses from 2D images

Rome in a Day: S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, S. Seitz, R. Szeliski



Reconstruct 3D scenes and camera poses
from 2D images

o Step 1: Identify common points and lines on given images

o Step 2: Reconstruct coordinates of 3D points and lines
as well as camera poses



Reconstruct 3D scenes and camera poses
from 2D images

o Step 1: Identify common points and lines on given images

o Step 2: Reconstruct coordinates of 3D points and lines
as well as camera poses

= This is an algebraic problem!
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A camera is a 3 x 4 matrix C which takes pictures of points in projective
3-space via

P2

RGP
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& Each camera matrix C is a point in P!
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7~ What is a camera? =~

A camera is a 3 x 4 matrix C which takes pictures of points in projective
3-space via

P2
RGP
& Each camera matrix C is a point in P!

& There can be restrictions on the camera matrix C, e.g. by assuming that
the focal length of the camera is known.



7-point problem

Given 2 images of 7 points,
can we recover the 7 points in 3D and the 2 cameras?




7-point problem

Given 2 images of 7 points,
can we recover the 7 points in 3D and the 2 cameras?
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Formally, we study the joint camera map
R i D e ARt
(Pl, bess P7, Cl, C2) e (C1P1, g C1P7, C2P1, AR C2P7) 3



7-point problem

Given 2 images of 7 points,
can we recover the 7 points in 3D and the 2 cameras?
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Formally, we study the joint camera map
R i D e ARt
(Pl, bess P7, Cl, C2) e (C1P1, g C1P7, C2P1, AR C2P7) 3

and given a point in its image x € (P2)14 we ask for its fiber ®~1(x).



7-point problem
The projective linear group PGL(4) acts on the fibers ®~1(x) via
g (Pu.n BEGEECHE P o cPy Cig ") CieT!)"

Practically, this means that we can only hope to recover points and cameras
up to projective transformations.

joint camera map:

SEA(P x (PP i (P2



7-point problem
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up to projective transformations.
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7-point problem
The projective linear group PGL(4) acts on the fibers ®~1(x) via
g (Pu.n BEGEECHE P o cPy Cig ") CieT!)"

Practically, this means that we can only hope to recover points and cameras
up to projective transformations.

& we can adapt the joint camera map:

o: (B x (P1)%) /PGLEY) --» ()Y
dimension: 3-7+11-2—-15 — 28— 40 -4

o its fibers are generically finite!



7-point problem
The projective linear group PGL(4) acts on the fibers ®~1(x) via
g (Pu.n BEGEECHE P o cPy Cig ") CieT!)"

Practically, this means that we can only hope to recover points and cameras
up to projective transformations.

& we can adapt the joint camera map:

o: (B x (P1)%) /PGLEY) --» ()Y
dimension: 3-7+11-2—-15 — 28— 40 -4

o its fibers are generically finite!
in fact, over C, there are generically 3 solutions to the 7-point problem

o solving naively: 28 quadratic equations in 28 unknowns



A more complicated finite problem

Incidences are modeled by flag varieties: F := {(P,L) € P x Gr(1,PX) | P € L}
joint camera map:

¢ (Gr(LP) x (73)* x (B)) /PGL(4) - Gr(1,P*)° x ()"



Algebraic Statistics



Reconstruct probability distributions from moments

Central question:
Let {up | @ € ©} be a family of probability distributions on RY. Can we
recover a distribution in the family if we know enough of its moments?

i i i . :
Mo 0, e e /]Rd Wy Wt s ew i dpg for iy b, ..., id € Zxo



Reconstruct probability distributions from moments
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Example:
Let © = {(a, b) € R? | a2 < b} be the space of line segments in R.
Let f1(,,5) be the uniform probability distributions on the line segment (a, b).



