The Adjoint of a Polytope

Kathlén Kohn (Universitetet i Oslo)

June 7, 2019
The Adjoint of a Polygon
Wachspress (1975)

Definition
The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

A_P
(deg $A_P = |V(P)| - 3$)
The Adjoint of a Polygon
Wachspress (1975)

Definition
The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$\deg A_P = |V(P)| - 3$

Generalization to higher-dimensional polytopes?
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

$\text{adj} \tau(P)(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t)$,

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \cdots - v_n t_n$.

Theorem (Warren)

$\text{adj} \tau(P)(t)$ is independent of the triangulation $\tau(P)$.

So $\text{adj} P := \text{adj} \tau(P)$.

II - If P is a polygon, then $Z(\text{adj} P) = A_P^*$.

(Recall: $P^* = \{x \in \mathbb{R}^n | \forall v \in V(P): \ell_v(x) \geq 0\}$ dual polytope of P.)
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

\[\text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t), \]

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

I. $\text{adj}_{\tau(P)}(P)(t)$ is independent of the triangulation $\tau(P)$. So $\text{adj}(P) := \text{adj}_{\tau(P)}(P)$.

II. If P is a polygon, then $Z(\text{adj}(P)) = A_P^*$. (Recall: $P^* = \{x \in \mathbb{R}^n | \forall v \in V(P): \ell_v(x) \geq 0\}$ dual polytope of P.)
The Adjoint of a Polytope

Warren (1996)

- \(P \): convex polytope in \(\mathbb{R}^n \)
- \(V(P) \): set of vertices of \(P \)
- \(\tau(P) \): triangulation of \(P \) using only the vertices of \(P \)

Definition

\[\text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t), \]

where \(t = (t_1, \ldots, t_n) \) and \(\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n \).

Theorem (Warren)

\(\text{adj}_{\tau(P)}(t) \) is independent of the triangulation \(\tau(P) \). So \(\text{adj}_P := \text{adj}_{\tau(P)} \).
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

$$\text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

1. $\text{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\text{adj}_P := \text{adj}_{\tau(P)}$.
2. If P is a polygon, then $Z(\text{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

$$\text{adj}_\tau(P)(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

1. $\text{adj}_\tau(P)(t)$ is independent of the triangulation $\tau(P)$. So $\text{adj}_P := \text{adj}_\tau(P)$.
2. If P is a polygon, then $Z(\text{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{ x \in \mathbb{R}^n | \forall v \in V(P) : \ell_v(x) \geq 0 \}$ dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
The Adjoint of a Polytope

- \(P \): polytope in \(\mathbb{P}^n \)
- \(\mathcal{H}_P \): hyperplane arrangement spanned by facets of \(P \)
- \(\mathcal{R}_P \): residual arrangement of linear spaces that are intersections of hyperplanes in \(\mathcal{H}_P \) and do not contain any of face of \(P \)

Theorem (K., Ranestad)

If \(\mathcal{H}_P \) is simple (i.e. through any point in \(\mathbb{P}^n \) pass \(\leq n \) hyperplanes), there is a unique hypersurface \(A_P \) in \(\mathbb{P}^n \) of degree \(d - n - 1 \) passing through \(\mathcal{R}_P \). \(A_P \) is called the adjoint of \(P \).
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)
If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d-n-1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),
The Adjoint of a Polytope

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): hyperplane arrangement spanned by facets of \(P \)
- \(\mathcal{R}_P \): residual arrangement of linear spaces that are intersections of hyperplanes in \(\mathcal{H}_P \) and do not contain any of face of \(P \)

Theorem (K., Ranestad)

If \(\mathcal{H}_P \) is simple (i.e. through any point in \(\mathbb{P}^n \) pass \(\leq n \) hyperplanes), there is a unique hypersurface \(A_P \) in \(\mathbb{P}^n \) of degree \(d - n - 1 \) passing through \(\mathcal{R}_P \). \(A_P \) is called the adjoint of \(P \).
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.
The Adjoint of a Polytope

