Rolling-shutter cameras \&
 Kummer's classification of order-one line congruences

joint work with Marvin Hahn, Orlando Marigliano, Tomas Pajdla

The vast majority of today's cameras have rolling-shutter sensors!

II - XIX

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

II - XIX

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

Algebraically:

- The image of a line is typically a higher-degree curve.

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

Algebraically:

- The image of a line is typically a higher-degree curve.

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

Algebraically:

- The image of a line is typically a higher-degree curve.

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

Algebraically:

https: //creativecommons, org/licenses/by-sa/3.0/deed.en changes: added black separating line)

- The image of a line is typically a higher-degree curve.

The vast majority of today's cameras have rolling-shutter sensors! They take pictures by scanning across the scene, capturing the image row by row.

Algebraically:
by Cmgiee © Wikipedia
https://creativecommons.org/licenses/by-sa/3.0/deed.en

- The image of a line is typically a higher-degree curve.
- A 3D point can appear more than once in the image.

Long-term goal:

Reconstruct 3D scenes from 2D pictures taken by unknown rolling-shutter cameras.

Long-term goal:
 Reconstruct 3D scenes from 2D pictures taken by unknown rolling-shutter cameras.

First, need to understand

- how to model rolling-shutter cameras algebraically
- how they did take pictures

Global-Shutter Camera

standard camera: $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2},(x: y: z: w) \mapsto(x: y: z)$

Global-Shutter Camera

standard camera: $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2},(x: y: z: w) \mapsto(x: y: z)$

Definition:

Every calibrated global-shutter camera is obtained by translation and rotation from the standard camera,

Global-Shutter Camera

standard camera: $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2},(x: y: z: w) \mapsto(x: y: z)$

Definition:

Every calibrated global-shutter camera is obtained by translation and rotation from the standard camera, i.e., is of the form $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2}, X \mapsto A X$, where $A=R \cdot\left[I_{3} \mid-c\right] \in \mathbb{R}^{3 \times 4}, R \in \mathrm{SO}(3), c \in \mathbb{R}^{3}$.

Rolling-Shutter Camera

Rolling-Shutter Camera

Assume: Rolling shutter scans with constant speed across image plane.

Rolling-Shutter Camera

Assume: Rolling shutter scans with constant speed across image plane. \rightsquigarrow can identify time parameter with rolling-shutter position

Rolling-Shutter Camera

Assume: Rolling shutter scans with constant speed across image plane. \rightsquigarrow can identify time parameter with rolling-shutter position

Assume: rolling shutter parallel to y-axis on image plane:

$$
\begin{aligned}
\rho: \mathbb{P}^{1} & \longrightarrow\left(\mathbb{P}^{2}\right)^{*} \\
(v: t) & \longmapsto(0: 1: 0) \vee(v: 0: t) \equiv(-t: 0: v) .
\end{aligned}
$$

Rolling-Shutter Camera

On the affine chart $\{(v: t) \mid t \neq 0\} \subset, \mathbb{P}^{1}$, the camera's position and orientation at time $\frac{v}{t}$ are

$$
c\left(\frac{v}{t}\right) \in \mathbb{R}^{3} \quad \text { and } \quad R\left(\frac{v}{t}\right) \in \mathrm{SO}(3) .
$$

Rolling-Shutter Camera

On the affine chart $\{(v: t) \mid t \neq 0\} \subset, \mathbb{P}^{1}$, the camera's position and orientation at time $\frac{v}{t}$ are

$$
c\left(\frac{v}{t}\right) \in \mathbb{R}^{3} \quad \text { and } \quad R\left(\frac{v}{t}\right) \in \mathrm{SO}(3) .
$$

Assume: c is a rational map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$.

How to take a picture?

At time $\frac{v}{t}$, the camera only observes a plane, not the whole ambient 3-space.

How to take a picture?

