Changing Views on Curves and Surfaces

Kathlén Kohn (ICERM, Brown University)

joint work with Bernd Sturmfels (MPI Leipzig, UC Berkeley) and Matthew Trager (NYU)

October 6, 2018

Visual Event Surface

Consider a fixed curve or surface in 3-space.

Take pictures of that object with a moving camera.

At some camera points the image undergoes a qualitative change. These points form the visual event surface.

Section 1

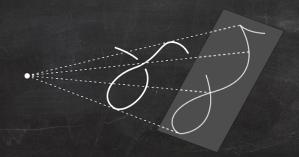
Curves

Visual Event Surface

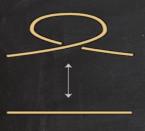
Consider a smooth curve in 3-space

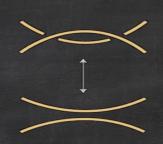
- that is not contained in any plane, and
- ♦ has degree d and genus g.

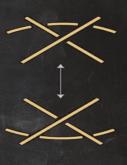
Projection from a general camera point yields a plane curve with $\frac{1}{2}(d-1)(d-2)-g$ nodes (over \mathbb{C}), and no other singularities.



The visual event surface consists of those camera points where the plane curve has a different singularity structure.







Tangential surface union of all tangent lines to the curve

Edge surface union of lines spanned by 2 points on curve whose tangent lines lie in a common plane

→ tacnode in image

Trisecant surface union of lines passing through 3 points on curve

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^3 :

- ♦ dual surface C^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to C,
- ♦ Chow hypersurface Ch(C) in $Gr(1, \mathbb{P}^3)$: lines meeting C.

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^3 :

- ♦ dual surface C^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to C,
- ♦ Chow hypersurface Ch(C) in $Gr(1, \mathbb{P}^3)$: lines meeting C.

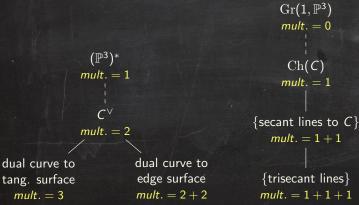
Their (iterated) singular loci yield the 3 components of the visual event surface of C:

```
Gr(1,\mathbb{P}^3)
     mult. = 0
      Ch(C)
     mult. = 1
{secant lines to C}
   mult. = 1 + 1
  {trisecant lines}
 mult. = 1 + 1 + 1
```


There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^3 :

- ♦ dual surface C^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to C,
- ♦ Chow hypersurface Ch(C) in $Gr(1, \mathbb{P}^3)$: lines meeting C.

Their (iterated) singular loci yield the 3 components of the visual event surface of C:



IV - X

Degrees

For a general space curve $\mathcal C$ of degree d and genus g, the degrees of the components of its visual event surface are

tangential surface : 2(d+g-1), edge surface : 2(d-3)(d+g-1), trisecant surface : $\frac{(d-1)(d-2)(d-3)}{3}-(d-2)g$.

d	g	tangential surface	edge surface	trisecant surface
3	0	4	0	0
4	0	6	6	2
4	1	8	8	0
5	0	8	16	8
5	1	10	20	5
5	2	12	24	2
6	0	10	30	20
6	1	12	36	16
6	2	14	42	12
6	3	16	48	8
6	4	18	54	4

Section 2

Surfaces

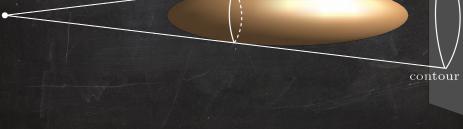
Visual Event Surface

Consider a general surface in 3-space of degree d.

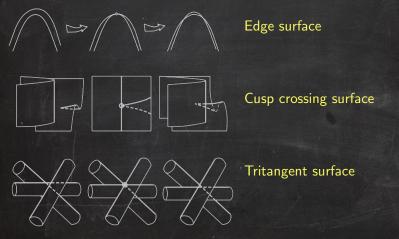
The branch locus of the projection from a general point is a plane curve with

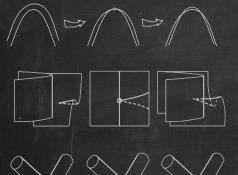
- degree d(d-1),
- $\frac{1}{2}d(d-1)(d-2)(d-3)$ nodes,
- $\overline{d}(d-1)(d-2)$ cusps,

called contour curve.



The visual event surface consists of those camera points where the contour curve has a different singularity structure.





Edge surface

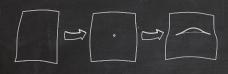
union of bitangent lines contained in bitangent planes

Cusp crossing surface

union of lines with contact of order 3+2 at 2 points of the surface



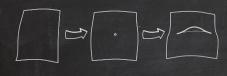
union of all tritangent lines to the surface



Parabolic surface

Over $\mathbb R$ there are 2 possible singularities in the contour curve.

Flecnodal surface



Parabolic surface

A general point on the surface has 2 lines with contact of order 3. A point is called parabolic if there is just 1 such line.

Over \mathbb{R} there are 2 possible singularities in the contour curve.

Flecnodal surface

Parabolic surface

union of lines with contact of order 3 at a parabolic point of the surface

A general point on the surface has 2 lines with contact of order 3. A point is called parabolic if there is just 1 such line.

Over $\mathbb R$ there are 2 possible singularities in the contour curve.

Flecnodal surface

union of lines with contact of order 4 at a point of the surface

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^3 :

- ♦ dual surface S^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to S,
- ♦ Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}(1, \mathbb{P}^3)$: tangent lines to S.

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^3 :

- lacktriangle dual surface S^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to S,
- ♦ Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}(1, \mathbb{P}^3)$: tangent lines to S.

Their (iterated) singular loci yield the 5 components of the visual event surface of S:

```
\mathrm{Gr}(1,\mathbb{P}^3)
                     mult. = 1
                      Hur(S)
                     mult. = 2
       {principal tangents} {bitangents}
                c = 3 mult. c = 2 + 2
{flecnodal lines} {principal bit.} {tritangents}
   mult. = 4 mult. = 3 + 2 m. = 2 + 2 + 2
```

IX - X

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^3 :

- ♦ dual surface S^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to S,
- ♦ Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}(1, \mathbb{P}^3)$: tangent lines to S.

Their (iterated) singular loci yield the 5 components of the visual event surface of S:

 $\mathrm{Gr}(1,\mathbb{P}^3)$

```
mult. = 1
            (\mathbb{P}^3)^*
                                                      Hur(S)
           mult. = 1
                                                      mult. = 2
                                        {principal tangents} {bitangents}
           mult. = 2
                                                          mult. = 2 + 2
                 dual curve to
dual curve to
                edge surface
                                 {flecnodal lines} {principal bit.} {tritangents}
parab. surface
  mult. = 3
               mult. = 2 + 2
                                    mult. = 4
                                                  mult. = 3 + 2 m. = 2 + 2 + 2
```

Degrees

For a general surface S in \mathbb{P}^3 of degree d, the degrees of the components of its visual event surface are

flecnodal surface :
$$2d(d-3)(3d-2)$$
, cusp crossing surface : $d(d-3)(d-4)(d^2+6d-4)$, tritangent surface : $\frac{1}{3}d(d-3)(d-4)(d-5)(d^2+3d-2)$, edge surface : $d(d-2)(d-3)(d^2+2d-4)$, parabolic surface : $2d(d-2)(3d-4)$.

d	flecnodal	cusp crossing	tritangent	edge	parabolic
3	0	0	0	0	30
4	80	0	0	160	128
5	260	510	0	930	330
6	576	2448	624	3168	672
7	1064	7308	3808	8260	1190