Reconstruct probability distributions from moments
Central question:

Let {up | @ € ©} be a family of probability distributions on RY. Can we
recover a distribution in the family if we know enough of its moments?

i i i . :
Mo 0, e e /]Rd Wy Wt s ew i dpg for iy b, ..., id € Zxo

Example:

Let © = {(a, b) € R? | a2 < b} be the space of line segments in R.
Let f1(,,5) be the uniform probability distributions on the line segment (a, b).
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Reconstruct probability distributions from moments
Central question:

Let {up | @ € ©} be a family of probability distributions on RY. Can we
recover a distribution in the family if we know enough of its moments?

I I I i & c
Mo 0, e e /]Rd Wy Wt s ew i dpg for iy b, ..., id € Zxo

Example:
Let © = {(a, b) € R? | a2 < b} be the space of line segments in R.
Let f1(,,5) be the uniform probability distributions on the line segment (a, b).

1 b : il bi+1 ol ai+1
= m;(p(a7b)) = / w' dw = -
a

b—a i+1 b—a

= (a’.—i—a"*lb—i—a’.72b2+...+b")
i+1

The first two moments my, m, yield two solutions (a, b),

but only one with a < b.



Example: line segments

The moments my, my, ..., m, of a line segment (a, b) are not algebraically
independent! The lie on a surface in R".

o for r = 3, the surface is defined by 2m3 — 3mymy + m3 =0



Example: line segments

The moments my, my, ..., m, of a line segment (a, b) are not algebraically
independent! The lie on a surface in R".

o for r = 3, the surface is defined by 2m3 — 3mymy + m3 =0

& it contains the corresponding to degenerate line
segments (a, a) of length 0



Example: line segments

The moments my, my, ..., m, of a line segment (a, b) are not algebraically
independent! The lie on a surface in R".

Practical meaning:
If the given moments have noise, we cannot recover the line segment!
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The moments my, my, ..., m, of a line segment (a, b) are not algebraically
independent! The lie on a surface in R".

Practical meaning:

If the given moments have noise, we cannot recover the line segment!
We first need to denoise the moments, i.e. find a closest point on the
moment surface.



Example: line segments

The moments my, my, ..., m, of a line segment (a, b) are not algebraically
independent! The lie on a surface in R".

Practical meaning:

If the given moments have noise, we cannot recover the line segment!
We first need to denoise the moments, i.e. find a closest point on the
moment surface.

= We need to understand the moment surface, i.e. the algebraic
dependencies among the moments.



Example: line segments

The moment surface in R" of the first r moments my, my, ..., m,

o has degree (5)

o and its prime ideal is generated by the 3 x 3 minors of

0 1 2m1 3m2
1 2m1 3m2 4m3
2my 3my 4msz 5my

¢ These cubics form a Grobner basis.

4mz --- (r—1)m,_
5my - - rm, 1
6ms - HAr+1)m,



Intermezzo: Optimization
finding a closest point on an algebraic variety



Euclidean distance degree

The ED degree of an algebraic variety X C R” is the number of critical
points (over C) of the Euclidean distance

X — R,
X — ||x — u||2

between a generic point u € R” and the variety X.

EDdeg(ellipse) = 4 EDdeg(circle) =2




back to
Algebraic Statistics



Reconstruct probability distributions from moments

Central question:
Let {up | @ € ©} be a family of probability distributions on RY. Can we
recover a distribution in the family if we know enough of its moments?

Similarities to reconstruction in computer vision:
Instead of the joint camera map, we study the moment map

¢:0 — RZ,
e e (T

where Z C Zx> is a finite index set, and ask for its fibers.



Reconstruct probability distributions from moments
Central question:

Let {up | @ € ©} be a family of probability distributions on RY. Can we
recover a distribution in the family if we know enough of its moments?

Similarities to reconstruction in computer vision:
Instead of the joint camera map, we study the moment map
¢:0 — R,
e e (T

where Z C Zx> is a finite index set, and ask for its fibers.