At time $\frac{v}{t}$, the camera only observes a plane, not the whole ambient 3-space. It maps that rolling plane onto the rolling shutter via the linear map given by

$$
A\left(\frac{v}{t}\right):=R\left(\frac{v}{t}\right) \cdot\left[/ 3 \left\lvert\,-c\left(\frac{v}{t}\right)\right.\right] .
$$

How to take a picture?

At time $\frac{v}{t}$, the camera only observes a plane, not the whole ambient 3-space. It maps that rolling plane onto the rolling shutter via the linear map given by

$$
A\left(\frac{v}{t}\right):=R\left(\frac{v}{t}\right) \cdot\left[/ 3 \left\lvert\,-c\left(\frac{v}{t}\right)\right.\right] .
$$

Hence, the rolling plane is the preimage of the rolling shutter under A :

$$
\sigma\left(\frac{v}{t}\right):=(-t: 0: v) \cdot A\left(\frac{v}{t}\right) \in\left(\mathbb{P}^{3}\right)^{*}
$$

How to take a picture?

Image points are intersections of the rolling shutter with lines parallel to the x-axis:

$$
\begin{aligned}
\mathbb{P}^{1} & \longrightarrow\left(\mathbb{P}^{2}\right)^{*}, \\
(u: s) & \longmapsto(1: 0: 0) \vee(0: u: s) \equiv(0:-s: u)
\end{aligned}
$$

How to take a picture?

Image points are intersections of the rolling shutter with lines parallel to the x-axis:

$$
\begin{aligned}
\mathbb{P}^{1} & \longrightarrow\left(\mathbb{P}^{2}\right)^{*}, \\
(u: s) & \longmapsto(1: 0: 0) \vee(0: u: s) \equiv(0:-s: u)
\end{aligned}
$$

We think of the image plane as $\mathbb{P}^{1} \times \mathbb{P}^{1}$ via the birational map

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2} \\
((v: t),(u: s)) \mapsto(s v: u t: s t)
\end{gathered}
$$

How to take a picture?

The camera ray mapping to the image point $((v: t),(u: s)) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the point's preimage under $A\left(\frac{v}{t}\right)$:

How to take a picture?

The camera ray mapping to the image point $((v: t),(u: s)) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the point's preimage under $A\left(\frac{v}{t}\right)$:

$$
\begin{aligned}
& \Lambda: \quad \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow-\operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \\
& ((v: t),(u: s)) \mapsto \underbrace{\left((-t: 0: v) \cdot A\left(\frac{v}{t}\right)\right)}_{\text {rolling plane } \sigma\left(\frac{v}{t}\right)} \cap\left((0:-s: u) \cdot A\left(\frac{v}{t}\right)\right)
\end{aligned}
$$

VIII - XIX

How to take a picture?

The camera ray mapping to the image point $((v: t),(u: s)) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the point's preimage under $A\left(\frac{v}{t}\right)$:

$$
\begin{aligned}
& \Lambda: \quad \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow-\operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \\
& ((v: t),(u: s)) \mapsto \underbrace{\left((-t: 0: v) \cdot A\left(\frac{v}{t}\right)\right)}_{\text {rolling plane } \sigma\left(\frac{v}{t}\right)} \cap\left((0:-s: u) \cdot A\left(\frac{v}{t}\right)\right)
\end{aligned}
$$

Assume: Λ is rational

$$
\begin{aligned}
& \wedge: \quad \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow-\operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \\
& ((v: t),(u: s)) \mapsto \underbrace{\left((-t: 0: v) \cdot A\left(\frac{v}{t}\right)\right)}_{\text {rolling plane } \sigma\left(\frac{v}{t}\right)} \cap\left((0:-s: u) \cdot A\left(\frac{v}{t}\right)\right)
\end{aligned}
$$

The Zariski closure of the image of Λ is a surface \mathcal{L} in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$, classically called a line congruence.

$$
\begin{aligned}
& \Lambda: \quad \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow-\rightarrow \operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \\
& ((v: t),(u: s)) \mapsto \underbrace{\left((-t: 0: v) \cdot A\left(\frac{v}{t}\right)\right)}_{\text {rolling plane } \sigma\left(\frac{v}{t}\right)} \cap\left((0:-s: u) \cdot A\left(\frac{v}{t}\right)\right)
\end{aligned}
$$

The Zariski closure of the image of Λ is a surface \mathcal{L} in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$, classically called a line congruence.

