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Geometric definition using a vanishing condition a la Wachspress?
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& P: polytope in P" with d facets
& Hp: hyperplane arrangement spanned by facets of P

¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is
a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adjp vanishes along R p~.
If Hp~ is simple, then Z(adjp) = Ap-~.
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Application 1: Barycentric Coordinates
Warren (1996)

¢ P: convex polytope in R”
& F(P): set of facets of P

V(B) < ElE F(P) &5 v(PY)
V== 15, (B 1=
Definition

The Wachspress coordinates of P are
Sdic ()« 1. #
FeF(P): u¢F

Ve VL) (T adjp- ()
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¢ P: convex polytope in R”

o up: uniform probability distribution on P

¢ moments

m(P) = / W2 . Wit for T = (A hteer in) € 7%,

Proposition (K., Shapiro, Sturmfels)

= adjp(t)
% =BT ep T A
20 veV(P)

l'1+l'2+.~+in+n)
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where cg = (
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¢ Rp: codimension-c part of Rp
blowup 7

Idea: b X smooth

polytopal hypersurface:

hypersurface hypersurface of degree d, 2
of degree d multiplicity ¢ along R, When can we find
smooth outside of Rp a polytopal hypersurface D?
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Theorem (K., Ranestad)

Let C be a combinatorial type of simple polytopes in P2 and let P be a
general polytope of type C. There is a polytopal surface D iff C is one of:

¢ 10

In that case, the general D is either an or a K3-surface.