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): hyperplane arrangement spanned by facets of \(P \)
- \(\mathcal{R}_P \): residual arrangement of linear spaces that are intersections of hyperplanes in \(\mathcal{H}_P \) and do not contain any of face of \(P \)

Theorem (K., Ranestad)

If \(\mathcal{H}_P \) is simple (i.e. through any point in \(\mathbb{P}^n \) pass \(\leq n \) hyperplanes), there is a unique hypersurface \(A_P \) in \(\mathbb{P}^n \) of degree \(d - n - 1 \) passing through \(\mathcal{R}_P \). \(A_P \) is called the adjoint of \(P \).
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the **adjoint** of P.

Theorem Diagrams

- Adjoint double plane
- Adjoint quadric surface
- Adjoint plane
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the **adjoint** of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_P vanishes along \mathcal{R}_P^*. If \mathcal{H}_P^* is simple, then $Z(\text{adj}_P) = A_P^*$.

IV - X
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the **adjoint** of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_P vanishes along \mathcal{R}_P^\ast. If \mathcal{H}_P^\ast is simple, then $Z(\text{adj}_P) = A_P^\ast$.
Application 1: Barycentric Coordinates

\[\beta_{v_i}(p) := \frac{\text{area}(\triangle_i)}{\text{area}(\triangle_1) + \text{area}(\triangle_2) + \text{area}(\triangle_3)} \]

for \(i = 1, 2, 3 \)
Application 1: Barycentric Coordinates

\[\beta_{v_i}(p) := \frac{\text{area}(\Delta_i)}{\text{area}(\Delta_1) + \text{area}(\Delta_2) + \text{area}(\Delta_3)} \]

for \(i = 1, 2, 3 \)

Definition

Let \(P \) be a convex polytope in \(\mathbb{R}^n \). A set of functions \(\{ \beta_u : P^\circ \rightarrow \mathbb{R} \mid u \in V(P) \} \) is called generalized barycentric coordinates for \(P \) if, for all \(p \in P^\circ \),

(i) \(\forall u \in V(P) : \beta_u(p) > 0 \),

(ii) \(\sum_{u \in V(P)} \beta_u(p) = 1 \), and

(iii) \(\sum_{u \in V(P)} \beta_u(p) u = p \).
Application 1: Barycentric Coordinates

\[\beta_{v_i}(p) := \frac{\text{area}(\triangle_i)}{\text{area}(\triangle_1) + \text{area}(\triangle_2) + \text{area}(\triangle_3)} \]

for \(i = 1, 2, 3 \)

Definition

Let \(P \) be a convex polytope in \(\mathbb{R}^n \). A set of functions \(\{ \beta_u : P^\circ \to \mathbb{R} \mid u \in V(P) \} \) is called **generalized barycentric coordinates** for \(P \) if, for all \(p \in P^\circ \),

(i) \(\forall u \in V(P) : \beta_u(p) > 0 \),

(ii) \(\sum_{u \in V(P)} \beta_u(p) = 1 \), and

(iii) \(\sum_{u \in V(P)} \beta_u(p) u = p \).

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!
Application 1: Barycentric Coordinates

Warren (1996)

- \(P \): convex polytope in \(\mathbb{R}^n \)
- \(\mathcal{F}(P) \): set of facets of \(P \)

Proposition (Warren)

The Wachspress coordinates

\[
\beta_u(t) := \frac{\text{adj} F_u(t)}{\prod_{F \in \mathcal{F}(P)} (u \in F) \ell_F(t)}
\]

for \(u \in V(P) \)

are generalized barycentric coordinates for \(P \).