Definition: The order of a line congruence $\mathcal{L} \subset \operatorname{Gr}\left(1, \mathbb{P}_{\mathbb{C}}^{3}\right)$ is the number of lines on \mathcal{L} that pass through a generic point in $\mathbb{P}_{\mathbb{C}}^{3}$.

$$
\begin{aligned}
& \wedge: \quad \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow-\operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \\
& ((v: t),(u: s)) \mapsto \underbrace{\left((-t: 0: v) \cdot A\left(\frac{v}{t}\right)\right)}_{\text {rolling plane } \sigma\left(\frac{v}{t}\right)} \cap\left((0:-s: u) \cdot A\left(\frac{v}{t}\right)\right)
\end{aligned}
$$

The Zariski closure of the image of Λ is a surface \mathcal{L} in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$, classically called a line congruence.

Definition: The order of a line congruence $\mathcal{L} \subset \operatorname{Gr}\left(1, \mathbb{P}_{\mathbb{C}}^{3}\right)$ is the number of lines on \mathcal{L} that pass through a generic point in $\mathbb{P}_{\mathbb{C}}^{3}$.

Observation: The number of times a generic point in $\mathbb{P}_{\mathbb{C}}^{3}$ is seen by a rolling-shutter camera is

$$
\operatorname{order}(\overline{\operatorname{im}(\Lambda)}) \cdot \operatorname{deg}(\Lambda) .
$$

We call this the order of the camera.

Order-One Cameras

For a rolling-shutter camera of order one,

Order-One Cameras

For a rolling-shutter camera of order one,

1) the $\operatorname{map} \Lambda$ is birational onto its image $\mathcal{L}:=\overline{\operatorname{im}(\Lambda)}$,
i.e., its inverse $\Lambda^{-1}: \mathcal{L} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ exists

Order-One Cameras

For a rolling-shutter camera of order one,

1) the $\operatorname{map} \Lambda$ is birational onto its image $\mathcal{L}:=\overline{\operatorname{im}(\Lambda)}$,
i.e., its inverse $\Lambda^{-1}: \mathcal{L} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ exists
2) and the congruence \mathcal{L} has order one,
i.e., there is a map

$$
\Gamma: \mathbb{P}^{3} \rightarrow \mathcal{L}
$$

that assigns to $X \in \mathbb{P}^{3}$ the unique line on \mathcal{L} passing through X.

Order-One Cameras

For a rolling-shutter camera of order one,

1) the $\operatorname{map} \Lambda$ is birational onto its image $\mathcal{L}:=\overline{\operatorname{im}(\Lambda)}$,
i.e., its inverse $\Lambda^{-1}: \mathcal{L} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ exists
2) and the congruence \mathcal{L} has order one,
i.e., there is a map

$$
\Gamma: \mathbb{P}^{3} \rightarrow \mathcal{L}
$$

that assigns to $X \in \mathbb{P}^{3}$ the unique line on \mathcal{L} passing through X.

Observation: The picture-taking map is $\Lambda^{-1} \circ \Gamma: \mathbb{P}^{3} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$.

Example: Global-Shutter Camera

is a static rolling-shutter camera

XI - XIX

Example: Global-Shutter Camera

is a static rolling-shutter camera of order one.

XI - XIX

Example: Global-Shutter Camera

is a static rolling-shutter camera of order one.

- Congruence $\mathcal{L}=\{$ all lines passing through camera center $c:=\operatorname{ker}(A)\}$

Example: Global-Shutter Camera

is a static rolling-shutter camera of order one.

