
What is Nonlinear Algebra?

Kathlén Kohn

KTH Stockholm

June 10, 2020



Linear algebra
All undergraduate students learn about Gaussian elimination, a general
method for solving linear systems of algebraic equations:

Input:
x + 2y + 3z = 5

7x + 11y + 13z = 17

19x + 23y + 29z = 31

Output:
x = −35/18

y = 2/9

z = 13/6

Solving very large linear systems is central to applied mathematics.
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Non-linear algebra
Lucky students also learn about Gröbner bases, a general method for non-linear
systems of algebraic equations:

Input: x2 + y2 + z2 = 2

x3 + y3 + z3 = 3

x4 + y4 + z4 = 4

Output: 3z12 − 12z10 − 12z9 + 12z8 + 72z7 − 66z6 − 12z4 + 12z3 − 1 = 0

4y2 + (36z11 + 54z10 − 69z9 − 252z8 − 216z7 + 573z6 + 72z5

−12z4 − 99z3 + 10z + 3) · y + 36z11 + 48z10 − 72z9

−234z8 − 192z7 + 564z6 − 48z5 + 96z4 − 96z3 + 10z2 + 8 = 0

4x + 4y + 36z11 + 54z10 − 69z9 − 252z8 − 216z7

+573z6 + 72z5 − 12z4 − 99z3 + 10z + 3 = 0

This is very hard for large systems, but . . .
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The world is non-linear!
Many models in the sciences and engineering are characterized by polynomial
equations. Such a set is an algebraic variety X ⊂ Rn.

computer vision

algebraic statistics

machine learning

optimization

. . .

III - XXX



Computer Vision



Structure from Motion
Reconstruct 3D scenes and camera poses from 2D images

Rome in a Day: S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, S. Seitz, R. Szeliski
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Reconstruct 3D scenes and camera poses

from 2D images

Step 1: Identify common points and lines on given images

Step 2: Reconstruct coordinates of 3D points and lines
as well as camera poses

⇒ This is an algebraic problem!
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What is a camera?

A camera is a 3× 4 matrix C which takes pictures of points in projective
3-space via

P3 −→ P2,

P 7−→ CP.

Each camera matrix C is a point in P11.

There can be restrictions on the camera matrix C , e.g. by assuming that
the focal length of the camera is known.
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7-point problem
Given 2 images of 7 points,

can we recover the 7 points in 3D and the 2 cameras?

Formally, we study the joint camera map

Φ :
(
P3
)7 ×

(
P11
)2
99K

(
P2
)14

,

(P1, . . . ,P7,C1,C2) 7−→ (C1P1, . . . ,C1P7,C2P1, . . . ,C2P7) ,

and given a point in its image x ∈
(
P2
)14

we ask for its fiber Φ−1(x).
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7-point problem

The projective linear group PGL(4) acts on the fibers Φ−1(x) via

g . (P1, . . . ,P7,C1,C2) =
(
gP1, . . . , gP7,C1g

−1,C2g
−1
)
.

Practically, this means that we can only hope to recover points and cameras
up to projective transformations.

we can adapt the

joint camera map:

Φ :
((

P3
)7 ×

(
P11
)2
)

/PGL(4)

99K
(
P2
)14

dimension: 3 · 7 + 11 · 2− 15 = 28 = 2 · 14

its fibers are generically finite!
in fact, over C, there are generically 3 solutions to the 7-point problem

solving naively: 28 quadratic equations in 28 unknowns
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A more complicated finite problem

Incidences are modeled by flag varieties: Fk := {(P, L) ∈ Pk ×Gr(1,Pk) | P ∈ L}

joint camera map:

Φ :
(

Gr(1,P3)× (F3)4 ×
(
P11
)3
)
/PGL(4) 99K Gr(1,P2)3 × (F2)12
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Algebraic Statistics



Reconstruct probability distributions from moments
Central question:
Let {µθ | θ ∈ Θ} be a family of probability distributions on Rd . Can we
recover a distribution in the family if we know enough of its moments?

mi1i2...id (µθ) =

∫
Rd

w i1
1 w i2

2 · · ·w
id
d dµθ for i1, i2, . . . , id ∈ Z≥0

Example:
Let Θ = {(a, b) ∈ R2 | a ≤ b} be the space of line segments in R.
Let µ(a,b) be the uniform probability distributions on the line segment (a, b).

