joint works with Kristian Ranestad (Universitetet i Oslo) / Boris Shapiro (Stockholms universitet) & Bernd Sturmfels (MPI MiS Leipzig, UC Berkeley)

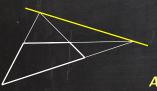
April 14, 2019

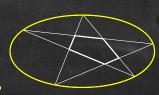
The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.





$$(\deg A_P = |V(P)| - 3)$$

The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

Generalization to higher-dimensional polytopes?

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t = (t_1, ..., t_n)$$
 and $\ell_{\nu}(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t = (t_1, ..., t_n)$$
 and $\ell_{\nu}(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(adj_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t = (t_1, ..., t_n)$$
 and $\ell_{\nu}(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(\operatorname{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- → R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

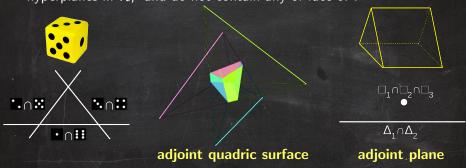
- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

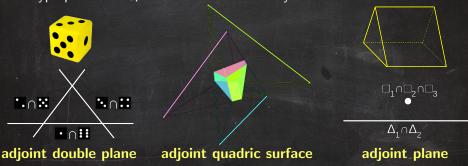
Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P



Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P



Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- ullet \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

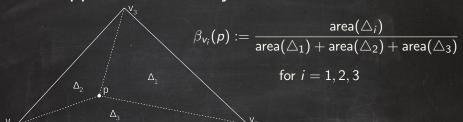
- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- → R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

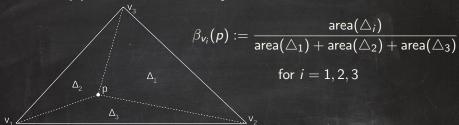
Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d-n-1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_P vanishes along \mathcal{R}_{P^*} . If \mathcal{H}_{P^*} is simple, then $Z(\operatorname{adj}_P) = A_{P^*}$.

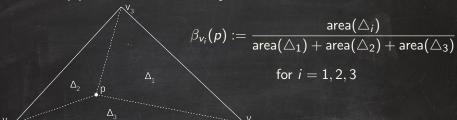




Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

- (i) $\forall u \in V(P) : \beta_u(p) > 0$,
- (ii) $\sum_{u \in V(P)} eta_u(p) = 1$, and
- (iii) $\sum_{u \in V(P)} \beta_u(p)u = p$.



Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

- (i) $\forall u \in V(P) : \beta_u(p) > 0$,
- (ii) $\sum\limits_{u\in V(P)}eta_u(p)=1$, and

(iii)
$$\sum_{u \in V(P)} \beta_u(p)u = p$$
.

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
$$v \longmapsto F_v$$

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $v \longmapsto F_v$

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$$
$$F \longmapsto v_F$$

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $v \longmapsto F_v$

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$$
 $F \longmapsto v_F$

Proposition (Warren)

The Wachspress coordinates

$$egin{align} \operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \, u
otin F} \ell_{v_F}(t) \ & \operatorname{adj}_{P^*}(t) \ & ext{for } u \in V(P) \ & \end{aligned}$$

are generalized barycentric coordinates for P.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
$$v \longmapsto F_v$$

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$$
 $F \longmapsto v_F$

Proposition (Warren)

The Wachspress coordinates

$$egin{align} \operatorname{adj}_{F_u}(t) & \prod_{F \in \mathcal{F}(P): \, u
otin F} \ell_{v_F}(t) \ & \operatorname{adj}_{P^*}(t) \ & \operatorname{adj}_{P^*}(t) \ & \end{aligned}$$
 for $u \in V(P)$

For other GBCs and applications of GBCs (e.g., mesh parameterizations in geometric modelling, deformations in computer graphics, or polyhedral FEM):

[Floater: Generalized barycentric coordinates and applications, Acta Numerica 24 (2015)]

are generalized barycentric coordinates for P.

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \dots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P):=\int_{\mathbb{D}^n}w_1^{i_1}w_2^{i_2}\ldots w_n^{i_n}d\mu_P\quad ext{for }\mathcal{I}=(i_1,i_2,\ldots,i_n)\in\mathbb{Z}^n_{\geq 0}$$

Proposition (K., Shapiro, Sturmfels)

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^n} c_{\mathcal{I}} \, m_{\mathcal{I}}(P) \, t^{\mathcal{I}} = \frac{\mathrm{adj}_P(t)}{\mathrm{vol}(P) \prod\limits_{v \in V(P)} \ell_v(t)},$$

where
$$c_{\mathcal{I}} := \binom{i_1 + i_2 + ... + i_n + n}{i_1, i_2, ..., i_n, n}$$
.

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

Idea:

$$P \longrightarrow \mathcal{H}_P$$

hypersurface of degree d

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-c part of \mathcal{R}_P

Idea:

 $P \longrightarrow \mathcal{H}_P \longrightarrow D$

hypersurface of degree *d* polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-c part of \mathcal{R}_P

Idea: $\mathbb{P}^n \xleftarrow{\text{blowup } \pi} X \text{ smooth}$ $\uparrow \qquad \qquad \uparrow$ $P \xrightarrow{} D \xrightarrow{} \tilde{D} \text{ smooth}$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-c part of \mathcal{R}_P

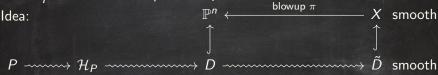
Idea: $\mathbb{P}^n \xleftarrow{\text{blowup }\pi} X \text{ smooth}$ $\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$ $P \xrightarrow{P} \mathcal{H}_P \xrightarrow{D} \text{smooth}$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-c part of \mathcal{R}_{P}



hypersurface of degree d polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-c part of \mathcal{R}_{P}

Idea: $\mathbb{P}^n \xleftarrow{\text{blowup } \pi} X \text{ smooth}$ $\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$ $P \xrightarrow{\mathcal{P}} \mathcal{H}_P \xrightarrow{\mathcal{P}} D \xrightarrow{\text{smooth}} \tilde{D} \text{ smooth}$

hypersurface of degree d polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

 $ilde{D}$ has a unique adjoint A in X, and thus a unique canonical divisor: $A\cap ilde{D}$. Moreover, $\pi(A)=A_P$.

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-c part of \mathcal{R}_{P}

blowup π Idea: X smooth $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D \xrightarrow{} D \xrightarrow{}$ polytopal hypersurface: hypersurface of degree d, hypersurface When can we find multiplicity c along \mathcal{R}_{P}^{c} . of degree d smooth outside of \mathcal{R}_P a polytopal hypersurface D?

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \hat{D} in X is a hypersurface A in X s.t. $[A] = K_X + [D]$.

Proposition (K., Ranestad)

 \ddot{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap D$. Moreover, $\pi(A) = A_P$.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

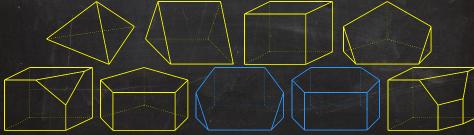
Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let $\mathcal C$ be a combinatorial type of simple polytopes in $\mathbb P^3$ and let P be a general polytope of type $\mathcal C$. There is a polytopal surface D iff $\mathcal C$ is one of:



In that case, the general D is either an elliptic surface or a K3-surface.