For other GBCs and applications of GBCs (e.g., mesh parameterizations in geometric modelling, deformations in computer graphics, or polyhedral FEM):

Application 1: Barycentric Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

\[V(P) \overset{1:1}{\longleftrightarrow} \mathcal{F}(P^*) \]

\[v \rightarrow F_v \]

Proposition (Warren)
The Wachspress coordinates $\beta_u(t) := \text{adj} F_u(t) \cdot \prod_{F \in \mathcal{F}(P)} u/\in F \ell v F(t)$ for $u \in V(P)$ are generalized barycentric coordinates for P.

For other GBCs and applications of GBCs (e.g., mesh parameterizations in geometric modelling, deformations in computer graphics, or polyhedral FEM): [Floater: Generalized barycentric coordinates and applications, Acta Numerica 24 (2015)]
Application 1: Barycentric Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

\[V(P) \leftrightarrow_{1:1} \mathcal{F}(P^*) \]
\[\nu \mapsto F_\nu \]

\[\mathcal{F}(P) \leftrightarrow_{1:1} V(P^*) \]
\[F \mapsto v_F \]

Proposition (Warren)

The Wachspress coordinates

\[\beta_u(t) := \text{adj} F_u(t) \cdot \prod_{F \in \mathcal{F}(P)} u \in F \ell v_F(t) \]

for $u \in V(P)$

For other GBCs and applications of GBCs (e.g., mesh parameterizations in geometric modelling, deformations in computer graphics, or polyhedral FEM):

Application 1: Barycentric Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \overset{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$

$$\nu \overset{\longrightarrow}{\mapsto} F_\nu$$

$$\mathcal{F}(P) \overset{1:1}{\longleftrightarrow} V(P^*)$$

$$F \overset{\longrightarrow}{\mapsto} \nu_F$$

Proposition (Warren)

The Wachspress coordinates

$$\beta_u(t) := \frac{\text{adj}_{F_u}(t) \cdot \prod_{F \in \mathcal{F}(P): u \notin F} \ell_{\nu_F}(t)}{\text{adj}_{P^*}(t)}$$

for $u \in V(P)$

are generalized barycentric coordinates for P.
Application 1: Barycentric Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

\[
V(P) \leftrightarrow^{1:1} \mathcal{F}(P^*) \\
\nu \mapsto F_\nu \\
\mathcal{F}(P) \leftrightarrow^{1:1} V(P^*) \\
F \mapsto \nu_F
\]

Proposition (Warren)

The Wachspress coordinates

\[
\beta_u(t) := \frac{\text{adj}_{F_u}(t) \cdot \prod_{F \in \mathcal{F}(P): u \notin F} \ell_{\nu_F}(t)}{\text{adj}_{P^*}(t)}
\]

for $u \in V(P)$

are generalized barycentric coordinates for P.

For other GBCs and applications of GBCs (e.g., mesh parameterizations in geometric modelling, deformations in computer graphics, or polyhedral FEM):

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P: uniform probability distribution on P
Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P: uniform probability distribution on P
- moments

$$m_{I}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \ldots w_n^{i_n} d\mu_P \quad \text{for } I = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}^n_{\geq 0}$$
Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- \(P \): convex polytope in \(\mathbb{R}^n \)
- \(\mu_P \): uniform probability distribution on \(P \)
- moments

\[
m_\mathcal{I}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \ldots w_n^{i_n} d\mu_P \quad \text{for} \quad \mathcal{I} = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_\geq^n
\]

Proposition (K., Shapiro, Sturmfels)

\[
\sum_{\mathcal{I} \in \mathbb{Z}_\geq^n} c_\mathcal{I} m_\mathcal{I}(P) t^\mathcal{I} = \frac{\text{adj}_P(t)}{\text{vol}(P) \prod_{v \in V(P)} \ell_v(t)},
\]

where \(c_\mathcal{I} := \binom{i_1+i_2+\ldots+i_n+n}{i_1,i_2,\ldots,i_n,n} \).
Application 3: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V

Theorem (Aluffi, (Harris, K., Ranestad))