Typical settings in practice:
1. the fibers of ® are generically finite and non-empty
—> can solve reconstruction problem for any generic input
2. im(®) lies in a proper subvariety
— need to denoise input before reconstructing



Example: quadrilaterals

Let:® = I C Relle (]R2)4 be the space of quadrilaterals in R2.
Let ug be the uniform probability distribution on the quadrilateral [J.



Example: quadrilaterals

Let:® = I C Relle (]R2)4 be the space of quadrilaterals in R2.
Let ug be the uniform probability distribution on the quadrilateral [J.

Let Z be as shown on the right.

The fibers of ® : © — R® are generically finite,
of cardinality 80 over C.




Example: quadrilaterals

Let:® = I C Relle (]R2)4 be the space of quadrilaterals in R2.
Let ug be the uniform probability distribution on the quadrilateral [J.

Let Z be as shown on the right. A

The fibers of ® : © — R® are generically finite, <l

of cardinality 80 over C.

The dihedral group of order 8 acts on each fiber. WA

~ Each fiber consists of 10 “quadrilaterals”. EERET 7 T




Example: quadrilaterals

o
2o
% 3 :
& 3
N
//,/‘ = /
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< // ‘\\ /
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Example: quadrilaterals

Let © = {Hlc REL e (R2)4 be the space of quadrilaterals in R2.
Let ug be the uniform probability distribution on the quadrilateral OJ.

Let Z be as shown on the right.

The Zariski closure of the image of ® : © — R°
is a hypersurface.

We can compute it using the invariant ring

of the affine group Aff(R?).



Example: quadrilaterals

Let © = {Hlc REL e (R2)4 be the space of quadrilaterals in R2.
Let ug be the uniform probability distribution on the quadrilateral OJ.

Let Z be as shown on the right.

The Zariski closure of the image of ® : © — R°
is a hypersurface.

We can compute it using the invariant ring

of the affine group Aff(R?).

The moment hypersurface has degree 18.
Its defining polynomial has 5100 terms.



Example: quadrilaterals

6 12 3 2 12 2 4 12 5 11 4 11 2 2 1 2 3 on
2125764m02 16 - 1574640M08*N02 O3 M1e  + 291606M00 MO3 M1e - mie mi1+ mo3*mie mil + m03 mle mll - 3499208m60 ME2%M03 M10 M1l +
2 4 10 2 5 10 2 3 0 2 2 2 10 2 2 2 2 10 2 2 3 10 2
127545846m01 Mo2 M10 M1l + nie m11 - mO3*nle nll - 18895686M00*MO1 MO2+MO3 M10 M1l + 7523280m00 ME2 MO3 M10 M1l + 6998400MO0 MO1¥ME3 M0 M1l -

3 5 3 4 9 3 2 2 5 3 2 3 5 3 3 2 9 3 2 2 9 3
340122246m01 mo2 16 M1l - nie i1 + MO2 MO3*N10 M1l + 30443046M60 MO2 MO3*N1 M1l + 12597126mG0*NO1 MO3 M10 Ml - 30093126M00 MO1*MO2%MO3 M6 mil -
3 3 9 3 4 2 8 a 2 3 8 4 2 a4 8 a 3 s a4 2 2 s 4

4665600m00 N3 M10 M11 + 510183366m01 M2 M1O M1l + 321226566MG0*NO1 MO2 M16 M1l + 8503056m00 M2 M10 M1l - m1 - ne1%n02 mo3*nie mil +

2 2 2 8 a4 3 2 8 a s 7 s 3 2 7 s 2 3 7 s a7 s
30093120n00 MO1 O3 M1 MI1 + 27643680n00 MO2*M03 M10 M1l - no2*n1e mi1 - m02 16 M1l - 68024448m00 MO1*MO2 M1O M1l + 151165440MOO*MO1 MO3*N16 M1l +

6 6 6 a 6 6 2 2 2 6 6
n1o mi1 + no2*n1e mi1 + o1 no2 mio mi1 +

EE 2 3 5 6 4 2 6 6 5 5 7 2 3 s 7
186624n00 m02 M10 M1l - 243544320M00 MO1 ME3*M10 M1l - m1 s O3 M10 M1l - 256981248mM0O*NO1 M10 M1l - 272097792m00 NO1 MO2*M10 mil -

