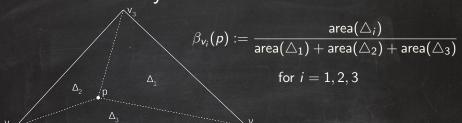
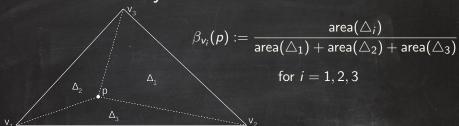
Projective geometry of Wachspress coordinates

Kathlén Kohn ICERM (Brown University) & Universitetet i Oslo

joint work with Kristian Ranestad (Universitetet i Oslo)





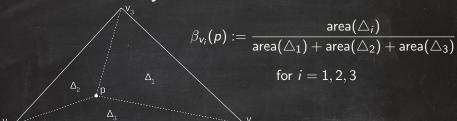
Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

(i)
$$\forall u \in V(P) : \beta_u(p) > 0$$
,

(ii)
$$\sum_{u \in V(P)} eta_u(p) = 1$$
, and

(iii)
$$\sum_{u \in V(P)} \beta_u(p)u = p$$
.



Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

- (i) $\forall u \in V(P) : \beta_u(p) > 0$,
- $egin{pmatrix} ext{(ii)} & \sum\limits_{u \in V(P)} eta_u(p) = 1, ext{ and } \end{pmatrix}$

 $(iii) \sum_{u \in V(P)} \beta_u(p)u = p.$

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric coordinates which are rational functions of minimal degree.

The Adjoint of a Polygon

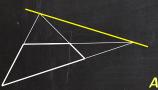
Wachspress (1975)

The Adjoint of a Polygon

Wachspress (1975)

Definition

The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.



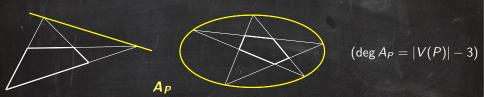
$$(\deg A_P = |V(P)| - 3)$$

The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.



Generalization to higher-dimensional polytopes?

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- \bullet $\tau(P)$: triangulation of P using only the vertices of P

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$$

where
$$t = (t_1, \ldots, t_n)$$
 and $\ell_{\nu}(t) = 1 - \nu_1 t_1 - \nu_2 t_2 - \ldots - \nu_n t_n$.

Theorem (Warren)

I $\operatorname{adj}_{ au(P)}(t)$ is independent of the triangulation au(P). So $\operatorname{adj}_P := \operatorname{adj}_{ au(P)}$.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t = (t_1, ..., t_n)$$
 and $\ell_{\nu}(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(\operatorname{adj}_{P}) = A_{P^*}$. (Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)

(Recall:
$$P^* = \{x \in \mathbb{R}^n \mid orall v \in V(P) : \ell_{
u}(x) \geq 0\}$$
 dual polytope of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t = (t_1, ..., t_n)$$
 and $\ell_{\nu}(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(\operatorname{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \ge 0\}$ dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

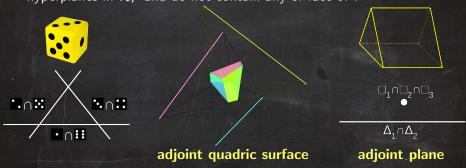
Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P



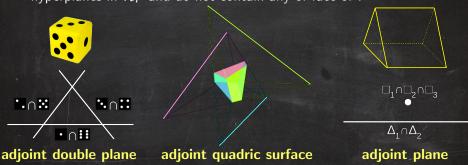
Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P



Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P



Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- ullet \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- ullet \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d-n-1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_P vanishes along \mathcal{R}_{P^*} . If \mathcal{H}_{P^*} is simple, then $Z(\operatorname{adj}_P) = A_{P^*}$.