The Segre class of S_A in the Chow ring of V is

$$n! X_1 \cdots X_n \text{adj}_N A \left(-X \right) \prod_{v \in V} (N_A) \ell_v \left(-X \right)$$

Example: $n = 2$

$A = \{ (2,6), (3,4), (4,3), (5,1), (7,0) \}$
Application 3: Segre Classes of Monomial Schemes

- **V:** smooth variety
- **X_1, \ldots, X_n:** smooth hypersurfaces meeting with normal crossings in V
- **X^I:** hypersurface obtained by taking X_{i_j} with multiplicity i_j

 for $I = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$
Application 3: Segre Classes of Monomial Schemes

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- X^I: hypersurface obtained by taking X_{ij} with multiplicity i_j for $I = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^n$ defines a **monomial subscheme**

$S_\mathcal{A} = \bigcap_{I \in \mathcal{A}} X^I$
Application 3: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- $X^\mathcal{I}$: hypersurface obtained by taking X_i with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}^n_{\geq 0}$
- $\mathcal{A} \subset \mathbb{Z}^n_{\geq 0}$ defines a **monomial subscheme**

$S_\mathcal{A} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^\mathcal{I}$ and a Newton region $N_\mathcal{A} \subset \mathbb{R}^n_{\geq 0}$

Example: $n = 2$

$\mathcal{A} = \{(2, 6), (3, 4), (4, 3), (5, 1), (7, 0)\}$
Application 3: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- $X^\mathcal{I}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j
 for $\mathcal{I} = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^n$ defines a **monomial subscheme**

$S_\mathcal{A} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$ and a Newton region $N_\mathcal{A} \subset \mathbb{R}_{\geq 0}^n$

Theorem (Aluffi, (Harris, K., Ranestad))

The Segre class of $S_\mathcal{A}$ in the Chow ring of V is

$$\frac{n! \ X_1 \cdots X_n \ adj_{N_\mathcal{A}}(-X)}{\prod_{\nu \in V(N_\mathcal{A})} \ell_{\nu}(-X)}$$

Example: $n = 2$

$\mathcal{A} = \{ (2, 6), (3, 4), (4, 3), (5, 1), (7, 0) \}$

![Diagram](image)
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P

Idea:

$$P \xrightarrow{\text{hypersurface}} \mathcal{H}_P$$

hypersurface of degree d
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c: codimension-c part of \mathcal{R}_P

Idea:

\[
\begin{align*}
P \xrightarrow{\text{hypersurface}} \mathcal{H}_P & \xrightarrow{\text{polytopal hypersurface}} D \\
& \text{hypersurface of degree } d, \\
& \text{multiplicity } c \text{ along } \mathcal{R}_P^c, \\
& \text{smooth outside of } \mathcal{R}_P
\end{align*}
\]
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}^c_P: codimension-c part of \mathcal{R}_P

Idea:

$$
\begin{array}{c}
\mathbb{P}^n & \xrightarrow{\text{blowup } \pi} & X \text{ smooth} \\
\uparrow & & \uparrow \\
P \xrightarrow{\text{hypersurface of degree } d} & \xrightarrow{\text{polytopal hypersurface}} & D \text{ smooth} \\
\end{array}
$$

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}^c_P, smooth outside of \mathcal{R}_P
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c: codimension-c part of \mathcal{R}_P

Idea:

\[\begin{array}{ccc}
\mathbb{P}^n & \xrightarrow{\text{blowup } \pi} & X \text{ smooth} \\
\uparrow & & \uparrow \\
\mathcal{H}_P & \xrightarrow{\text{polytopal hypersurface:}} & D \text{ smooth} \\
\mathcal{H}_P & \xrightarrow{\text{hypersurface of degree } d, \text{ multiplicity } c \text{ along } \mathcal{R}_P^c, \text{ smooth outside of } \mathcal{R}_P} & \tilde{D} \\
\end{array} \]

Adjunction formula:

\[K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}} \]
Why “Adjoint”?

