

What is Nonlinear Algebra?

Kathlén Kohn

KTH Stockholm

June 10, 2020

Linear algebra

All undergraduate students learn about Gaussian elimination, a general method for solving linear systems of algebraic equations:

Input:

$$
\begin{aligned}
x+2 y+3 z & =5 \\
7 x+11 y+13 z & =17 \\
19 x+23 y+29 z & =31
\end{aligned}
$$

Output:

$$
\begin{aligned}
& x=-35 / 18 \\
& y=2 / 9 \\
& z=13 / 6
\end{aligned}
$$

Solving very large linear systems is central to applied mathematics.

Non-linear algebra

Lucky students also learn about Gröbner bases, a general method for non-linear systems of algebraic equations:

$$
\begin{array}{ll}
\text { Input: } & x^{2}+y^{2}+z^{2}=2 \\
& x^{3}+y^{3}+z^{3}=3 \\
& x^{4}+y^{4}+z^{4}=4
\end{array}
$$

Non-linear algebra

Lucky students also learn about Gröbner bases, a general method for non-linear systems of algebraic equations:

Input:

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=2 \\
& x^{3}+y^{3}+z^{3}=3 \\
& x^{4}+y^{4}+z^{4}=4
\end{aligned}
$$

Output: $3 z^{12}-12 z^{10}-12 z^{9}+12 z^{8}+72 z^{7}-66 z^{6}-12 z^{4}+12 z^{3}-1=0$

$$
\begin{aligned}
& 4 y^{2}+\left(36 z^{11}+54 z^{10}-69 z^{9}-252 z^{8}-216 z^{7}+573 z^{6}+72 z^{5}\right. \\
& \left.-12 z^{4}-99 z^{3}+10 z+3\right) \cdot y+36 z^{11}+48 z^{10}-72 z^{9} \\
& -234 z^{8}-192 z^{7}+564 z^{6}-48 z^{5}+96 z^{4}-96 z^{3}+10 z^{2}+8=0 \\
& 4 x+4 y+36 z^{11}+54 z^{10}-69 z^{9}-252 z^{8}-216 z^{7} \\
& +573 z^{6}+72 z^{5}-12 z^{4}-99 z^{3}+10 z+3=0
\end{aligned}
$$

This is very hard for large systems, but . . .

The world is non-linear!

Many models in the sciences and engineering are characterized by polynomial equations. Such a set is an algebraic variety $X \subset \mathbb{R}^{n}$.

- computer vision
- algebraic statistics
- machine learning
- optimization

Computer Vision

Structure from Motion

Reconstruct 3D scenes and camera poses from 2D images

Rome in a Day: S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, S. Seitz, R. Szeliski

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses
\Rightarrow This is an algebraic problem!

A camera is a 3×4 matrix C which takes pictures of points in projective 3 -space via

$$
\begin{aligned}
\mathbb{P}^{3} & \longrightarrow \mathbb{P}^{2}, \\
P & \longmapsto C P .
\end{aligned}
$$

A camera is a 3×4 matrix C which takes pictures of points in projective 3-space via

$$
\begin{aligned}
\mathbb{P}^{3} & \longrightarrow \mathbb{P}^{2}, \\
P & \longmapsto C P .
\end{aligned}
$$

- Each camera matrix C is a point in \mathbb{P}^{11}.

What is a camera?

A camera is a 3×4 matrix C which takes pictures of points in projective 3-space via

$$
\begin{aligned}
\mathbb{P}^{3} & \longrightarrow \mathbb{P}^{2}, \\
P & \longmapsto C P .
\end{aligned}
$$

- Each camera matrix C is a point in \mathbb{P}^{11}.
- There can be restrictions on the camera matrix C, e.g. by assuming that the focal length of the camera is known.

7-point problem

Given 2 images of 7 points, can we recover the 7 points in 3D and the 2 cameras?

7-point problem

Given 2 images of 7 points, can we recover the 7 points in 3D and the 2 cameras?

Formally, we study the joint camera map

$$
\begin{aligned}
\phi:\left(\mathbb{P}^{3}\right)^{7} \times\left(\mathbb{P}^{11}\right)^{2} & \rightarrow\left(\mathbb{P}^{2}\right)^{14}, \\
\left(P_{1}, \ldots, P_{7}, C_{1}, C_{2}\right) & \longmapsto\left(C_{1} P_{1}, \ldots, C_{1} P_{7}, C_{2} P_{1}, \ldots, C_{2} P_{7}\right),
\end{aligned}
$$

7-point problem

Given 2 images of 7 points, can we recover the 7 points in 3D and the 2 cameras?