3 2 s 7 e 5 7 a 5 7 2 a4 a 8 3 2 a s 4 2 a s
1119744760 M01*M62 M10 M1l + 103576320m00 M1 MO3*M10 Ml - 518400m00 MO2*M03*M10 M1 + 136048896M60 MO1 M10 M1l + 2239488M00 MO1 MO2*M10 M1l - 2985984M MO2 M10 mil +

4 a s 3 03 3 9 a 3 s 5 3 09 4 2 2 10 5 2 10 B 1
103680000 M01*¥ME3*N10 M11 - 149299260 MO1 M10 M1l + 11943936M00 MO1¥MO2*N10 M1l - 4423680M00 MO3*m10 M1l - 11943936M6 MO1 M10 M1l - 663552m00 MO2*N10 M1l  + 1327104m00 MO1*n10¥m11

5 1 3 1 2 2 2 1 2 3 1 4 10 2 2 10
nio mi2 + MO3*n16 n12 + 3499200m00 M2 MO3 M10 M12 - 3499200m00 MO1*M03 M10 mI2 + 661 nio mi1*n12 - o2 n3*n10 mi1*m12 -

2 3 10 2 2 10 3 3 10 2 3 9 2 2 a4 9 2
39443040M00 MO2 MO3*N10 M11¥MI12 + 17496000M00 MO1¥ME2*M03 M10 MI1*M12 + 3499200MG0 MO3 M10 M11*M12 - 151165440M00*MO1 MO2 M1O M1l M12 - 22517352m00 M62 M10 Mi1 M12 +

3 5 2 2 2 9 2 2 2 2 9 2 3 2 9 2 3 2 8 3
11 i1 mi2 + 1 MO1¥M62 MO3*m10 M1l m12 - 4898880060 MO1 MO3 M0 M1l M12 - 19245600M00 MO2*MO3 M10 M1l MI2 + 75582720M06*MO1 M2 M10 M1l m12 +

2 3 08 3 a s 3 s 3 3 2 s 3 3 2 8 3
88809696m00 MO1*M02 M10 M11 M12 - 75582726M00*MO1 MO3*m10 M1l m12 - o1 i1 m12 - 02 MO3*N10 M1l M12 + 80481600m00 MO1*n03 M10 M1l m12 +

3 7 a4 4 2 1 4
i1 m2 - m03 m1e m11 m12 -

a 7 a4 2 2 2 7 4 3 03 7 4 2 3 7 a4
151165446M00*n01 MO2*M16 M11 M12 + 7558272n00 MO1 M2 M10 mi1 m12 - S3BB768MOO M2 M1O M1l MI2 + 62985600M00 MO1 MO3*M10 M1l m12 +

5 6 5 2 3 5 5 3 2 6 5 3 2 6 5 4 6 s 2 4 5 6
151165446m00*n01 n10 M1 m12 - 375394176m00 MO1 MO2*M10 M1l M12 - 45349632M00 MO1+MO2 M6 M1l M12 + 186375686MG0 MO1 MO3ME M1l 12 - 4043520M06 MO2*MO3*N10 M1l m12 + 370355328m00 MO1 M16 Mil M2 +

3 2 5 6 4 2 5 6 a 5 6 3 03 a4 7 4 4 7 5 a7
246063744n00 MO1 MO2*M10 M1l m12 + 13281408m00 MO2 M10 M1l M12 - i1 n12 - mo1 mie mil mi2 - i1 m2 + mo3*nie mil mi2 +

4 2 3 8 5 3 8 5 2 9 6 10 2 3 10 2 2 4 10 2
5001523200 MO1 m10 M1l m12 + 3981312m00 MO2*M10 M1l m12 + S308416mO0 MO1*m10 mil MI2 - 663552100 MIO*m1l m12 - 14171760M0G*MOL M2 M10 m12 + 17557236m00 mO2 M1 m12 -