⇒ mi (µ(a,b)) =
1

b − a

∫ b

a
w i dw =

1

i + 1

bi+1 − ai+1

b − a

=
1

i + 1

(
ai + ai−1b + ai−2b2 + . . .+ bi

)
The first two moments m1,m2 yield two solutions (a, b),
but only one with a ≤ b.
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Example: line segments

The moments m1,m2, . . . ,mr of a line segment (a, b) are not algebraically
independent! The lie on a surface in Rr .

for r = 3, the surface is defined by 2m3
1 − 3m1m2 + m3 = 0

it contains the twisted cubic curve corresponding to degenerate line
segments (a, a) of length 0
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Example: line segments

The moments m1,m2, . . . ,mr of a line segment (a, b) are not algebraically
independent! The lie on a surface in Rr .

Practical meaning:
If the given moments have noise, we cannot recover the line segment!

We first need to denoise the moments, i.e. find a closest point on the
moment surface.

⇒ We need to understand the moment surface, i.e. the algebraic
dependencies among the moments.
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Example: line segments

The moment surface in Rr of the first r moments m1,m2, . . . ,mr

has degree
(r

2

)
and its prime ideal is generated by the 3× 3 minors of 0 1 2m1 3m2 4m3 · · · (r − 1)mr−2

1 2m1 3m2 4m3 5m4 · · · r mr−1

2m1 3m2 4m3 5m4 6m5 · · · (r + 1)mr

 .

These cubics form a Gröbner basis.
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Intermezzo: Optimization
finding a closest point on an algebraic variety



Euclidean distance degree

EDdeg(ellipse) = 4 EDdeg(circle) = 2

The ED degree of an algebraic variety X ⊂ Rn is the number of critical
points (over C) of the Euclidean distance

X −→ R,
x 7−→ ‖x − u‖2

between a generic point u ∈ Rn and the variety X .
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back to

Algebraic Statistics



Reconstruct probability distributions from moments
Central question:
Let {µθ | θ ∈ Θ} be a family of probability distributions on Rd . Can we
recover a distribution in the family if we know enough of its moments?

Similarities to reconstruction in computer vision:
Instead of the joint camera map, we study the moment map

Φ : Θ −→ RI ,
θ 7−→ mi1i2...id (µθ),

where I ⊂ Z≥0 is a finite index set, and ask for its fibers.

Typical settings in practice:

1. the fibers of Φ are generically finite and non-empty
→ can solve reconstruction problem for any generic input

2. im(Φ) lies in a proper subvariety
→ need to denoise input before reconstructing
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Example: quadrilaterals

Let Θ = {� ⊂ R2} ⊂
(
R2
)4

be the space of quadrilaterals in R2.
Let µ� be the uniform probability distribution on the quadrilateral �.

Let I be as shown on the right.

The fibers of Φ : Θ→ R8 are generically finite,
of cardinality 80 over C.

The dihedral group of order 8 acts on each fiber.
 Each fiber consists of 10 “quadrilaterals”.
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Example: quadrilaterals

Let Θ = {� ⊂ R2} ⊂
(
R2
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be the space of quadrilaterals in R2.
Let µ� be the uniform probability distribution on the quadrilateral �.

Let I be as shown on the right.

The Zariski closure of the image of Φ : Θ→ R9
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Example: quadrilaterals
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Find distribution best explaining data

Central question:

Let {µθ | θ ∈ Θ} be a family of probability distributions.

Let Y = (Y1, . . . ,Yn) be n samples of observed data.