Formally, we study the joint camera map

$$
\begin{aligned}
\phi:\left(\mathbb{P}^{3}\right)^{7} \times\left(\mathbb{P}^{11}\right)^{2} & \rightarrow\left(\mathbb{P}^{2}\right)^{14}, \\
\left(P_{1}, \ldots, P_{7}, C_{1}, C_{2}\right) & \longmapsto\left(C_{1} P_{1}, \ldots, C_{1} P_{7}, C_{2} P_{1}, \ldots, C_{2} P_{7}\right),
\end{aligned}
$$

and given a point in its image $x \in\left(\mathbb{P}^{2}\right)^{14}$ we ask for its fiber $\Phi^{-1}(x)$.

7-point problem

The projective linear group PGL(4) acts on the fibers $\Phi^{-1}(x)$ via

$$
g \cdot\left(P_{1}, \ldots, P_{7}, C_{1}, C_{2}\right)=\left(g P_{1}, \ldots, g P_{7}, C_{1} g^{-1}, C_{2} g^{-1}\right) .
$$

Practically, this means that we can only hope to recover points and cameras up to projective transformations.

> joint camera map:

$$
\phi:\left(\left(\mathbb{P}^{3}\right)^{7} \times\left(\mathbb{P}^{11}\right)^{2}\right)
$$

$$
\rightarrow \quad\left(\mathbb{P}^{2}\right)^{14}
$$

7-point problem

The projective linear group PGL(4) acts on the fibers $\phi^{-1}(x)$ via

$$
g \cdot\left(P_{1}, \ldots, P_{7}, C_{1}, C_{2}\right)=\left(g P_{1}, \ldots, g P_{7}, C_{1} g^{-1}, C_{2} g^{-1}\right) .
$$

Practically, this means that we can only hope to recover points and cameras up to projective transformations.

- we can adapt the joint camera map:

$$
\phi:\left(\left(\mathbb{P}^{3}\right)^{7} \times\left(\mathbb{P}^{11}\right)^{2}\right) / \mathrm{PGL}(4) \quad \rightarrow \quad\left(\mathbb{P}^{2}\right)^{14}
$$

7-point problem

The projective linear group PGL(4) acts on the fibers $\phi^{-1}(x)$ via

$$
g \cdot\left(P_{1}, \ldots, P_{7}, C_{1}, C_{2}\right)=\left(g P_{1}, \ldots, g P_{7}, C_{1} g^{-1}, C_{2} g^{-1}\right) .
$$

Practically, this means that we can only hope to recover points and cameras up to projective transformations.

- we can adapt the joint camera map:

$$
\begin{array}{rccc}
\phi: & \left(\left(\mathbb{P}^{3}\right)^{7} \times\left(\mathbb{P}^{11}\right)^{2}\right) / \mathrm{PGL}(4) & \left.\rightarrow-\mathbb{P}^{2}\right)^{14} \\
\text { dimension: } & 3 \cdot 7+11 \cdot 2-15 & =28= & 2 \cdot 14
\end{array}
$$

- its fibers are generically finite!

7-point problem

The projective linear group PGL(4) acts on the fibers $\phi^{-1}(x)$ via

$$
g \cdot\left(P_{1}, \ldots, P_{7}, C_{1}, C_{2}\right)=\left(g P_{1}, \ldots, g P_{7}, C_{1} g^{-1}, C_{2} g^{-1}\right) .
$$

Practically, this means that we can only hope to recover points and cameras up to projective transformations.

- we can adapt the joint camera map:

$$
\begin{array}{rccc}
\phi: & \left(\left(\mathbb{P}^{3}\right)^{7} \times\left(\mathbb{P}^{11}\right)^{2}\right) / \mathrm{PGL}(4) & \left.\rightarrow-\mathbb{P}^{2}\right)^{14} \\
\text { dimension: } & 3 \cdot 7+11 \cdot 2-15 & =28= & 2 \cdot 14
\end{array}
$$

- its fibers are generically finite!
in fact, over \mathbb{C}, there are generically 3 solutions to the 7 -point problem
- solving naively: $\mathbf{2 8}$ quadratic equations in 28 unknowns

