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Linear algebra

All undergraduate students learn about Gaussian elimination, a general method for solving 
linear systems of algebraic equations:

Input:

Output: 

        x + 2y + 3z = 5
  7x + 11y + 13z = 17
19x + 23y + 29z = 31

x = -35/18
y = 2/9
z = 13/6

Solving very large linear systems is central to applied mathematics.



Nonlinear algebra

Lucky students also learn about Gröbner bases, a general method for non-linear systems 
of algebraic equations:

Input:

Output: 

x2 + y2 + z2 = 2
x3 + y3 + z3 = 3
x4 + y4 + z4 = 4

    3z12 - 12z10 - 12z9 + 12z8 + 72z7 - 66z6 - 12z4 + 12z3 - 1 = 0

4y2 + (36z11 + 54z10 - 69z9 - 252z8 - 216z7 + 573z6 + 72z5

                -12z4 - 99z3 + 10z + 3) y + 36z11 + 48z10 - 72z9

      -234z8 - 192z7 + 564z6 - 48z5 + 96z4 - 96z3 + 10z2 + 8 = 0

                   4x + 4y + 36z11 + 54z10 - 69z9 - 252z8 - 216z7

                               +573z6 + 72z5 - 12z4 - 99z3 + 10z + 3 = 0

This is very hard for large systems, but . . .



The world is non-linear!

Many models in the sciences and engineering are characterized by polynomial equations. 
Such a set is an algebraic variety.

♦ Algebraic statistics
♦ Machine learning
♦ Optimization
♦ Computer vision
♦ Robotics
♦ Complexity theory
♦ Cryptography
♦ Biology
♦ Economics
♦ ...



  

Nonlinear Algebra

Algebraic Geometry

Combinatorics

Convex Geometry

Discrete Geometry

Multilinear Algebra

Tropical Geometry

Representation Theory

Algebraic Topology

Number Theory

Numerics

...

Applications



3D reconstruction

2d pictures

given images taken by
unknown cameras, want

to recover

3d modell



Reconstruct 3D scenes and camera poses from 2D images

Rome in a Day: S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, S. Seitz, R. Szeliski



3D reconstruction pipeline

Input:
2D images

Image
matching

Identify common
points and lines
on given images

Algebraic
reconstruction

Reconstruct 3D points and
lines & camera poses

m

Output:
3D scene & cameras

nonlinear inverse problem
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Measurements are noisy, and often corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

Example: fitting a line to points

few outliers!
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Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

2d pictures

−→

3d modell

for general algebraic inverse problems, step 2) means to solve a
system of polynomial equations!

need to do this very fast, say in < 1 ms! (due to step 4))
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Which polynomial systems can be solved fast?

Typically, the systems of polynomial equations we can solve the fastest are
those whose solution sets are generically 0-dimensional (i.e., non-empty and
finite)

– these are called minimal problems in computer vision–

and whose solutions sets have small cardinality.

– known as the degree of the minimal problem
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 Given: 2 images showing 5 points
 Goal:   recover 5 points in 3D, and both (relative) camera poses

Example: The 5-Point Problem

This problem has 20 solutions for generic input images
(counted over the complex numbers).



An Underconstrained Problem

 Given: 2 images showing 4 points
 Goal:   recover 4 points in 3D, and both (relative) camera poses

This problem has infinitely many solutions for generic input images.



An Overconstrained Problem

 Given: 2 images showing 6 points
 Goal:   recover 6 points in 3D, and both (relative) camera poses

This problem has 0 solutions for generic input images.
Some input images have solutions, but they are not stable under noise in the input images!



Minimal Problems

De#nition: A 3D reconstruction problem is minimal if 

0 < # solutions < ∞ 

for generic (random) input images.

4-point problem 5-point problem 6-point problem

 ∞ solutions 20 solutions 0 solutions
not minimal    minimal       not minimal



another minimal problem
Given: point, point on line & point on line on each 2d-image
Goal: compute point, point on line & point on line in 3-space,

and the three (relative) camera poses

Generally has 312 complex solutions.



Fundamental Research Questions

Miraldo et al ECCV 2018

1. Can we list all minimal problems?

2. How many solutions do they have?

We do not only want to work with points, 

but also with lines and their incidences!



Our Result
We provide the *rst complete 
classi*cation of all minimal problems 
when all points and lines are visible in 
each given image.

Mobile User
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Our Result
We provide the *rst complete 
classi*cation of all minimal problems 
when all points and lines are visible in 
each given image.

This problem has 312 solutions
  (counted over the complex numbers).

First solver for 
such a high-
degree problem 
based on state-of-
the-art algorithms 
from numerical 
algebraic 
geometry:

TRPLP – Trifocal 

Relative Pose from 

Lines at Points, 

Fabbri et. al., 
CVPR 2020



Our Result
We provide the *rst complete 
classi*cation of all minimal problems 
when all points and lines are visible in 
each given image.

We measure the complexity of each 
minimal problem by computing its 
number of solutions 
(counted over the complex numbers).