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
$$v \longmapsto F_v$$

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
$$v \longmapsto F_v$$

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$$
 $F \longmapsto v_F$

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$ $F \longmapsto v_F$

Definition (Warren)

The Wachspress coordinates of P are

$$\forall u \in V(P): \quad \beta_u(t) := \frac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \ u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}.$$

Wachspress Map

$$\forall u \in V(P): \quad \beta_u(t) := \frac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \, u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}.$$

- P: polytope in \mathbb{P}^n with d facets
- ullet \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

Wachspress Map

$$\forall u \in V(P): \quad \beta_u(t) := \frac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \, u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}.$$

- P: polytope in \mathbb{P}^n with d facets
- ullet \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

The numerators of the Wachspress coordinates define the Wachspress map:

$$\omega_P: \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1},$$

$$\forall u \in V(P): \quad \beta_u(t) := \frac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \, u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}.$$

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

The numerators of the Wachspress coordinates define the Wachspress map:

$$\omega_P: \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1},$$

$$t \longmapsto \left(\prod_{F \in \mathcal{F}(P): u \notin F} \ell_F(t)\right)_{u \in V(P)}$$

where ℓ_F is a homogeneous linear equation defining the hyperplane $\operatorname{span}\{F\}$.

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$,

$$t \longmapsto \left(\prod_{F \in \mathcal{F}(P): u \notin F} \ell_F(t)\right)_{u \in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement $\mathcal{R}_P.$

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$,

$$t \longmapsto \left(\prod_{F \in \mathcal{F}(P): u \notin F} \ell_F(t)\right)_{u \in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement $\mathcal{R}_P.$

$$\Rightarrow \forall u \in V(P) : \omega_{P,u} \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$$

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$,

$$t \longmapsto \left(\prod_{F \in \mathcal{F}(P): \, u \notin F} \ell_F(t)\right)_{u \in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement \mathcal{R}_P .

$$\Rightarrow \forall u \in V(P) : \omega_{P,u} \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$$

Theorem (K., Ranestad)

 $\dim \Omega_P = |V(P)|$, so $\{\omega_{P,u} \mid u \in V(P)\}$ is a basis of Ω_P .

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$,

$$t \longmapsto \left(\prod_{F \in \mathcal{F}(P): \, u \notin F} \ell_F(t)\right)_{u \in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement $\mathcal{R}_P.$

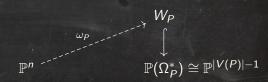
$$\Rightarrow \forall u \in V(P) : \omega_{P,u} \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$$

Theorem (K., Ranestad)

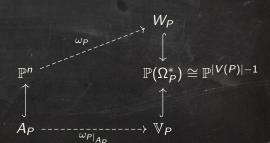
 $\dim \Omega_P = |V(P)|$, so $\{\omega_{P,u} \mid u \in V(P)\}$ is a basis of Ω_P .

$$\Rightarrow \omega_P: \mathbb{P}^n \dashrightarrow \mathbb{P}(\Omega_P^*) \cong \mathbb{P}^{|V(P)|-1}$$

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety



- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety
- $\mathbb{V}_P := \operatorname{span}\{\omega_P(A_P)\}$



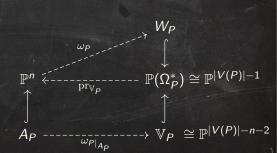
- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety
- $\mathbb{V}_P := \operatorname{span}\{\omega_P(A_P)\}$

Theorem (K., Ranestad)

$$\dim \mathbb{V}_P = |V(P)| - n - 2.$$

The projection $\mathbb{P}(\Omega_{>}^*) \longrightarrow \mathbb{P}^n$

$$\operatorname{pr}_{\mathbb{V}_P}: \mathbb{P}(\Omega_P^*) \dashrightarrow \mathbb{P}^n$$
 from \mathbb{V}_P

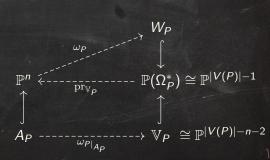


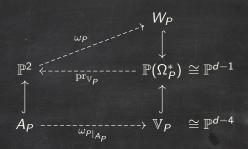
- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety
- $\mathbb{V}_P := \operatorname{span}\{\omega_P(A_P)\}$

Theorem (K., Ranestad)

 $\dim \mathbb{V}_P = |V(P)| - n - 2.$

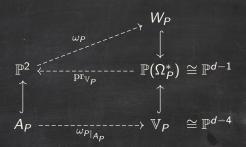
The projection $\operatorname{pr}_{\mathbb{V}_P}: \mathbb{P}(\Omega_P^*) \dashrightarrow \mathbb{P}^n$ from \mathbb{V}_P restricted to the Wachspress variety W_P is the inverse of the Wachspress map ω_P .