A more complicated finite problem

Incidences are modeled by flag varieties: $\mathcal{F}_{k}:=\left\{(P, L) \in \mathbb{P}^{k} \times \operatorname{Gr}\left(1, \mathbb{P}^{k}\right) \mid P \in L\right\}$ joint camera map:

$$
\Phi:\left(\operatorname{Gr}\left(1, \mathbb{P}^{3}\right) \times\left(\mathcal{F}_{3}\right)^{4} \times\left(\mathbb{P}^{11}\right)^{3}\right) / \operatorname{PGL}(4) \rightarrow \operatorname{Gr}\left(1, \mathbb{P}^{2}\right)^{3} \times\left(\mathcal{F}_{2}\right)^{12}
$$

Algebraic Statistics

Reconstruct probability distributions from moments

Central question:

Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions on \mathbb{R}^{d}. Can we recover a distribution in the family if we know enough of its moments?

$$
m_{i_{1} i_{2} \ldots i_{d}}\left(\mu_{\theta}\right)=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \cdots w_{d}^{i_{d}} \mathrm{~d} \mu_{\theta} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Reconstruct probability distributions from moments

Central question:

Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions on \mathbb{R}^{d}. Can we recover a distribution in the family if we know enough of its moments?

$$
m_{i_{1} i_{2} \ldots i_{d}}\left(\mu_{\theta}\right)=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \cdots w_{d}^{i_{d}} \mathrm{~d} \mu_{\theta} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Example:

Let $\Theta=\left\{(a, b) \in \mathbb{R}^{2} \mid a \leq b\right\}$ be the space of line segments in \mathbb{R}.
Let $\mu_{(a, b)}$ be the uniform probability distributions on the line segment (a, b).

Reconstruct probability distributions from moments

Central question:

Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions on \mathbb{R}^{d}. Can we recover a distribution in the family if we know enough of its moments?

$$
m_{i_{1} i_{2} \ldots i_{d}}\left(\mu_{\theta}\right)=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \cdots w_{d}^{i_{d}} \mathrm{~d} \mu_{\theta} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Example:

Let $\Theta=\left\{(a, b) \in \mathbb{R}^{2} \mid a \leq b\right\}$ be the space of line segments in \mathbb{R}. Let $\mu_{(a, b)}$ be the uniform probability distributions on the line segment (a, b).

$$
\begin{aligned}
\Rightarrow m_{i}\left(\mu_{(a, b)}\right) & =\frac{1}{b-a} \int_{a}^{b} w^{i} d w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

Reconstruct probability distributions from moments

Central question:

Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions on \mathbb{R}^{d}. Can we recover a distribution in the family if we know enough of its moments?

$$
m_{i_{1} i_{2} \ldots i_{d}}\left(\mu_{\theta}\right)=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \cdots w_{d}^{i_{d}} \mathrm{~d} \mu_{\theta} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Example:

Let $\Theta=\left\{(a, b) \in \mathbb{R}^{2} \mid a \leq b\right\}$ be the space of line segments in \mathbb{R}. Let $\mu_{(a, b)}$ be the uniform probability distributions on the line segment (a, b).

$$
\begin{aligned}
\Rightarrow m_{i}\left(\mu_{(a, b)}\right) & =\frac{1}{b-a} \int_{a}^{b} w^{i} d w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

The first two moments m_{1}, m_{2} yield two solutions (a, b), but only one with $a \leq b$.

Example: line segments

The moments $m_{1}, m_{2}, \ldots, m_{r}$ of a line segment (a, b) are not algebraically independent! The lie on a surface in \mathbb{R}^{r}.

- for $r=3$, the surface is defined by $2 m_{1}^{3}-3 m_{1} m_{2}+m_{3}=0$

Example: line segments

The moments $m_{1}, m_{2}, \ldots, m_{r}$ of a line segment (a, b) are not algebraically independent! The lie on a surface in \mathbb{R}^{r}.

- for $r=3$, the surface is defined by $2 m_{1}^{3}-3 m_{1} m_{2}+m_{3}=0$
- it contains the twisted cubic curve corresponding to degenerate line segments (a, a) of length 0

Example: line segments

The moments $m_{1}, m_{2}, \ldots, m_{r}$ of a line segment (a, b) are not algebraically independent! The lie on a surface in \mathbb{R}^{r}.

Practical meaning:

If the given moments have noise, we cannot recover the line segment!

