Kathlén Kohn (Universitetet i Oslo)

June 7, 2019

The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$(\deg A_P = |V(P)| - 3)$

The Adjoint of a Polygon

Wachspress (1975)

Definition

The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$(\deg A_P = |V(P)| - 3)$

Generalization to higher-dimensional polytopes?

Warren (1996)

• *P*: convex polytope in \mathbb{R}^n

V(P): set of vertices of P

• $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

• P: convex polytope in \mathbb{R}^n

- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$$

where $t = (t_1, ..., t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Warren (1996)

• P: convex polytope in \mathbb{R}^n

- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

 $\textbf{Definition} \qquad \text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$

where $t = (t_1, ..., t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

 $\operatorname{I} \operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

Warren (1996)

• P: convex polytope in \mathbb{R}^n

- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

$$\textbf{Definition} \qquad \text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$$

where $t = (t_1, ..., t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I adj_{τ(P)}(t) is independent of the triangulation τ(P). So adj_P := adj_{τ(P)}. II If P is a polygon, then Z(adj_P) = A_{P*}. (Recall: P* = {x ∈ ℝⁿ | ∀v ∈ V(P) : ℓ_v(x) ≥ 0} dual polytope of P)

Warren (1996)

• P: convex polytope in \mathbb{R}^n

- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

where $t = (t_1, ..., t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I adj_{τ(P)}(t) is independent of the triangulation τ(P). So adj_P := adj_{τ(P)}. II If P is a polygon, then Z(adj_P) = A_{P*}. (Recall: P* = {x ∈ ℝⁿ | ∀v ∈ V(P) : ℓ_v(x) ≥ 0} dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?

• P: polytope in \mathbb{P}^n

• \mathcal{H}_P : hyperplane arrangement spanned by facets of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

• P: polytope in \mathbb{P}^n

• \mathcal{H}_P : hyperplane arrangement spanned by facets of P

R_P: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

• P: polytope in \mathbb{P}^n

 $\cdot \cap ::$

• \mathcal{H}_P : hyperplane arrangement spanned by facets of P

R_P: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- *P*: polytope in ℙⁿ *H_P*: hyperplane arrangement spanned by facets of *P*
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

P: polytope in ℙⁿ *H_P*: hyperplane arrangement spanned by facets of *P R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

Theorem (K., Ranestad)

• •

 \cap

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

 $\Delta_1 \cap \Delta_2$

$\Delta_1 \cap \Delta_2$ adjoint plane

 $\Box_1 \cap \Box_2$

Theorem (K., Ranestad)

• •

•

 \cap

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

adjoint quadric surface

adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

The Adjoint of a Polytope P: polytope in Pⁿ with d facets H_P: hyperplane arrangement spanned by facets of P R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

adjoint double plane adjoint quadric surface adjoint plane Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

 $\Delta_1 \cap \Delta_2$

- P: polytope in \mathbb{P}^n with d facets
- *H_P*: hyperplane arrangement spanned by facets of *P*
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_{P} vanishes along \mathcal{R}_{P^*} . If \mathcal{H}_{P^*} is simple, then $Z(\operatorname{adj}_P) = A_{P^*}$.

٧.,

Definition

Let *P* be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u : P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for *P* if, for all $p \in P^\circ$,

(i)
$$\forall u \in V(P) : \beta_u(p) > 0$$
,

(ii)
$$\sum_{u \in V(P)} \beta_u(p) = 1$$
, and

(iii)
$$\sum_{u\in V(P)}\beta_u(p)u=p.$$

 $egin{array}{l} eta_{v_i}(p) := rac{ ext{area}(riangle_i)}{ ext{area}(riangle_1) + ext{area}(riangle_2) + ext{area}(riangle_3)} \ & ext{for } i = 1, 2, 3 \end{array}$

Definition

Let *P* be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u : P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for *P* if, for all $p \in P^\circ$,

(i) $\forall u \in V(P) : \beta_u(p) > 0$,

(ii)
$$\sum_{u \in V(P)} \beta_u(p) = 1$$
, and

(iii) $\sum_{u \in V(P)} \beta_u(p) u = p.$

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!

Warren (1996)

P: convex polytope in ℝⁿ *F*(*P*): set of facets of *P*

Warren (1996)

P: convex polytope in ℝⁿ
F(P): set of facets of P
V(P) ↔ F(P*)
v ↦ F_v

Warren (1996)

P: convex polytope in ℝⁿ
F(P): set of facets of P
V(P) ↔ F(P*)
v ↦ F_v

 $\begin{array}{c} \mathcal{F}(P) \xleftarrow{1:1} V(P^*) \\ F \longmapsto v_F \end{array}$

Warren (1996)

P: convex polytope in ℝⁿ *F*(*P*): set of facets of *P V*(*P*) ↔ *F*(*P**) *V* ↦ *F*(*P**)

 $\begin{array}{c} \mathcal{F}(P) \xleftarrow{1:1} V(P^*) \\ F \longmapsto v_F \end{array}$

Proposition (Warren) The Wachspress coordinates

$$eta_u(t) := rac{\mathrm{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \ u
otin F} \ell_{v_F}(t)}{\mathrm{adj}_{P^*}(t)}$$

for $u \in V(P)$

are generalized barycentric coordinates for P.

