The Adjoint Polynomial of a Polytope

Kathlén Kohn

joints works with Kristian Ranestad (Universitetet i Oslo), Boris Shapiro (Stockholms universitet) & Bernd Sturmfels (MPI MiS Leipzig / UC Berkeley)

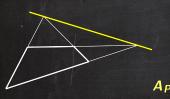
November 6, 2019

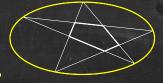
The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.





 $(\deg A_P = |V(P)| - 3)$

The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

Generalization to higher-dimensional polytopes?

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- \bullet $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t=(t_1,\ldots,t_n)$$
 and $\ell_{\nu}(t)=1-\nu_1t_1-\nu_2t_2-\ldots-\nu_nt_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t=(t_1,\ldots,t_n)$$
 and $\ell_{\nu}(t)=1-\nu_1t_1-\nu_2t_2-\ldots-\nu_nt_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(\operatorname{adj}_P) = A_{P^*}$. (Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t = (t_1, ..., t_n)$$
 and $\ell_{\nu}(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(\operatorname{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- → R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

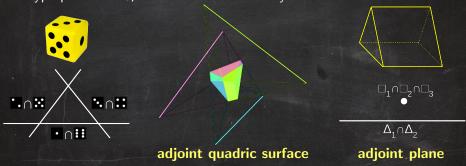
Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P



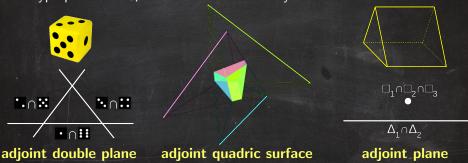
Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P



Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- → R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P



Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- ullet \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

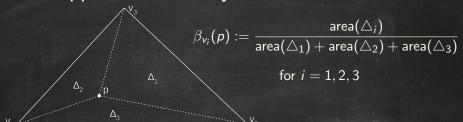
- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- → R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

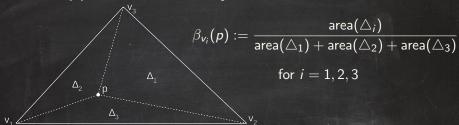
Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d-n-1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_P vanishes along \mathcal{R}_{P^*} . If \mathcal{H}_{P^*} is simple, then $Z(\operatorname{adj}_P) = A_{P^*}$.

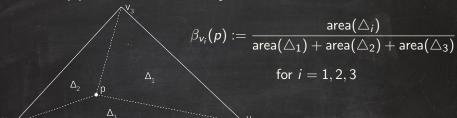




Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

- (i) $\forall u \in V(P) : \beta_u(p) > 0$,
- (ii) $\sum_{u \in V(P)} eta_u(p) = 1$, and
- (iii) $\sum_{u \in V(P)} \beta_u(p) u = p$.



Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

- (i) $\forall u \in V(P) : \beta_u(p) > 0$,
- (ii) $\sum\limits_{u\in V(P)}eta_u(p)=1$, and

(iii) $\sum_{u \in V(P)} \beta_u(p)u = p$.

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!

Application 1: Barycentric Coordinates Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

Application 1: Barycentric Coordinates Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
$$v \longmapsto F_v$$

Application 1: Barycentric Coordinates Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $v \longmapsto F_v$

$$\mathcal{F}(P) \stackrel{\text{1:1}}{\longleftrightarrow} V(P^*)$$
 $F \longmapsto v_F$

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $v \longmapsto F_v$

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$$
 $F \longmapsto v_F$

Proposition (Warren)

The Wachspress coordinates

$$egin{align} \operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \, u
otin F} \ell_{v_F}(t) \ & \operatorname{adj}_{P^*}(t) \ & ext{for } u \in V(P) \ & \end{aligned}$$

are generalized barycentric coordinates for P.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $V \longmapsto F_V$

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$$
 $F \longmapsto v_F$

Proposition (Warren)

The Wachspress coordinates

$$eta_u(t) := rac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \, u
otin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}$$
 for $u \in V(P)$

For other GBCs and applications of GBCs (e.g., mesh parameterizations in geometric modelling, deformations in computer graphics, or polyhedral FEM):
[Floater: Generalized barycentric coordinates and applications, Acta Numerica 24 (2015)]

are generalized barycentric coordinates for P.

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \dots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P):=\int_{\mathbb{R}^n}w_1^{i_1}w_2^{i_2}\ldots w_n^{i_n}d\mu_P\quad ext{for }\mathcal{I}=(i_1,i_2,\ldots,i_n)\in\mathbb{Z}^n_{\geq 0}$$

Proposition (K., Shapiro, Sturmfels)

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^n} c_{\mathcal{I}} \, m_{\mathcal{I}}(P) \, t^{\mathcal{I}} = \frac{\mathrm{adj}_P(t)}{\mathrm{vol}(P) \prod\limits_{v \in V(P)} \ell_v(t)},$$

where
$$c_{\mathcal{I}} := \binom{i_1 + i_2 + ... + i_n + n}{i_1, i_2, ..., i_n, n}$$
.