Example: line segments

The moments $m_{1}, m_{2}, \ldots, m_{r}$ of a line segment (a, b) are not algebraically independent! The lie on a surface in \mathbb{R}^{r}.

Practical meaning:

If the given moments have noise, we cannot recover the line segment! We first need to denoise the moments, i.e. find a closest point on the moment surface.

Example: line segments

The moments $m_{1}, m_{2}, \ldots, m_{r}$ of a line segment (a, b) are not algebraically independent! The lie on a surface in \mathbb{R}^{r}.

Practical meaning:

If the given moments have noise, we cannot recover the line segment! We first need to denoise the moments, i.e. find a closest point on the moment surface.
\Rightarrow We need to understand the moment surface, i.e. the algebraic dependencies among the moments.

Example: line segments

The moment surface in \mathbb{R}^{r} of the first r moments $m_{1}, m_{2}, \ldots, m_{r}$

- has degree $\binom{r}{2}$
- and its prime ideal is generated by the 3×3 minors of

$$
\left(\begin{array}{ccccccc}
0 & 1 & 2 m_{1} & 3 m_{2} & 4 m_{3} & \cdots & (r-1) m_{r-2} \\
1 & 2 m_{1} & 3 m_{2} & 4 m_{3} & 5 m_{4} & \cdots & r m_{r-1} \\
2 m_{1} & 3 m_{2} & 4 m_{3} & 5 m_{4} & 6 m_{5} & \cdots & (r+1) m_{r}
\end{array}\right) .
$$

- These cubics form a Gröbner basis.

Intermezzo: Optimization

finding a closest point on an algebraic variety

Euclidean distance degree

The ED degree of an algebraic variety $X \subset \mathbb{R}^{n}$ is the number of critical points (over \mathbb{C}) of the Euclidean distance

$$
\begin{aligned}
& x \longrightarrow \mathbb{R}, \\
& x \longmapsto\|x-u\|^{2}
\end{aligned}
$$

between a generic point $u \in \mathbb{R}^{n}$ and the variety X.
EDdeg(ellipse) $=4$
$\operatorname{EDdeg}($ circle $)=2$

back to
 Algebraic Statistics

Reconstruct probability distributions from moments

Central question:

Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions on \mathbb{R}^{d}. Can we recover a distribution in the family if we know enough of its moments?

Similarities to reconstruction in computer vision: Instead of the joint camera map, we study the moment map

$$
\begin{aligned}
\phi: \Theta & \longrightarrow \mathbb{R}^{\mathcal{I}}, \\
\theta & \longmapsto m_{i_{1} i_{2} \ldots i_{d}}\left(\mu_{\theta}\right),
\end{aligned}
$$

where $\mathcal{I} \subset \mathbb{Z}_{\geq 0}$ is a finite index set, and ask for its fibers.

Reconstruct probability distributions from moments

Central question:

Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions on \mathbb{R}^{d}. Can we recover a distribution in the family if we know enough of its moments?

Similarities to reconstruction in computer vision:

 Instead of the joint camera map, we study the moment map$$
\begin{aligned}
\phi: \Theta & \longrightarrow \mathbb{R}^{\mathcal{I}}, \\
\theta & \longmapsto m_{i_{1} i_{2} \ldots i_{d}}\left(\mu_{\theta}\right),
\end{aligned}
$$

where $\mathcal{I} \subset \mathbb{Z}_{\geq 0}$ is a finite index set, and ask for its fibers.
Typical settings in practice:

1. the fibers of Φ are generically finite and non-empty
\rightarrow can solve reconstruction problem for any generic input
2. $\operatorname{im}(\Phi)$ lies in a proper subvariety
\rightarrow need to denoise input before reconstructing

Example: quadrilaterals

$$
\begin{aligned}
& \text { Let } \Theta=\left\{\square \subset \mathbb{R}^{2}\right\} \subset\left(\mathbb{R}^{2}\right)^{4} \text { be the space of quadrilaterals in } \mathbb{R}^{2} \text {. } \\
& \text { Let } \mu \square \text { be the uniform probability distribution on the quadrilateral } \square \text {. }
\end{aligned}
$$

Example: quadrilaterals

Let $\Theta=\left\{\square \subset \mathbb{R}^{2}\right\} \subset\left(\mathbb{R}^{2}\right)^{4}$ be the space of quadrilaterals in \mathbb{R}^{2}. Let $\mu \square$ be the uniform probability distribution on the quadrilateral \square.