Theorem (Irving, Schenck)

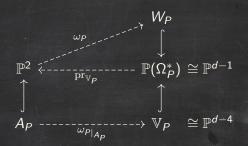
Let P be a d-gon in \mathbb{P}^2 .



Theorem (Irving, Schenck)

Let P be a d-gon in \mathbb{P}^2 .

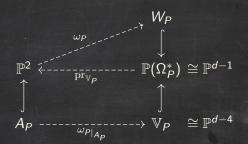
• The Wachspress variety W_P is a surface of degree $\binom{d-2}{2} + 1$.



Theorem (Irving, Schenck)

Let P be a d-gon in \mathbb{P}^2 .

- The Wachspress variety W_P is a surface of degree $\binom{d-2}{2} + 1$.
- The image of the adjoint curve A_P under ω_P is a curve of degree $\binom{d-3}{2}$, if d > 4.



Theorem (Irving, Schenck)

Let P be a d-gon in \mathbb{P}^2 .

- The Wachspress variety W_P is a surface of degree $\binom{d-2}{2}+1$.
- The image of the adjoint curve A_P under ω_P is a curve of degree $\binom{d-3}{2}$, if d > 4.
- If d = 4, the image of the adjoint line A_P is a point.

 $\square_1 \cap \square_2 \cap \square_3$

 $\Delta_1 \cap \Delta_2$

adjoint plane

F

 \mathcal{R}_P A_P

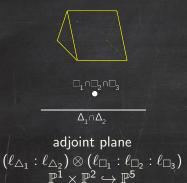
 \mathcal{R}_{P}

 A_P ω_P

adjoint plane

 $\Delta_1 \cap \Delta_2$

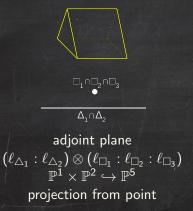
$$(\ell_{\triangle_1}:\ell_{\triangle_2})\otimes (\ell_{\square_1}:\ell_{\square_2}:\ell_{\square_3})$$



P

 \mathcal{R}_P A_P

 ω_P W_P

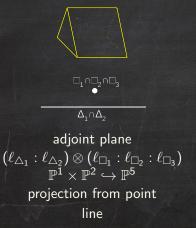


P

 \mathcal{R}_{P}

 A_P

 $\omega_P \ W_P \ \omega_{P|_{A_P}}$



P

 \mathcal{R}_{P}

 A_P

 ω_P W_P

 $\omega_{P|_{A_P}}$ $\omega_P(A_P)$

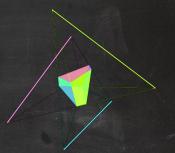
 $\begin{array}{lll} A_P & \text{adjoint plane} \\ \omega_P & (\ell_{\triangle_1}:\ell_{\triangle_2}) \otimes (\ell_{\square_1}:\ell_{\square_2}:\ell_{\square_3}) \\ W_P & \mathbb{P}^1 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^5 \\ \omega_{P|_{A_P}} & \text{projection from point} \end{array}$

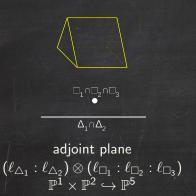
line

P

 \mathcal{R}_{P}

 $\omega_P(A_P)$





P

 \mathcal{R}_{P}

 A_P

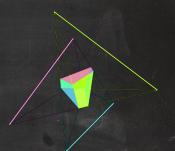
 ω_P W_P

 $\omega_{P|_{A_P}}$ $\omega_P(A_P)$

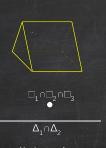
adjoint quadric surface $(\ell_1:\ell_6)\otimes (\ell_2:\ell_5)\otimes (\ell_3:\ell_4)$

 \mathcal{R}_P A_P ω_P W_P $\omega_{P|_{A_P}}$ $\omega_P(A_P)$

P



adjoint quadric surface $\begin{array}{l} (\ell_1:\ell_6)\otimes (\ell_2:\ell_5)\otimes (\ell_3:\ell_4) \\ \mathbb{P}^1\times \mathbb{P}^1\times \mathbb{P}^1\hookrightarrow \mathbb{P}^7 \end{array}$