2 2 10 2 2 2 2 10 2 3 2 10 2 3 2 9 2 2 3 9 2
20995200m00 ME1*MO2 ME3*M10 12 + 15746400m00 M1 MO3 m10 M2 - 2624400M00 MO2*M3 M10 m12 + B5030560MO0*MO1 MO2 M10 MIl*m12 - 49128768mO0 MO1*MO2 m1e mil*mi2 -

2 2 s 2 3 2 9 2 3 2 9 2 4 8 2 2 2 2 2 8 2 2
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Find distribution best explaining data

Central question:
o Let {1y | 0 € ©} be a family of probability distributions.
¢ Let Y =(Y1,...,Ys) be n samples of observed data.
Can we find a distribution in the family that best fits the empirical data Y7



Find distribution best explaining data

Central question:
o Let {1y | 0 € ©} be a family of probability distributions.
¢ Let Y =(Y1,...,Ys) be n samples of observed data.
Can we find a distribution in the family that best fits the empirical data Y7

Approach: maximize the likelihood function

Ly(@) o= [Lg(yl) G o -,ug(Y,,), where 6 € ©. n

A maximum likelihood estimate (MLE) is a distribution in the family
that maximizes the likelihood Ly .



Example: (conditional) independence

Consider two random variables X and Y having m and n states.
Their joint probability distribution is an m x n matrix

P11 P12 - Pin

P21 P2 i Don ; ;
[P = ] : ; ; whose entries are non-negative and sum to 1.

Pmi Pm2 :*°° Pmn



Example: (conditional) independence

Consider two random variables X and Y having m and n states.
Their joint probability distribution is an m x n matrix

pi1 P12 - Pin
P21 p22 -+ P2n : ;

P = : ; : : whose entries are non-negative and sum to 1.
Pmi Pm2 ' Pmn

Let M, be the variety of rank-r matrices in
the probability simplex A ,n_1.

Matrices P in M represent independent
distributions.




Example: (conditional) independence

Consider two random variables X and Y having m and n states.
Their joint probability distribution is an m x n matrix

pi1 P12 - Pin
P21 p22 -+ P2n : ;

P = : ; : : whose entries are non-negative and sum to 1.
Pmi Pm2 ' Pmn

Let M, be the variety of rank-r matrices in
the probability simplex A ,n_1.
Matrices P in M; represent independent

distributions.
I

M, comprises mixtures of r independent distributions.
Its elements P represent conditionally independent
distributions.



Example: (conditional) independence

Suppose i.i.d. samples are drawn from an unknown distribution.
We summarize these data also in a matrix

Y11 Yaoe e
Vi }’?1 y?z )/?n

Yml Ym2 = Ymn



Example: (conditional) independence

Suppose i.i.d. samples are drawn from an unknown distribution.
We summarize these data also in a matrix
The likelihood function is the monomial

Y11 Yaoe e
Vo1t " VooumeEl e aon D! -
e ; St o : LY(P):HHP?J{U'
: ? : i=1j=1
Yml Ym2 °° Ymn

An MLE for data Y is a rank-r matrix P € M,

maximizing Ly (P). n




ML degree

The ML degree of a family of distributions is the number of critical points
(over C) of the likelihood function for generic data.

some known! ML degrees of the rank varieties M, :

(mn)= (3,3) (3,4 (3,5) (4,4) (4,5 (4,6) (505

= 1 1 1 1 1 i 1

ri—g 10 26 58 191 843 3119 6776
Iisi 1 1 1 191 843 3119 61326
F— 1 1 1 6776

=5 1




Machine Learning



Neural networks



Neural networks

" @

m y € RY



Neural networks
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Neural networks
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Neural networks

X

w € R% weights

" @

™ ycR¥



Neural networks

0-@

@= cr

w € R% weights

A neural network is defined by a continuous mapping ® : R% x R% — R%



Neural networks

0-@

@= cr

w € R% weights

A neural network is defined by a continuous mapping ® : R% x R% — R%

Definition Mo = {¢(W, J:R* 5 RY |we Rdw}

is called the neuromanifold of .