Let \mathcal{I} be as shown on the right.
The fibers of $\Phi: \Theta \rightarrow \mathbb{R}^{8}$ are generically finite, of cardinality 80 over \mathbb{C}.

Example: quadrilaterals

Let $\Theta=\left\{\square \subset \mathbb{R}^{2}\right\} \subset\left(\mathbb{R}^{2}\right)^{4}$ be the space of quadrilaterals in \mathbb{R}^{2}. Let $\mu \square$ be the uniform probability distribution on the quadrilateral \square.

Let \mathcal{I} be as shown on the right.
The fibers of $\Phi: \Theta \rightarrow \mathbb{R}^{8}$ are generically finite, of cardinality 80 over \mathbb{C}.
The dihedral group of order 8 acts on each fiber. \rightsquigarrow Each fiber consists of 10 "quadrilaterals".

Example: quadrilaterals

XVII - XXX

Example: quadrilaterals

Let $\Theta=\left\{\square \subset \mathbb{R}^{2}\right\} \subset\left(\mathbb{R}^{2}\right)^{4}$ be the space of quadrilaterals in \mathbb{R}^{2}.
Let μ_{\square} be the uniform probability distribution on the quadrilateral \square.

Let \mathcal{I} be as shown on the right.
The Zariski closure of the image of $\phi: \Theta \rightarrow \mathbb{R}^{9}$ is a hypersurface.
We can compute it using the invariant ring of the affine group $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$.

Example: quadrilaterals

$$
\text { Let } \Theta=\left\{\square \subset \mathbb{R}^{2}\right\} \subset\left(\mathbb{R}^{2}\right)^{4} \text { be the space of quadrilaterals in } \mathbb{R}^{2} \text {. }
$$

Let $\mu \square$ be the uniform probability distribution on the quadrilateral \square.

Let \mathcal{I} be as shown on the right.
The Zariski closure of the image of $\phi: \Theta \rightarrow \mathbb{R}^{9}$ is a hypersurface.
We can compute it using the invariant ring of the affine group $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$.

The moment hypersurface has degree 18. Its defining polynomial has 5100 terms.

Example: quadrilaterals

Find distribution best explaining data

Central question:

- Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions.
- Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be n samples of observed data.

Can we find a distribution in the family that best fits the empirical data Y ?

Find distribution best explaining data

Central question:

- Let $\left\{\mu_{\theta} \mid \theta \in \Theta\right\}$ be a family of probability distributions.
- Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be n samples of observed data.

Can we find a distribution in the family that best fits the empirical data Y ?

Approach: maximize the likelihood function

$$
L_{Y}(\theta):=\mu_{\theta}\left(Y_{1}\right) \cdots \mu_{\theta}\left(Y_{n}\right), \quad \text { where } \theta \in \Theta .
$$

A maximum likelihood estimate (MLE) is a distribution in the family that maximizes the likelihood L_{Y}.

Example: (conditional) independence

Consider two random variables X and Y having m and n states. Their joint probability distribution is an $m \times n$ matrix
$P=\left[\begin{array}{cccc}p_{11} & p_{12} & \cdots & p_{1 n} \\ p_{21} & p_{22} & \cdots & p_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m 1} & p_{m 2} & \cdots & p_{m n}\end{array}\right]$
whose entries are non-negative and sum to 1.

Example: (conditional) independence

Consider two random variables X and Y having m and n states.
Their joint probability distribution is an $m \times n$ matrix
$P=\left[\begin{array}{cccc}p_{11} & p_{12} & \cdots & p_{1 n} \\ p_{21} & p_{22} & \cdots & p_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m 1} & p_{m 2} & \cdots & p_{m n}\end{array}\right]$
whose entries are non-negative and sum to 1.

Let \mathcal{M}_{r} be the variety of rank- r matrices in the probability simplex $\Delta_{m n-1}$.
Matrices P in \mathcal{M}_{1} represent independent distributions.

Example: (conditional) independence

Consider two random variables X and Y having m and n states.
Their joint probability distribution is an $m \times n$ matrix
$P=\left[\begin{array}{cccc}p_{11} & p_{12} & \cdots & p_{1 n} \\ p_{21} & p_{22} & \cdots & p_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m 1} & p_{m 2} & \cdots & p_{m n}\end{array}\right]$
whose entries are non-negative and sum to 1.