♦ V: smooth variety

 $lacktriangledown X_1, \dots, X_n$: smooth hypersurfacs meeting with normal crossings in V

- ♦ V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}^n_{\geq 0}$

Aluffi

- ♦ V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^n$ defines a monomial subscheme

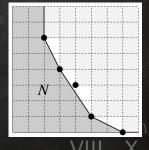
$$S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$

Aluffi

- ♦ V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{>0}^n$ defines a monomial subscheme

$$S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example: n = 2 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$



♦ V: smooth variety

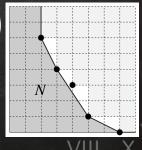
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{>0}^n$ defines a monomial subscheme

$$S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example:
$$n = 2$$

 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

$$N_{\mathcal{A}} := \mathbb{R}^n_{\geq 0} \setminus \operatorname{convHull}\left(igcup_{\mathcal{I} \in \mathcal{A}} (\mathbb{R}^n_{> 0} + \mathcal{I})
ight)$$



- ♦ V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfacs meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- ullet $\mathcal{A}\subset\mathbb{Z}^n_{\geq 0}$ defines a monomial subscheme

$$S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example:
$$n = 2$$

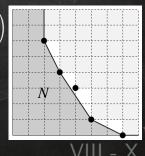
 $\mathcal{A} = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

$$N_{\mathcal{A}} := \mathbb{R}^n_{\geq 0} \setminus \operatorname{convHull} \left(\bigcup_{\mathcal{I} \in \mathcal{A}} (\mathbb{R}^n_{> 0} + \mathcal{I}) \right)$$

Theorem (Aluffi, (K., Ranestad))

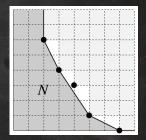
The Segre class of $S_{\mathcal{A}}$ in the Chow ring of V is

$$\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod\limits_{v \in V(N_{\mathcal{A}})} \ell_v(-X)}, \text{ if } N_{\mathcal{A}} \text{ is finite.}$$



• N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n

Example: n = 2 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$



• N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n

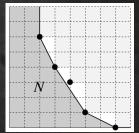
• for vertex v_i at ∞ in direction of e_i : $\ell_{v_i}(t) := -t_i$

Theorem (Aluffi, (K., Ranestad))

The Segre class of S_A in the Chow ring of V is

$$\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod\limits_{v \in V(N_{\mathcal{A}})} \ell_v(-X)}.$$

Example: n = 2 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$



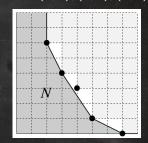
- N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n
- for vertex v_i at ∞ in direction of e_i : $\ell_{v_i}(t) := -t_i$

Theorem (Aluffi, (K., Ranestad))

The Segre class of S_A in the Chow ring of V is

$$\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod\limits_{v \in V(N_{\mathcal{A}})} \ell_v(-X)}.$$

Example: n = 2 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$



$$2X_1X_2 \operatorname{adj}_{N_A}(-X_1, -X_2)$$

$$\overline{X_2(1+2X_1+6X_2)(1+3X_1+4X_2)(1+5X_1+X_2)(1+7X_1)}$$

where

$$\operatorname{adj}_{N_{\mathcal{A}}}(t) = 1 - 15t_1 - 22t_2 + 71t_1^2 + 212t_1t_2 + 95t_2^2 - 105t_1^3 - 476t_1^2t_2 - 511t_1t_2^2 - 84t_2^3.$$

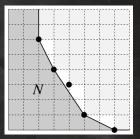
Aluffi

Observation:

 $\operatorname{adj}_{N_{\mathcal{A}}}(-X)$ has positive integer coefficients

Example:
$$n = 2$$

 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$



Example:
$$2X_1X_2 \text{ adj}_{N_A}(-X_1, -X_2)$$

$$X_2(1+2X_1+6X_2)(1+3X_1+4X_2)(1+5X_1+X_2)(1+7X_1)$$

where

 $\operatorname{adj}_{N_{\mathcal{A}}}(t) = 1 - 15t_1 - 22t_2 + 71t_1^2 + 212t_1t_2 + 95t_2^2 - 105t_1^3 - 476t_1^2t_2 - 511t_1t_2^2 - 84t_2^3.$

Aluffi

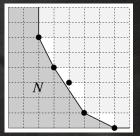
Observation:

 $\operatorname{adj}_{N_{\mathcal{A}}}(-X)$ has positive integer coefficients

Open Question: What do they count?

Example:
$$n = 2$$

 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$



$$2X_1X_2 \operatorname{adj}_{N_A}(-X_1, -X_2)$$

$$\overline{X_2(1+2X_1+6X_2)(1+3X_1+4X_2)(1+5X_1+X_2)(1+7X_1)}$$

where

$$\operatorname{adj}_{N_{\mathcal{A}}}(t) = 1 - 15t_1 - 22t_2 + 71t_1^2 + 212t_1t_2 + 95t_2^2 - 105t_1^3 - 476t_1^2t_2 - 511t_1t_2^2 - 84t_2^3.$$