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The Adjoint of a Polygon
Wachspress (1975)

Definition
The adjoint AP of a polygon P ⊂ P2 is the minimal degree curve
passing through the intersection points of pairs of lines
containing non-adjacent edges of P.

AP

(degAP = |V (P)| − 3)

Generalization to higher-dimensional polytopes?
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The Adjoint of a Polytope
Warren (1996)

P: convex polytope in Rn

V (P): set of vertices of P
τ(P): triangulation of P using only the vertices of P

Definition adjτ(P)(t) :=
∑

σ∈τ(P)

vol(σ)
∏

v∈V (P)\V (σ)

`v (t),

where t = (t1, . . . , tn) and `v (t) = 1− v1t1 − v2t2 − . . .− vntn.

Theorem (Warren)

I adjτ(P)(t) is independent of the triangulation τ(P). So adjP := adjτ(P).

II If P is a polygon, then Z (adjP) = AP∗ .
(Recall: P∗ = {x ∈ Rn | ∀v ∈ V (P) : `v (x) ≥ 0} dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?
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The Adjoint of a Polytope
P: polytope in Pn

with d facets

HP : hyperplane arrangement spanned by facets of P

RP : residual arrangement of linear spaces that are intersections of
hyperplanes in HP and do not contain any of face of P

adjoint double plane adjoint quadric surface adjoint plane

Theorem (K., Ranestad)

If HP is simple (i.e. through any point in Pn pass ≤ n hyperplanes),

there is
a unique hypersurface AP in Pn of degree d − n − 1 passing through RP .
AP is called the adjoint of P.
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Application 1: Barycentric Coordinates

βvi (p) :=
area(4i )

area(41) + area(42) + area(43)

for i = 1, 2, 3

Definition
Let P be a convex polytope in Rn. A set of
functions {βu : P◦ → R | u ∈ V (P)} is called
generalized barycentric coordinates for P
if, for all p ∈ P◦,

(i) ∀u ∈ V (P) : βu(p) > 0,

(ii)
∑

u∈V (P)

βu(p) = 1, and

(iii)
∑

u∈V (P)

βu(p)u = p.

Barycentric coordinates for
simplices are uniquely

determined from (i)-(iii).

This is not true for other polytopes!
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Application 1: Barycentric Coordinates
Warren (1996)

P: convex polytope in Rn

F(P): set of facets of P

V (P)
1:1←→ F(P∗)

v 7−→ Fv

F(P)
1:1←→ V (P∗)

F 7−→ vF

Proposition (Warren)

The Wachspress coordinates

βu(t) :=

adjFu
(t) ·

∏
F∈F(P): u/∈F

`vF (t)

adjP∗(t)

for u ∈ V (P)

are generalized barycentric coordinates for P.

For other GBCs and
applications of GBCs (e.g.,
mesh parameterizations in

geometric modelling,
deformations in computer

graphics, or polyhedral FEM):
[Floater: Generalized barycentric

coordinates and applications, Acta
Numerica 24 (2015)]
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Application 2: Moments of Probability Distributions
K., Shapiro, Sturmfels

P: convex polytope in Rn

µP : uniform probability distribution on P

moments

mI(P) :=

∫
Rn

w i1
1 w

i2
2 . . .w

in
n dµP for I = (i1, i2, . . . , in) ∈ Zn

≥0

Proposition (K., Shapiro, Sturmfels)∑
I∈Zn

≥0

cI mI(P) tI =
adjP(t)

vol(P)
∏

v∈V (P)

`v (t)
,

where cI :=
(i1+i2+...+in+n

i1,i2,...,in,n

)
.
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Application 3: Segre Classes of Monomial Schemes
Aluffi

V : smooth variety
X1, . . . ,Xn: smooth hypersurfacs meeting with normal crossings in V

X I : hypersurface obtained by taking Xij with multiplicity ij
for I = (i1, i2, . . . , in) ∈ Zn

≥0
A ⊂ Zn

≥0 defines a monomial subscheme

SA =
⋂
I∈A

X I

and a Newton region NA ⊂ Rn
≥0

NA := Rn
≥0 \ convHull

( ⋃
I∈A

(Rn
>0 + I)

)

Theorem (Aluffi, (K., Ranestad))

The Segre class of SA in the Chow ring of V is

n!X1 · · ·Xn adjNA(−X )∏
v∈V (NA)

`v (−X )
, if NA is finite.

Example: n = 2
A = {(2, 6), (3, 4),

(4, 3), (5, 1), (7, 0)}
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Application 3: Segre Classes of Monomial Schemes
Aluffi

NA may have vertices at ∞ in the direction
of the standard basis vectors e1, . . . , en

for vertex vi at ∞ in direction of ei :
`vi (t) := −ti

Theorem (Aluffi, (K., Ranestad))

The Segre class of SA in the Chow ring of V is

n!X1 · · ·Xn adjNA(−X )∏
v∈V (NA)

`v (−X )
.

Example: n = 2
A = {(2, 6), (3, 4),

(4, 3), (5, 1), (7, 0)}

Example: 2X1X2 adjNA(−X1,−X2)

X2(1 + 2X1 + 6X2)(1 + 3X1 + 4X2)(1 + 5X1 + X2)(1 + 7X1)
, where

adjNA
(t) = 1−15t1−22t2+71t21 +212t1t2+95t22−105t31−476t21 t2−511t1t

2
2−84t32 .
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Application 3: Segre Classes of Monomial Schemes
Aluffi

Observation:
adjNA(−X ) has positive integer coefficients

Open Question: What do they count?
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