Let \mathcal{M}_{r} be the variety of rank- r matrices in the probability simplex $\Delta_{m n-1}$.
Matrices P in \mathcal{M}_{1} represent independent distributions.

\mathcal{M}_{r} comprises mixtures of r independent distributions. Its elements P represent conditionally independent distributions.

Example: (conditional) independence

Suppose i.i.d. samples are drawn from an unknown distribution. We summarize these data also in a matrix

$$
Y=\left[\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m 1} & y_{m 2} & \cdots & y_{m n}
\end{array}\right]
$$

Example: (conditional) independence

Suppose i.i.d. samples are drawn from an unknown distribution. We summarize these data also in a matrix

$$
Y=\left[\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m 1} & y_{m 2} & \cdots & y_{m n}
\end{array}\right]
$$

The likelihood function is the monomial

$$
L_{Y}(P)=\prod_{i=1}^{m} \prod_{j=1}^{n} p_{i j}^{y_{i j}}
$$

An MLE for data Y is a rank- r matrix $P \in \mathcal{M}_{r}$ maximizing $L_{Y}(P)$.

ML degree

The ML degree of a family of distributions is the number of critical points (over \mathbb{C}) of the likelihood function for generic data.
some known ${ }^{1}$ ML degrees of the rank varieties $\mathcal{M}_{\boldsymbol{r}}$:

	$(m, n)=$	$(3,3)$	$(3,4)$	$(3,5)$	$(4,4)$	$(4,5)$	$(4,6)$	$(5,5)$
$r=1$	1	1	1	1	1	1	1	
$r=2$	10	26	58	191	843	3119	6776	
$r=3$	1	1	1	191	843	3119	61326	
$r=4$				1	1	1	6776	
$r=5$							1	

${ }^{1}$ Hauenstein, Rodriguez, Sturmfels: Maximum likelihood for matrices with rank constraints, Journal of Algebraic Statistics 5 (2014) 18-38.

Machine Learning

Neural networks

XXIV - XXX

Neural networks

Neural networks

Neural networks

A neural network is defined by a continuous mapping $\Phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$.

A neural network is defined by a continuous mapping $\Phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$.
Definition $\mathcal{M}_{\Phi}:=\left\{\Phi(w, \cdot): \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{y}} \mid w \in \mathbb{R}^{d_{w}}\right\}$
is called the neuromanifold of ϕ.

A neural network is defined by a continuous mapping $\Phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$.
Definition $\mathcal{M}_{\Phi}:=\left\{\Phi(w, \cdot): \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{y}} \mid w \in \mathbb{R}^{d_{w}}\right\}$
is called the neuromanifold of ϕ.
Observation 1. Φ piecewise smooth $\Rightarrow \mathcal{M}_{\Phi}$ manifold with singularities

A neural network is defined by a continuous mapping $\Phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$.
Definition $\mathcal{M}_{\Phi}:=\left\{\Phi(w, \cdot): \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{y}} \mid w \in \mathbb{R}^{d_{w}}\right\} \subset C\left(\mathbb{R}^{d_{x}}, \mathbb{R}^{d_{y}}\right)$ is called the neuromanifold of ϕ.

Observation 1. Φ piecewise smooth $\Rightarrow \mathcal{M}_{\Phi}$ manifold with singularities
2. $\operatorname{dim} \mathcal{M}_{\Phi} \leq d_{w}$

Linear networks

A linear network is defined by a map $\phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$ of the form

$$
\begin{aligned}
& \Phi(w, x)=W_{h} W_{h-1} \ldots W_{1} x \\
& \text { where } w=\left(W_{h}, \ldots, W_{1}\right) \text { and } W_{i} \in \mathbb{R}^{d_{i} \times d_{i-1}}
\end{aligned}
$$

$$
\left(\text { so } d_{w}=d_{h} d_{h-1}+\ldots+d_{1} d_{0}, d_{x}=d_{0} \text { and } d_{y}=d_{h}\right) .
$$

Linear networks

A linear network is defined by a $\operatorname{map} \phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$ of the form

$$
\begin{aligned}
& \Phi(w, x)=W_{h} W_{h-1} \ldots W_{1} x \\
& \text { where } w=\left(W_{h}, \ldots, W_{1}\right) \text { and } W_{i} \in \mathbb{R}^{d_{i} \times d_{i-1}},
\end{aligned}
$$

$$
\left(\text { so } d_{w}=d_{h} d_{h-1}+\ldots+d_{1} d_{0}, d_{x}=d_{0} \text { and } d_{y}=d_{h}\right) .
$$