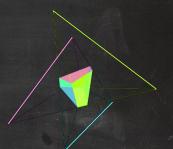


 \mathcal{R}_P A_P ω_P $\omega_{P|_{A_P}}$

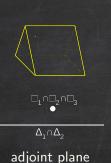
 $\omega_P(A_P)$

P

adjoint plane $(\ell_{\triangle_1}:\ell_{\triangle_2})\otimes(\ell_{\square_1}:\ell_{\square_2}:\ell_{\square_3})$ $\mathbb{P}^1\times\mathbb{P}^2\hookrightarrow\mathbb{P}^5$ projection from point line



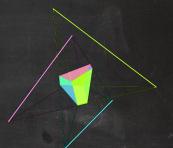
adjoint quadric surface $\begin{array}{l} (\ell_1:\ell_6)\otimes (\ell_2:\ell_5)\otimes (\ell_3:\ell_4)\\ \mathbb{P}^1\times \mathbb{P}^1\times \mathbb{P}^1\hookrightarrow \mathbb{P}^7\\ \text{contracts ruling of lines} \end{array}$



 \mathcal{R}_P A_P ω_P W_P $\omega_{P|_{A_P}}$ $\omega_P(A_P)$

P

 $\begin{array}{c} (\ell_{\triangle_1}:\ell_{\triangle_2})\otimes (\ell_{\square_1}:\ell_{\square_2}:\ell_{\square_3}) \\ \mathbb{P}^1\times\mathbb{P}^2\hookrightarrow\mathbb{P}^5 \\ \text{projection from point} \\ \\ \text{line} \end{array}$



adjoint quadric surface $\begin{pmatrix} \ell_1 : \ell_6 \end{pmatrix} \otimes \begin{pmatrix} \ell_2 : \ell_5 \end{pmatrix} \otimes \begin{pmatrix} \ell_3 : \ell_4 \end{pmatrix} \\ \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^7 \\ \text{contracts ruling of lines} \\ \text{twisted cubic curve}$

- P: polytope in \mathbb{P}^3 with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

- P: polytope in \mathbb{P}^3 with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- ullet a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad)

The Wachspress variety $W_P\subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - \frac{1}{2}(d-3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6}(d-3)(d-4)(d-11)$$

and sectional genus
$$b + 2c + 1 + \frac{1}{2}(d-3)(d-6)$$
.

- P: polytope in \mathbb{P}^3 with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad)

The Wachspress variety $W_P\subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - \frac{1}{2}(d-3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6}(d-3)(d-4)(d-11)$$

and sectional genus $b + 2c + 1 + \frac{1}{2}(d-3)(d-6)$.

The image of the adjoint surface $\widehat{A_P}$ under $\widehat{\omega}_P$ is a surface iff P is neither a tetrahedron, a triangular prism nor a cube.

- P: polytope in \mathbb{P}^3 with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad)

The Wachspress variety $W_P\subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - \frac{1}{2}(d-3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6}(d-3)(d-4)(d-11)$$

and sectional genus $b + 2c + 1 + \frac{1}{2}(d-3)(d-6)$.

The image of the adjoint surface A_P under ω_P is a surface iff P is neither a tetrahedron, a triangular prism nor a cube. In that case, its degree is

$$2b + 4c - a - \frac{1}{2}(d-3)(d-4)(d-6) = b + 2c + 1 - \frac{1}{6}(d-3)(d^2 - 12d + 38)$$

and its sectional genus is $b + 2c + 1 - \frac{1}{2}(d-3)(d-4)$.

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

Idea:

$$P \longrightarrow \mathcal{H}_P$$

hypersurface of degree d

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-c part of \mathcal{R}_P

Idea:

 $P \longrightarrow \mathcal{H}_P \longrightarrow D$

hypersurface of degree *d* polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-c part of \mathcal{R}_P

Idea: $\mathbb{P}^n \xleftarrow{\text{blowup } \pi} X \text{ smooth}$ $\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$ $P \xrightarrow{\mathcal{P}} \mathcal{H}_P \xrightarrow{\mathcal{P}} D \xrightarrow{\mathcal{P}} D \xrightarrow{\text{smooth}} D$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-c part of \mathcal{R}_P