Our Tools: Nonlinear Algebra
➔ Algebraic geometry

for proof of classiYcation

➔ Gröbner bases
symbolic computation of #sols
for 2 & 3 views

➔ Homotopy continuation & monodromy
numerical computation of #sols
for 4, 5 & 6 views



proof idea

The joint camera map is

Φ : Cm ×X −→ Ym,

where

Cm is the variety of m cameras,

X is the variety of 3D arrangements of p points & ` lines satisfying
some prescribed incidences, and

Y is the analog variety of 2D arrangements.

3D reconstruction = given (pic1, . . . ,picm) ∈ Ym, compute the preimage
Φ−1(pic1, . . . ,picm)
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proof idea
Fact 1 from algebraic geometry:
If a 3D reconstruction problem is minimal, then its joint camera map

Φ : Cm ×X −→ Ym,

satisfies dim Cm + dimX = m dimY.

There are exactly 39 reconstruction problems satisfying this dimension count:
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proof idea

Fact 2 from algebraic geometry:
A reconstruction problem with dim Cm + dimX = m dimY is minimal if and
only if its joint camera map Φ : Cm ×X −→ Ym is dominant.

Definition
A map ϕ : A→ B is surjective if for
every b ∈ B there is an a ∈ A such
that ϕ(a) = b.

Definition
A map ϕ : A→ B is dominant if for
almost every b ∈ B there is an a ∈ A
such that ϕ(a) = b.

Fact 3 from algebraic geometry:
The joint camera map Φ : Cm ×X −→ Ym is dominant if and only if its
derivative at a generic point in the domain is surjective.

Can check this computationally! It is only linear algebra!
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Now that we have a complete list of minimal problems, we can find their
solutions symbolically with Gröbner bases or numerically . . .



homotopy continuation



Monodromy

Pick random (X0,C0) 2 X ⇥ C
Set Y = �(X0,C0)

Pick Y 0 2 Y
Along a random path from Y to Y 0

track the solution (X0,C0) for Y
to a solution (X 0

0
,C 0

0
) for Y 0

via homotopy continuation

Along a random path from Y 0 to Y
track the solution (X 0

0
,C 0

0
) for Y 0

to a solution (X1,C1) for Y
via homotopy continuation

Keep on circulating between Y and Y 0

until no more solutions for Y are found

X ⇥ C???????y
Y

joint
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What is a camera?
The shown classification of minimal problems was for calibrated pinhole
cameras. This camera model is a linear projection and assumes the internal
camera parameters to be known (and normalized).

(x, y, z)

(x/z, y/z, 1)

(0, 0, 1)

H

c

The unknown camera parameters are its center position and its orientation.
They are modeled as a 3× 4 matrix

[R | t], where R ∈ SO(3), t ∈ R3,

that takes a picture of a point X ∈ R3 via [R | t] · [ X1 ] = RX + t.
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What is a camera?

When the internal camera parameters are not known, the uncalibrated
pinhole camera is an arbitrary full-rank 3× 4 matrix.

Classifying all their minimal problems turns out to be more complicated . . .
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Uncalibrated minimal problems

Theorem (K. Kiehn, A. Ahlbäck, K. Kohn; ICCV 2025):
For uncalibrated cameras, all minimal problems involving points and lines are:



m (p f , pd , l f , l a ), algebraic degree

(0,0,9,0), 363636 (1,0,4,7), 666 (1,0,5,5), 232323 (1,0,6,3), 232323 (1,0,7,1), 151515 (2,0,0,12), 444 (2,0,1,10), 666 (2,0,1,10), 161616 (2,0,2,8), 444

(2,0,2,8), 121212 (2,0,2,8), 161616 (2,0,3,6), 222 (2,0,3,6), 999 (2,0,3,6), 151515 (2,0,3,6), 171717 (2,0,4,4), 999 (2,0,4,4), 121212 (2,0,4,4), 131313

(2,0,5,2), 888 (2,0,5,2), 999 (2,0,6,0), 777 (3,0,0,9), 444 (3,0,0,9), 444 (3,0,0,9), 444 (3,0,0,9), 101010 (3,0,0,9), 101010 (3,0,0,9), 121212

(3,0,1,7), 222 (3,0,1,7), 777 (3,0,1,7), 222 (3,0,1,7), 777 (3,0,1,7), 101010 (3,0,1,7), 111111 (3,0,2,5), 222 (3,0,2,5), 555 (3,0,2,5), 777

(3,0,2,5), 888 (3,0,2,5), 999 (3,0,3,3), 666 (3,0,3,3), 666 (3,0,3,3), 666 (3,0,4,1), 333 (2,1,0,10), 444 (2,1,0,10), 444 (2,1,0,10), 444

3

(2,1,0,10), 444 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,1,8), 222 (2,1,1,8), 777 (2,1,1,8), 101010 (2,1,1,8), 222

(2,1,1,8), 777 (2,1,1,8), 101010 (2,1,1,8), 101010 (2,1,1,8), 111111 (2,1,2,6), 222 (2,1,2,6), 555 (2,1,2,6), 555 (2,1,2,6), 555 (2,1,2,6), 555

(2,1,2,6), 555 (2,1,2,6), 555 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,4,2), 111 (2,1,4,2), 111 (2,1,5,0), 111