Example

The neuromanifold of the linear network Φ is the bounded rank variety

$$
\mathcal{M}_{\phi}=\{M \in \mathbb{R}^{d_{h} \times d_{0}} \mid \operatorname{rk}(M) \leq \underbrace{\min \left\{d_{0}, d_{1}, \ldots, d_{h}\right\}}_{=: r}\} .
$$

Loss landscapes

A loss function on a neural network $\Phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$ is of the form

$$
\begin{aligned}
L: \mathbb{R}^{d_{w}} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\left.\ell\right|_{\mathcal{M}_{\Phi}}} \mathbb{R}, \\
w(w, \cdot)
\end{aligned}
$$

where ℓ is a functional defined on a subset of $C\left(\mathbb{R}^{d_{x}}, \mathbb{R}^{d_{y}}\right)$ containing \mathcal{M}_{ϕ}.

Loss landscapes

A loss function on a neural network $\phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$ is of the form

$$
\begin{aligned}
& L: \mathbb{R}^{d_{w}} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\left.\ell\right|_{\mathcal{M}_{\Phi}}} \mathbb{R} \\
& \text { } \\
& \longmapsto(w, \cdot)
\end{aligned}
$$

where ℓ is a functional defined on a subset of $C\left(\mathbb{R}^{d_{x}}, \mathbb{R}^{d_{y}}\right)$ containing \mathcal{M}_{ϕ}.

[^0]
Quadratic loss on linear networks

Fixed data matrices $X \in \mathbb{R}^{d_{0} \times s}$ and $Y \in \mathbb{R}^{d_{h} \times s}$ define a quadratic loss

$$
\begin{aligned}
\ell_{X, Y}: \mathbb{R}^{d_{h} \times d_{0}} & \longrightarrow \mathbb{R}, \\
M & \longmapsto\|M X-Y\|_{F}^{2}
\end{aligned}
$$

Quadratic loss on linear networks

Fixed data matrices $X \in \mathbb{R}^{d_{0} \times s}$ and $Y \in \mathbb{R}^{d_{h} \times s}$ define a quadratic loss

$$
\begin{aligned}
\ell_{X, Y}: \mathbb{R}^{d_{h} \times d_{0}} & \longrightarrow \mathbb{R} \\
M & \longmapsto\|M X-Y\|_{F}^{2}
\end{aligned}
$$

Observation If $X X^{T}=\mathrm{I}_{d_{0}}$ ("whitened data"), then

$$
\ell_{X, Y}(M)=\left\|M-Y X^{T}\right\|_{F}^{2}+\text { const } .
$$

Quadratic loss on linear networks

Fixed data matrices $X \in \mathbb{R}^{d_{0} \times s}$ and $Y \in \mathbb{R}^{d_{h} \times s}$ define a quadratic loss

$$
\begin{aligned}
\ell X, Y: \mathbb{R}^{d_{h} \times d_{0}} & \longrightarrow \mathbb{R} \\
M & \longmapsto\|M X-Y\|_{F}^{2}
\end{aligned}
$$

Observation If $X X^{T}=\mathrm{I}_{d_{0}}$ ("whitened data"), then

$$
\ell_{X, Y}(M)=\left\|M-Y X^{T}\right\|_{F}^{2}+\text { const } .
$$

Minimizing $\ell_{X, Y}$ on the bounded rank variety $\mathcal{M}_{\Phi}=\{M \mid \operatorname{rk}(M) \leq r\}$ is equivalent to minimizing the Euclidean distance of $Y X^{\top}$ to \mathcal{M}_{Φ}.

> XXVII -

How to solve systems of polynomial equations? (besides Gröbner bases)

Numerical algebraic geometry homotopy continuation

Numerical algebraic geometry monodromy

XXIX - XXX

Application areas

- computer vision
- algebraic statistics
- machine learning
- optimization
- robotics

- complexity theory
- biochemistry
- music
- ...

The world is non-linear!

Toolbox

- algebraic geometry
- combinatorics
- convex and discrete geometry
- representation theory
- symbolic and numerical computations
- tropical geometry

- . . .

[^0]: Source: Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in Neural Information Processing Systems. 2018.