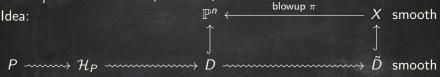
Idea: $\mathbb{P}^n \xleftarrow{\text{blowup } \pi} X \text{ smooth}$ $\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$ $P \xrightarrow{} D \xrightarrow{} D \text{ smooth}$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-c part of \mathcal{R}_P



hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-c part of \mathcal{R}_{P}

Idea: $\mathbb{P}^n \xleftarrow{\text{blowup } \pi} X \text{ smooth}$ $\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$ $P \xrightarrow{\mathcal{P}} \mathcal{H}_P \xrightarrow{\mathcal{P}} D \xrightarrow{\mathcal{P}} \text{smooth}$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

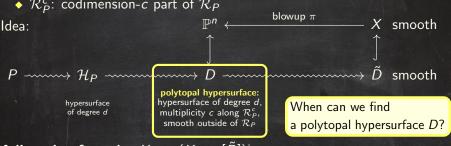
Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

 \tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A\cap \tilde{D}$. Moreover, $\pi(A)=A_P$.

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P}^{c} : codimension-c part of \mathcal{R}_{P}



Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \hat{D} in X is a hypersurface A in X s.t. $[A] = K_X + [D]$.

Proposition (K., Ranestad)

 \ddot{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap D$. Moreover, $\pi(A) = A_P$.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

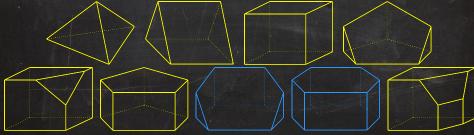
Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let $\mathcal C$ be a combinatorial type of simple polytopes in $\mathbb P^3$ and let P be a general polytope of type $\mathcal C$. There is a polytopal surface D iff $\mathcal C$ is one of:



In that case, the general D is either an elliptic surface or a K3-surface.

comb. type	facet sizes	\mathcal{R}_P	(a,b,c)	W_P (deg., sec. genus)	$\overline{w_P(A_P)}$ (deg., sec. genus)	$\dim \Gamma_P$	$\overline{w_P(D)}$ (deg., sec. genus)
	3333		(0, 0, 0)	$\mathbb{P}^3 $ $(1,0)$	0	34	$\begin{array}{c} \text{minimal K3} \\ \text{(smooth quartic in } \mathbb{P}^3\text{)} \end{array}$
	44433	•	(1, 0, 0)	$\mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5$ $(3,0)$	line	23	$\begin{array}{c} \text{minimal K3} \\ (8,5) \end{array}$
	444444		(0, 0, 0)	$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7$ $(6,1)$	${\it twisted cubic curve}$	26	$\begin{array}{c} \text{minimal K3} \\ (12,7) \end{array}$
	554433	\ <u>•</u> •/	(2, 2, 0)	$W_P\subset \mathbb{P}^7 \ (8,3)$	quadric surface $(2,0)$	17	non-minimal K3 $(14,9)$
	5554443	**	(1, 6, 0)	$W_P \subset \mathbb{P}^9$ $(15,9)$	$\frac{\operatorname{del}\operatorname{Pezzo}\operatorname{surface}\operatorname{in}\mathbb{P}^5}{(5,1)}$	7	non-minimal K3 $(19, 12)$
	5544444		(0, 5, 0)	Fano 3-fold in \mathbb{P}^9 (14, 8)	rational scroll in \mathbb{P}^5 $(4,0)$	12	non-minimal K3 $(18, 11)$
	6644433		(3, 6, 1)	$W_P \subset \mathbb{P}^9$ $(17,11)$	rational elliptic surface in \mathbb{P}^5 $(7,3)$	4	$\begin{array}{c} {\rm minimal elliptic} \\ (22,15) \end{array}$
	66444444	/	(0, 12, 2)	$W_P \subset \mathbb{P}^{11}$ $(27,22)$	elliptic K3-surface in \mathbb{P}^7 $(12,7)$	3	$\begin{array}{c} {\rm minimalelliptic} \\ (26,17) \end{array}$
	55554444		(0, 16, 0)	$W_P \subset \mathbb{P}^{11}$ $(27, 22)$	K3-surface in \mathbb{P}^7 (12, 7)	1	non-minimal K3 $(24, 15)$