Neural networks

0-@

@= cr

w € R% weights

A neural network is defined by a continuous mapping ® : R% x R% —s R
Definition Mo = {¢(W, J:R* 5 RY |we Rdw}
is called the neuromanifold of ¢.

Observation 1. ® piecewise smooth = Mg manifold with singularities



Neural networks

w € R% weights

m ycRY

A neural network is defined by a continuous mapping ® : R% x R% — R%

Definition Mo = {CD(W7 YR S RY | w e Rdw} C C(R%,R%)

is called the neuromanifold of .

Observation 1. ® piecewise smooth = Mg manifold with singularities

2. dim Mg < d,



Linear networks

A linear network is defined by a map ® : R% x R% — R% of the form

q)(WaX) = WhWh,1 e, W]_X,
where w = (W, ..., W1) and W; € R%*%-1,

(SO dy = dpdp_1 + ...+ didp, dy = dy and dy = dh)



Linear networks

A linear network is defined by a map ® : R% x R% — R% of the form

q)(WaX) = WhWh,1 e, W]_X,
where w = (W, ..., W1) and W; € R%*%-1,

(SO dy = dpdp_1 + ...+ didp, dy = dy and dy = dh)

Example
The neuromanifold of the linear network @ is the bounded rank variety

Mo {I\/l € R%X% | tk(M) < min{d, di, ..., d,,}}.

r



Loss landscapes

A loss function on a neural network ® : R% x R% — R% js of the form

i
L R B s

wr——— ®(w,)

R,

where / is a functional defined on a subset of C(R%,R%) containing M.



Loss landscapes

A loss function on a neural network ® : R% x R% — R s of the form

3 l
[ Révelam s up o

wr——— d(w,)

R,

where £ is a functional defined on a subset of C(R% R%) containing M.

Visualizations
of L

Source: Li, Hao, et al. “Visualizing the loss landscape of neural nets.”
Advances in Neural Information Processing Systems. 2018.
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Quadratic loss on linear networks

Fixed data matrices X € R%*5 and Y € R%*s define a quadratic loss

Uiy RE29 R

Mi— | MX =¥



Quadratic loss on linear networks

Fixed data matrices X € R%*5 and Y € R%*s define a quadratic loss

Uiy RE29 R

Mi— | MX =¥

Observation If XX =14 (“whitened data"), then

Ix y(M) = |M — YXT||% + const.



Quadratic loss on linear networks

Fixed data matrices X € R%*5 and Y € R%*s define a quadratic loss

Uiy RE29 R

Mi— | MX =¥
Observation If XX =14 (“whitened data"), then

Ix y(M) = |M — YXT||% + const.

Minimizing £x,y on the bounded rank variety M¢ = {M | rk(M) < r} is
equivalent to minimizing the Euclidean distance of YXT to M.



How to
solve systems of polynomial equations?
(besides Grobner bases)



Numerical algebraic geometry
homotopy continuation

f{:) ; H(ZUL]?L) —]

00
i
cN

H=1(1-#tFf(z)+tg(z)

fimite
start
points

nonsingular
cndpoint

-

singular 2.'“._.-:--‘
T T
endpoint

2 darnel hrake

endgame
t =0 boundary e



Numerical algebraic geometry
monodromy
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Numerical algebraic geometry
monodromy
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Numerical algebraic geometry
monodromy

X




Application areas

& computer vision
algebraic statistics
machine learning

optimization

robotics

complexity theory
biochemistry

.
3
¢ music
*

The world is non-linear!

Toolbox
# algebraic geometry
& combinatorics
convex and discrete geometry
representation theory
symbolic and numerical computations

tropical geometry

h -
)