(4,0,0,6), 222 (4,0,0,6), 555 (4,0,0,6), 222 (4,0,0,6), 555 (4,0,0,6), 666 (4,0,0,6), 555 (4,0,0,6), 777 (4,0,1,4), 333 (4,0,1,4), 555

(4,0,1,4), 555 (4,0,1,4), 666 (4,0,2,2), 333 (4,0,2,2), 444 (4,0,3,0), 333 (3,1,0,7), 222 (3,1,0,7), 222 (3,1,0,7), 222 (3,1,0,7), 222

(3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 666 (3,1,0,7), 555

Table 7: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(3,1,0,7), 666 (3,1,0,7), 666 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,1,5), 111

(3,1,1,5), 111 (3,1,1,5), 222 (3,1,1,5), 222 (3,1,1,5), 222 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333

(3,1,1,5), 444 (3,1,1,5), 444 (3,1,1,5), 444 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111

(3,1,2,3), 111 (5,0,0,3), 222 (5,0,0,3), 333 (5,0,0,3), 444 (5,0,1,1), 333 (4,1,0,4), 111 (4,1,0,4), 111 (4,1,0,4), 111 (4,1,0,4), 222

3 (4,1,0,4), 111 (4,1,0,4), 222 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 222 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 333

(4,1,1,2), 111 (4,1,1,2), 111 (4,1,1,2), 222 (4,1,1,2), 222 (4,1,2,0), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111

(3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111

(3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (6,0,0,0), 333

(5,1,0,1), 111 (5,1,0,1), 222 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 222 (4,2,0,2), 111

(4,2,0,2), 111 (4,2,1,0), 111

Table 8: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(1,0,3,6), 222 (1,0,4,4), 252525 (1,0,5,2), 303030 (1,0,6,0), 121212 (3,0,0,7), 222 (3,0,0,7), 222 (3,0,0,7), 888 (3,0,0,7), 101010 (3,0,1,5), 555

(3,0,1,5), 666 (3,0,1,5), 101010 (3,0,2,3), 444 (3,0,2,3), 666 (3,0,2,3), 777 (3,0,3,1), 333 (2,1,0,8), 222 (2,1,0,8), 999 (2,1,0,8), 222

4 (2,1,0,8), 999 (2,1,0,8), 999 (2,1,0,8), 101010 (2,1,1,6), 555 (2,1,1,6), 101010 (2,1,1,6), 555 (2,1,1,6), 101010 (2,1,1,6), 111111 (2,1,2,4), 333

(2,1,2,4), 333 (2,1,2,4), 333 (2,1,2,4), 333 (2,1,3,2), 111 (2,1,3,2), 111 (2,1,4,0), 111 (5,0,0,2), 222 (5,0,0,2), 333 (5,0,1,0), 222

(4,1,0,3), 111 (4,1,0,3), 222 (4,1,0,3), 222 (4,1,0,3), 222 (4,1,0,3), 333 (4,1,0,3), 333 (4,1,1,1), 111 (3,2,0,4), 111 (3,2,0,4), 111

(3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111

Table 9: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(1,0,3,5), 666 (1,0,4,3), 353535 (1,0,5,1), 202020 (4,0,0,4), 333 (4,0,0,4), 444 (4,0,0,4), 777 (4,0,1,2), 333 (4,0,2,0), 222 (3,1,0,5), 222

5

(3,1,0,5), 222 (3,1,0,5), 222 (3,1,0,5), 444 (3,1,0,5), 666 (3,1,0,5), 666 (3,1,0,5), 444 (3,1,0,5), 444 (3,1,0,5), 555 (3,1,1,3), 111

(3,1,1,3), 111 (3,1,1,3), 222 (3,1,1,3), 222

6 (3,0,0,6), 333 (3,0,0,6), 555 (3,0,0,6), 121212 (3,0,1,4), 555 (3,0,1,4), 888 (3,0,2,2), 333 (3,0,2,2), 444 (2,1,0,7), 555 (2,1,0,7), 555

(2,1,0,7), 101010 (2,1,0,7), 101010 (2,1,1,5), 777 (2,1,1,5), 777 (2,1,1,5), 101010 (2,1,2,3), 111 (2,1,2,3), 111 (2,1,2,3), 111

7

(2,0,0,8), 333 (2,0,1,6), 101010 (2,0,2,4), 999 (2,0,2,4), 202020 (2,0,3,2), 666 (2,0,3,2), 999 (2,0,4,0), 333

8

(1,0,3,4), 101010 (1,0,4,2), 383838 (1,0,5,0), 888

9

(0,0,6,0), 114114114

Table 10: Minimal problems with their associated degree.
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important challenge: algebra-geometry foundations of

rolling-shutter cameras that are the vast majority of today’s cameras:
take pictures by scanning across the scene, capturing the image row by row

(by Cmglee @ Wikipedia
https://creativecommons.org/licenses/by-sa/3.0/deed.en

changes: added black separating line)Algebraically:

The image of a line is typically a higher-degree curve.

A 3D point can appear more than once in the image.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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