- Congruence $\mathcal{L}=\{$ all lines passing through camera center $c:=\operatorname{ker}(A)\}$
- $\Gamma: \mathbb{P}^{3} \rightarrow \mathcal{L}, X \mapsto c \vee X$

Example: Global-Shutter Camera

is a static rolling-shutter camera of order one.

- Congruence $\mathcal{L}=\{$ all lines passing through camera center $c:=\operatorname{ker}(A)\}$
- $\Gamma: \mathbb{P}^{3} \rightarrow \mathcal{L}, X \mapsto c \vee X$
- \wedge^{-1} intersects lines on \mathcal{L} with image plane H

Order-One Cameras

Consider a rolling-shutter camera with camera-center map $c: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow\left(\mathbb{P}^{3}\right)^{*}$.

Theorem: The camera has order one if and only if

Order-One Cameras

Consider a rolling-shutter camera with camera-center map $c: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow\left(\mathbb{P}^{3}\right)^{*}$.

Theorem: The camera has order one if and only if
a) the intersection of all its rolling planes is a line K,

Order-One Cameras

Consider a rolling-shutter camera with camera-center map $c: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow\left(\mathbb{P}^{3}\right)^{*}$.

Theorem: The camera has order one if and only if
a) the intersection of all its rolling planes is a line K,
b) the rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ is birational,

Order-One Cameras

Consider a rolling-shutter camera with camera-center map $c: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow\left(\mathbb{P}^{3}\right)^{*}$.

Theorem: The camera has order one if and only if
a) the intersection of all its rolling planes is a line K,
b) the rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ is birational,
c) and the center locus $C:=\overline{\mathrm{im}(c)}$ is one of the following:

Order-One Cameras

Consider a rolling-shutter camera with camera-center map $c: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow\left(\mathbb{P}^{3}\right)^{*}$.

Theorem: The camera has order one if and only if
a) the intersection of all its rolling planes is a line K,
b) the rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ is birational,
c) and the center locus $C:=\overline{\mathrm{im}(c)}$ is one of the following:
I. C is a curve with $\#(K \cap C)=\operatorname{deg}(C)-1$ (counted with multiplicities).
II. $C=K$.
III. C is a point on K.

Order-One Congruences

Theorem [Kummer, 1866]:

A congruence $\mathcal{L} \subset \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ has order one if and only if it is one of the following:
I. \mathcal{L} consists of all lines that meet both a rational curve $C \subset \mathbb{P}^{3}$ and a line $K \subset \mathbb{P}^{3}$ satisfying $\#(K \cap C)=\operatorname{deg}(C)-1$ (counted with multiplicities).
II. There is a line $K \subset \mathbb{P}^{3}$ and a dominant morphism $\kappa: K^{\vee} \rightarrow K$ such that $\mathcal{L}=\bigcup_{\Sigma \in K \vee}\left\{L \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right) \mid \kappa(\Sigma) \in L \subset \Sigma\right\}$.
III. \mathcal{L} is the set of all lines passing through a fixed point $C \in \mathbb{P}^{3}$.
IV. \mathcal{L} consists of all secant lines of a twisted cubic curve $C \subset \mathbb{P}^{3}$.

Order-One Congruences

Theorem [Kummer, 1866]:

A congruence $\mathcal{L} \subset \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ has order one if and only if it is one of the following:
I. \mathcal{L} consists of all lines that meet both a rational curve $C \subset \mathbb{P}^{3}$ and a line $K \subset \mathbb{P}^{3}$ satisfying $\#(K \cap C)=\operatorname{deg}(C)-1$ (counted with multiplicities).
II. There is a line $K \subset \mathbb{P}^{3}$ and a dominant morphism $\kappa: K^{\vee} \rightarrow K$ such that $\mathcal{L}=\bigcup_{\Sigma \in K \vee}\left\{L \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right) \mid \kappa(\Sigma) \in L \subset \Sigma\right\}$.
III. \mathcal{L} is the set of all lines passing through a fixed point $C \in \mathbb{P}^{3}$.
IV. \mathcal{L} consists of all secant lines of a twisted cubic curve $C \subset \mathbb{P}^{3}$.