Can we find a distribution in the family that best fits the empirical data Y ?

Approach: maximize the likelihood function

LY (θ) := µθ(Y1) · · ·µθ(Yn), where θ ∈ Θ.

A maximum likelihood estimate (MLE) is a distribution in the family
that maximizes the likelihood LY .
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Example: (conditional) independence
Consider two random variables X and Y having m and n states.
Their joint probability distribution is an m × n matrix

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pm1 pm2 · · · pmn

 whose entries are non-negative and sum to 1.

Let Mr be the variety of rank-r matrices in
the probability simplex ∆mn−1.

Matrices P in M1 represent independent
distributions.

Mr comprises mixtures of r independent distributions.
Its elements P represent conditionally independent
distributions.
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Example: (conditional) independence

Suppose i.i.d. samples are drawn from an unknown distribution.
We summarize these data also in a matrix

Y =


y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn

 .

The likelihood function is the monomial

LY (P) =
m∏
i=1

n∏
j=1

p
yij
ij .

An MLE for data Y is a rank-r matrix P ∈Mr

maximizing LY (P).
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ML degree

The ML degree of a family of distributions is the number of critical points
(over C) of the likelihood function for generic data.

some known1 ML degrees of the rank varieties Mr :

(m, n) = (3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (4, 6) (5, 5)
r = 1 1 1 1 1 1 1 1
r = 2 10 26 58 191 843 3119 6776
r = 3 1 1 1 191 843 3119 61326
r = 4 1 1 1 6776
r = 5 1

1Hauenstein, Rodriguez, Sturmfels: Maximum likelihood for matrices with rank
constraints, Journal of Algebraic Statistics 5 (2014) 18–38.
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Machine Learning



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw

XXIV - XXX



Neural networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}
⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw XXIV - XXX



Linear networks

A linear network is defined by a map Φ : Rdw × Rdx −→ Rdy of the form

Φ(w , x) = WhWh−1 . . .W1x ,

where w = (Wh, . . . ,W1) and Wi ∈ Rdi×di−1 ,

(so dw = dhdh−1 + . . .+ d1d0, dx = d0 and dy = dh).

Example
The neuromanifold of the linear network Φ is the bounded rank variety

MΦ =
{
M ∈ Rdh×d0 | rk(M) ≤ min{d0, d1, . . . , dh}

}
.︸ ︷︷ ︸

=:r
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Loss landscapes
A loss function on a neural network Φ : Rdw × Rdx −→ Rdy is of the form

L : Rdw µ−−−−−→ MΦ

`|MΦ−−−−−−−→ R,
w 7−−−−−→ Φ(w , ·)

where ` is a functional defined on a subset of C (Rdx ,Rdy ) containing MΦ.

Visualizations
of L

Source: Li, Hao, et al. “Visualizing the loss landscape of neural nets.”
Advances in Neural Information Processing Systems. 2018.
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Quadratic loss on linear networks

Fixed data matrices X ∈ Rd0×s and Y ∈ Rdh×s define a quadratic loss

`X ,Y : Rdh×d0 −→ R,
M 7−→ ‖MX − Y ‖2

F

Observation If XXT = Id0 (“whitened data”), then

`X ,Y (M) = ‖M − YXT‖2
F + const.

Minimizing `X ,Y on the bounded rank variety MΦ = {M | rk(M) ≤ r} is
equivalent to minimizing the Euclidean distance of YXT to MΦ.
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How to
solve systems of polynomial equations?

(besides Gröbner bases)



Numerical algebraic geometry
homotopy continuation
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Numerical algebraic geometry
monodromy
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The world is non-linear!
Application areas

computer vision

algebraic statistics

machine learning

optimization

robotics

complexity theory

biochemistry

music

. . .

Toolbox

algebraic geometry

combinatorics

convex and discrete geometry

representation theory

symbolic and numerical computations

tropical geometry

. . .
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