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Generalization to higher-dimensional polytopes?
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Geometric definition using a vanishing condition a la Wachspress?
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& P: polytope in P" with d facets
& Hp: hyperplane arrangement spanned by facets of P

¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is
a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adjp vanishes along R p~.
If Hp~ is simple, then Z(adjp) = Ap-~.
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Definition

Let P be a convex polytope in R”. A set of
functions {8, : P° > R | u € V(P)} is called

generalized barycentric coordinates for P
Barycentric coordinates for

if, for all p € P°,

VTV simplices are uniquely
(P yOE e ey determined from (i)-(iii).
(i) wC a(p) = L, and

ueV(P) This is not true for other polytopes!
(i) 95" Bu(plu =

ueV(P)
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¢ P: convex polytope in R”
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Proposition (Warren) For other GBCs and

The Wachspress coordinates applications of GBCs (e.g.,
: mesh parameterizations in

adjr 5} Fef(l;l):ugFevF(t) geometric modelling,

Bu(t) := adipe (t) deformations in-computer

2 graphics, or polyhedral FEM):

for u € V(P) [Floater: Generalized barycentric

coordinates and applications, Acta
are generalized barycentric coordinates for P. Numerica 24 (2015)]
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¢ P: convex polytope in R”

o up: uniform probability distribution on P

¢ moments

m(P) = / W2 . Wit for T = (A hteer in) € 7%,

Proposition (K., Shapiro, Sturmfels)

= adjp(t)
% =BT ep T A
20 veV(P)

l'1+l'2+.~+in+n)

11402yeeeyinyn

where cg = (
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Theorem (K., Ranestad)

Let C be a combinatorial type of simple polytopes in P2 and let P be a
general polytope of type C. There is a polytopal surface D iff C is one of:

¢ 10

In that case, the general D is either an or a K3-surface.