The secant congruence of the twisted cubic curve cannot be parametrized by a rolling-shutter camera!

Moduli Spaces of Order-One Cameras of Type I

A rolling-shutter camera is defined via its center map $c: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and its (possibly non-rational) rotation map $R: \mathbb{A}^{1} \rightarrow \mathrm{SO}(3)$.

Moduli Spaces of Order-One Cameras of Type I

A rolling-shutter camera is defined via its center map $c: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and its (possibly non-rational) rotation map $R: \mathbb{A}^{1} \rightarrow \mathrm{SO}(3)$.

What is the space of such order-one cameras of type I
?

Moduli Spaces of Order-One Cameras of Type I

A rolling-shutter camera is defined via its center map $c: \mathbb{P}^{1} \rightarrow-\mathbb{P}^{3}$ and its (possibly non-rational) rotation map $R: \mathbb{A}^{1} \rightarrow \mathrm{SO}(3)$.

What is the space of such order-one cameras of type I i.e., such that
a) the intersection of all rolling planes is a line K,
b) the rolling-planes map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ is birational, and
c) the center locus $C:=\overline{\mathrm{im}(c)}$ is a curve with $\#(K \cap C)=\operatorname{deg}(C)-1$

Moduli Spaces of Order-One Cameras of Type I

$$
\mathcal{H}_{d}:=\left\{\begin{array}{l|l}
(C, K) & \begin{array}{l}
C \subset \mathbb{P}^{3} \text { rational curve, deg } C=d \\
K \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \#(K \cap C)=d-1
\end{array}
\end{array}\right\}
$$

Moduli Spaces of Order-One Cameras of Type I

$$
\mathcal{H}_{d}:=\left\{\begin{array}{l|l}
(C, K) & \begin{array}{l}
C \subset \mathbb{P}^{3} \text { rational curve, deg } C=d \\
K \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \#(K \cap C)=d-1
\end{array}
\end{array}\right\}
$$

Fact [e.g. Ellia, Franco 2001]

- $\operatorname{dim} \mathcal{H}_{d}=3 d+5$
- For every line, conic, or nondegenerate rational curve C of degree $d \leq 5$, there is a line K such that $(C, K) \in \mathcal{H}_{d}$.
- For a general rational curve of degree $d \geq 6$, there is no such line K.

Moduli Spaces of Order-One Cameras of Type I

$$
\mathcal{H}_{d}:=\left\{\begin{array}{l|l}
(C, K) & \begin{array}{l}
C \subset \mathbb{P}^{3} \text { rational curve, deg } C=d \\
K \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \#(K \cap C)=d-1
\end{array}
\end{array}\right\}
$$

Fact [e.g. Ellia, Franco 2001]

- $\operatorname{dim} \mathcal{H}_{d}=3 d+5$
- For every line, conic, or nondegenerate rational curve C of degree $d \leq 5$, there is a line K such that $(C, K) \in \mathcal{H}_{d}$.
- For a general rational curve of degree $d \geq 6$, there is no such line K.

Is every $(C, K) \in \mathcal{H}_{d}$ coming from a rolling-shutter camera?

Moduli Spaces of Order-One Cameras of Type I

$$
\mathcal{H}_{d}:=\left\{\begin{array}{l|l}
(C, K) & \begin{array}{l}
C \subset \mathbb{P}^{3} \text { rational curve, deg } C=d \\
K \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right), \#(K \cap C)=d-1
\end{array}
\end{array}\right\}
$$

Fact [e.g. Ellia, Franco 2001]

- $\operatorname{dim} \mathcal{H}_{d}=3 d+5$
- For every line, conic, or nondegenerate rational curve C of degree $d \leq 5$, there is a line K such that $(C, K) \in \mathcal{H}_{d}$.
- For a general rational curve of degree $d \geq 6$, there is no such line K.