- **P**: polytope in \(\mathbb{P}^n \) with \(d \) facets
- **\(\mathcal{H}_P \)**: simple hyperplane arrangement spanned by facets of \(P \)
- **\(\mathcal{R}_P^c \)**: codimension-\(c \) part of \(\mathcal{R}_P \)

Idea:

- Blowup \(\pi \)
- \(\mathbb{P}^n \leftarrow X \) smooth
- \(P \overset{\mathcal{H}_P}{\longrightarrow} D \) polytopal hypersurface: hypersurface of degree \(d \), multiplicity \(c \) along \(\mathcal{R}_P^c \), smooth outside of \(\mathcal{R}_P \)
- \(D \overset{\tilde{D}}{\longrightarrow} \tilde{D} \) smooth

Adjunction formula: \(K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}} \)

Def.: An **adjoint to \(\tilde{D} \) in \(X \)** is a hypersurface \(A \) in \(X \) s.t. \([A] = K_X + [\tilde{D}]\).
Why “Adjoint”?

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
- \(R^c_P \): codimension-\(c \) part of \(R_P \)

Idea:

\[
\begin{array}{ccc}
\mathbb{P}^n & \xrightarrow{\text{blowup } \pi} & X \text{ smooth} \\
\uparrow & & \uparrow \\
P & \rightarrow & \mathcal{H}_P & \rightarrow & D & \rightarrow & \tilde{D} \text{ smooth}
\end{array}
\]

\(P \rightarrow \mathcal{H}_P \rightarrow D \rightarrow \tilde{D} \)

hypersurface of degree \(d \)

polytopal hypersurface: hypersurface of degree \(d \), multiplicity \(c \) along \(R^c_P \), smooth outside of \(R_P \)

Adjunction formula: \(K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}} \)

Def.: An \textbf{adjoint to } \tilde{D} \textbf{ in } X \text{ is a hypersurface } A \text{ in } X \text{ s.t. } [A] = K_X + [\tilde{D}] \).

Proposition (K., Ranestad)

\(\tilde{D} \) has a unique adjoint \(A \) in \(X \), and thus a unique canonical divisor: \(A \cap \tilde{D} \). Moreover, \(\pi(A) = A_P \).
Why “Adjoint”?

- **P**: polytope in \(\mathbb{P}^n \) with \(d \) facets
- **\(\mathcal{H}_P \)**: simple hyperplane arrangement spanned by facets of \(P \)
- **\(\mathcal{R}_P^c \)**: codimension-\(c \) part of \(\mathcal{R}_P \)

Idea:

\[
\begin{array}{ccc}
\mathbb{P}^n & \xrightarrow{\text{blowup } \pi} & X \text{ smooth} \\
\uparrow & & \uparrow \\
\mathcal{H}_P & \rightarrow & D \text{ polytopal hypersurface: hypersurface of degree } d, \text{ multiplicity } c \text{ along } \mathcal{R}_P^c, \text{ smooth outside of } \mathcal{R}_P
\end{array}
\]

Adjunction formula:
\[
K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}
\]

Def.: An **adjoint to \(\tilde{D} \) in \(X \)** is a hypersurface \(A \) in \(X \) s.t. \([A] = K_X + [\tilde{D}]\).

Proposition (K., Ranestad):
\(\tilde{D} \) has a unique adjoint \(A \) in \(X \), and thus a unique canonical divisor: \(A \cap \tilde{D} \). Moreover, \(\pi(A) = A_P \).
Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2. There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.
Polytopal Hypersurfaces

Proposition (K., Ranestad)
Let P be a general d-gon in \mathbb{P}^2. There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)
Let C be a combinatorial type of simple polytopes in \mathbb{P}^3 and let P be a general polytope of type C. There is a polytopal surface D iff C is one of:

In that case, the general D is either an elliptic surface or a K3-surface.
Thanks for your attention