Warren (1996)

• *P*: convex polytope in \mathbb{R}^n • $\mathcal{F}(P)$: set of facets of *P* $V(P) \xleftarrow{1:1} \mathcal{F}(P^*)$ $\underline{V \longmapsto F_V}$

Proposition (Warren) The Wachspress coordinates

 $\beta_{u}(t) := \frac{\operatorname{adj}_{F_{u}}(t) \cdot \prod_{F \in \mathcal{F}(P): \ u \notin F} \ell_{v_{F}}(t)}{\operatorname{adj}_{P^{*}}(t)}$ for $u \in V(P)$

are generalized barycentric coordinates for P.

 $\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$ $F \longmapsto v_F$

For other GBCs and applications of GBCs (e.g., mesh parameterizations in geometric modelling, deformations in computer graphics, or polyhedral FEM): [Floater: Generalized barycentric coordinates and applications, Acta Numerica 24 (2015)]

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- *P*: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \dots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- *P*: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \dots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Proposition (K., Shapiro, Sturmfels)

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^n} c_{\mathcal{I}} \, m_{\mathcal{I}}(P) \, t^{\mathcal{I}} = \frac{\operatorname{adj}_{\mathrm{P}}(t)}{\operatorname{vol}(P) \prod_{\nu \in V(P)} \ell_{\nu}(t)}$$

where $c_{\mathcal{I}} := {i_1 + i_2 + ... + i_n + n \choose i_1, i_2, ..., i_n, n}$.

♦ V: smooth variety

• X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V

- V: smooth variety
- X₁,...,X_n: smooth hypersurfacs meeting with normal crossings in V
 X^I: hypersurface obtained by taking X_{ij} with multiplicity ij for I = (i₁, i₂,..., i_n) ∈ Zⁿ_{≥0}

Aluffi

- V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_i} with multiplicity i_j

for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$

• $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{n}$ defines a monomial subscheme

 $S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$

- V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j

for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$

• $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{n}$ defines a monomial subscheme

$$\mathcal{S}_{\mathcal{A}} = igcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example: n = 2 $\mathcal{A} = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

- V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j

for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$ • $\mathcal{A} \subset \mathbb{Z}_{>0}^n$ defines a monomial subscheme

$$\mathcal{S}_\mathcal{A} = igcap_{\mathcal{I} \in \mathcal{A}} X^\mathcal{I}$$
 and a Newton region $N_\mathcal{A} \subset \mathbb{R}^n_{\geq 0}$

Example: n = 2 $\mathcal{A} = \{(2, 6), (3, 4), (4, 3), (5, 1), (7, 0)\}$

Theorem (Aluffi, (Harris, K., Ranestad)) The Segre class of S_A in the Chow ring of V is

 $\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod_{\nu \in V(N_{\mathcal{A}})} \ell_{\nu}(-X)}$

• P: polytope in \mathbb{P}^n with d facets

ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

Idea:

 $P \longrightarrow \mathcal{H}_P$

hypersurface of degree d

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

• \mathcal{R}_{P}^{c} : codimension-*c* part of \mathcal{R}_{P}

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} \mathcal{D}$

hypersurface of degree d polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

blowup π

X smooth

D smooth

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

rp∍n

• \mathcal{R}_{P}^{c} : codimension-*c* part of \mathcal{R}_{P}

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} \mathcal{H}_P$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

blowup π

X smooth

D smooth

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

₽D*n*

• \mathcal{R}_{P}^{c} : codimension-*c* part of \mathcal{R}_{P}

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D \xrightarrow{} D$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

blowup π

X_ smooth

D smooth

- P: polytope in \mathbb{P}^n with d facets
- *H*_P: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-*c* part of \mathcal{R}_{P}

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D \xrightarrow{} D$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$ Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

blowup π

X_ smooth

D smooth

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-*c* part of \mathcal{R}_{P}

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D \xrightarrow{} D$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$ Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

 \tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A) = A_P$.

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-*c* part of \mathcal{R}_{P}

Idea: $P \xrightarrow{blowup \pi} X \text{ smooth}$ $f \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \widehat{D} \text{ smooth}$ $P \xrightarrow{hypersurface}_{of degree d} D \xrightarrow{polytopal hypersurface}_{multiplicity c along \mathcal{R}_{P,}^{c}}$ When can we find a polytopal hypersurface D?

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$ Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad) \tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A) = A_P$.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let C be a combinatorial type of simple polytopes in \mathbb{P}^3 and let P be a general polytope of type C. There is a polytopal surface D iff C is one of:

In that case, the general D is either an elliptic surface or a K3-surface.