Is every $(C, K) \in \mathcal{H}_{d}$ coming from a rolling-shutter camera?
Almost: Neither C nor K are allowed to be contained in the plane at infinity

$$
H^{\infty}:=(0: 0: 0: 1)^{\vee} .
$$

Moduli Spaces of Order-One Cameras of Type I

Can every birational map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ be a rolling-planes map?

Moduli Spaces of Order-One Cameras of Type I

Can every birational map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ be a rolling-planes map? No, $\sigma^{\infty}(v: t):=\sigma(v: t) \cap H^{\infty}$ needs to be of the form $\sigma^{\infty}(v: t)=A v+B t$, where $\sum_{i} A_{i} B_{i}=0$ and $\sum_{i} A_{i}^{2}=\sum_{i} B_{i}^{2}$.

Moduli Spaces of Order-One Cameras of Type I

Can every birational map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ be a rolling-planes map?
No, $\sigma^{\infty}(v: t):=\sigma(v: t) \cap H^{\infty}$ needs to be of the form $\sigma^{\infty}(v: t)=A v+B t$, where $\sum_{i} A_{i} B_{i}=0$ and $\sum_{i} A_{i}^{2}=\sum_{i} B_{i}^{2}$.

Such a map σ^{∞} determines the maps $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ and $c: \mathbb{P}^{1} \rightarrow C$:

- $\sigma(v: t)=K \vee \sigma^{\infty}(v: t)$

Moduli Spaces of Order-One Cameras of Type I

Can every birational map $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ be a rolling-planes map?
No, $\sigma^{\infty}(v: t):=\sigma(v: t) \cap H^{\infty}$ needs to be of the form $\sigma^{\infty}(v: t)=A v+B t$, where $\sum_{i} A_{i} B_{i}=0$ and $\sum_{i} A_{i}^{2}=\sum_{i} B_{i}^{2}$.

Such a map σ^{∞} determines the maps $\sigma: \mathbb{P}^{1} \rightarrow K^{\vee}$ and $c: \mathbb{P}^{1} \rightarrow C$:

- $\sigma(v: t)=K \vee \sigma^{\infty}(v: t)$
- $c(v: t)$ is the unique point in $C \cap \sigma(v: t)$ outside of K

Moduli Spaces of Order-One Cameras of Type I

The rotation $R(v: t)$ is not yet determined! We can still choose the rotation in the rolling plane $\sigma(v: t)$ around the center $c(v: t)$.

Moduli Spaces of Order-One Cameras of Type I

The rotation $R(v: t)$ is not yet determined! We can still choose the rotation in the rolling plane $\sigma(v: t)$ around the center $c(v: t)$.

We do that by choosing the camera ray $L(v: t)$ that gets mapped to the point ($0: 1: 0$) contained in all rolling' shutters.

Moduli Spaces of Order-One Cameras of Type I

The rotation $R(v: t)$ is not yet determined! We can still choose the rotation in the rolling plane $\sigma(v: t)$ around the center $c(v: t)$.

We do that by choosing the camera ray $L(v: t)$ that gets mapped to the point ($0: 1: 0$) contained in all rolling' shutters.
This yields a rational map $\lambda: \mathbb{P}^{1} \rightarrow K,(v: t) \mapsto L(v: t) \cap K$.

Moduli Spaces of Order-One Cameras of Type I

The rotation $R(v: t)$ is not yet determined! We can still choose the rotation in the rolling plane $\sigma(v: t)$ around the center $c(v: t)$.

We do that by choosing the camera ray $L(v: t)$ that gets mapped to the point ($0: 1: 0$) contained in all rolling' shutters.
This yields a rational map $\lambda: \mathbb{P}^{1} \rightarrow K,(v: t) \mapsto L(v: t) \cap K$.
This only determines the rotation $R(v: t)$ up to rotations by 180° about either $L(v: t)$ or the normal of $\sigma(v: t)$ through $c(v: t)$.

> XVII - XIX

Moduli Spaces of Order-One Cameras of Type I

Summary:

There is a 4-to-1 correspondence between order-one rolling-shutter cameras of type I and the elements in

$$
\mathcal{R}_{I, d, \delta}:=\left\{\begin{array}{l|l}
\left(C, K, \sigma^{\infty}, \lambda\right) & \begin{array}{l}
(C, K) \in \mathcal{H}_{d}, C \not \subset H^{\infty}, K^{\infty}=K \cap H^{\infty} \text { point } \\
\sigma^{\infty}: \mathbb{P}^{1} \rightarrow\left(K^{\infty}\right)^{\vee},(v: t) \mapsto A v+B t \\
\text { where } \sum_{i} A_{i} B_{i}=0 \text { and } \sum_{i} A_{i}^{2}=\sum_{i} B_{i}^{2}, \\
\lambda: \mathbb{P}^{1} \rightarrow K, \operatorname{deg}(\lambda)=\delta
\end{array}
\end{array}\right\}
$$

over all $(d, \delta) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{\geq 0}$

Moduli Spaces of Order-One Cameras of Type I

Summary:

There is a 4-to-1 correspondence between order-one rolling-shutter cameras of type I and the elements in

$$
\mathcal{R}_{I, d, \delta}:=\left\{\begin{array}{l|l}
\left(C, K, \sigma^{\infty}, \lambda\right) & \begin{array}{l}
(C, K) \in \mathcal{H}_{d}, C \not \subset H^{\infty}, K^{\infty}=K \cap H^{\infty} \text { point } \\
\sigma^{\infty}: \mathbb{P}^{1} \rightarrow\left(K^{\infty}\right)^{\vee},(v: t) \mapsto A v+B t \\
\text { where } \sum_{i} A_{i} B_{i}=0 \text { and } \sum_{i} A_{i}^{2}=\sum_{i} B_{i}^{2}, \\
\lambda: \mathbb{P}^{1} \rightarrow K, \operatorname{deg}(\lambda)=\delta
\end{array}
\end{array}\right\}
$$

over all $(d, \delta) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{\geq 0}$

$$
\operatorname{dim} \mathcal{R}_{I, d, \delta}=(3 d+5)+1+(2 \delta+1)=3 d+2 \delta+7
$$

Images of Lines

Recall: The picture-taking map is

$$
\mathbb{P}^{3} \stackrel{\Gamma}{\perp} \mathcal{L} \xrightarrow[\rightarrow]{\wedge-1} \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}
$$

Images of Lines

Recall: The picture-taking map is

$$
\mathbb{P}^{3} \stackrel{\Gamma}{\longrightarrow} \mathcal{L} \xrightarrow[\rightarrow]{\Lambda_{-1}^{-1}} \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}
$$

Theorem: Let $\left(C, K, \sigma^{\infty}, \lambda\right) \in \mathcal{R}_{I, d, \delta}$ with λ sufficiently generic. The image of a generic line $L \subset \mathbb{P}^{3}$ is a curve of degree $d+\delta+1$ with multiplicity $d+\delta$ at the point ($0: 1: 0)$.

Images of Lines

Recall: The picture-taking map is

$$
\mathbb{P}^{3} \stackrel{\Gamma}{\perp} \mathcal{L} \xrightarrow[\rightarrow-\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}]{ }
$$

Theorem: Let $\left(C, K, \sigma^{\infty}, \lambda\right) \in \mathcal{R}_{I, d, \delta}$ with λ sufficiently generic.
The image of a generic line $L \subset \mathbb{P}^{3}$ is a curve of degree $d+\delta+1$ with multiplicity $d+\delta$ at the point $(0: 1: 0)$.

Example: $d=1$ and $\delta=0$:
rolling-shutter camera of order one maps lines to conics through a fixed point

