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The Adjoint of a Polygon
Wachspress (1975)

Definition
The adjoint AP of a polygon P ⊂ P2 is the minimal degree curve
passing through the intersection points of pairs of lines
containing non-adjacent edges of P.

AP

(degAP = |V (P)| − 3)

Generalization to higher-dimensional polytopes?
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The Adjoint of a Polytope
Warren (1996)

P: convex polytope in Rn

V (P): set of vertices of P

τ(P): triangulation of P using only the vertices of P

Definition adjτ(P)(t) :=
∑

σ∈τ(P)

vol(σ)
∏

v∈V (P)\V (σ)

`v (t),

where t = (t1, . . . , tn) and `v (t) = 1− v1t1 − v2t2 − . . .− vntn.

Theorem (Warren)

I adjτ(P)(t) is independent of the triangulation τ(P). So adjP := adjτ(P).

II If P is a polygon, then Z (adjP) = AP∗ .
(Recall: P∗ = {x ∈ Rn | ∀v ∈ V (P) : `v (x) ≥ 0} dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?
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The Adjoint of a Polytope
P: polytope in Pn

with d facets

HP : hyperplane arrangement spanned by facets of P

RP : residual arrangement of linear spaces that are intersections of
hyperplanes in HP and do not contain any of face of P

adjoint double plane adjoint quadric surface adjoint plane

Theorem (K., Ranestad)

If HP is simple (i.e. through any point in Pn pass ≤ n hyperplanes),

there is
a unique hypersurface AP in Pn of degree d − n − 1 passing through RP .
AP is called the adjoint of P.
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Application 1: Segre Classes of Monomial Schemes
Aluffi

V : smooth variety
X1, . . . ,Xn: smooth hypersurfaces meeting with normal crossings in V

X I : hypersurface obtained by taking Xij with multiplicity ij
for I = (i1, i2, . . . , in) ∈ Zn

≥0
A ⊂ Zn

≥0 defines a monomial subscheme

SA =
⋂
I∈A

X I

and a Newton region NA ⊂ Rn
≥0

NA := Rn
≥0 \ convHull

( ⋃
I∈A

(Rn
>0 + I)

)

Theorem (Aluffi, (K., Ranestad))

The Segre class of SA in the Chow ring of V is

n!X1 · · ·Xn adjNA(−X )∏
v∈V (NA)

`v (−X )
, if NA is finite.

Example: n = 2
A = {(2, 6), (3, 4),

(4, 3), (5, 1), (7, 0)}
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Application 1: Segre Classes of Monomial Schemes
Aluffi

NA may have vertices at ∞ in the direction
of the standard basis vectors e1, . . . , en

for vertex vi at ∞ in direction of ei :
`vi (t) := −ti

Theorem (Aluffi, (K., Ranestad))

The Segre class of SA in the Chow ring of V is

n!X1 · · ·Xn adjNA(−X )∏
v∈V (NA)

`v (−X )
.

Example: n = 2
A = {(2, 6), (3, 4),

(4, 3), (5, 1), (7, 0)}

Example: 2X1X2 adjNA(−X1,−X2)

X2(1 + 2X1 + 6X2)(1 + 3X1 + 4X2)(1 + 5X1 + X2)(1 + 7X1)
, where

adjNA
(t) = 1−15t1−22t2+71t21 +212t1t2+95t22−105t31−476t21 t2−511t1t

2
2−84t32 .
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Application 2: Moments of Probability Distributions
K., Shapiro, Sturmfels

P: convex polytope in Rn

µP : uniform probability distribution on P

moments

mI(P) :=

∫
Rn

w i1
1 w

i2
2 . . .w

in
n dµP for I = (i1, i2, . . . , in) ∈ Zn

≥0

Proposition (K., Shapiro, Sturmfels)∑
I∈Zn

≥0

cI mI(P) tI =
adjP(t)

vol(P)
∏

v∈V (P)

`v (t)
,

where cI :=
(i1+i2+...+in+n

i1,i2,...,in,n

)
.
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Application 3: Barycentric Coordinates

βvi (p) :=
area(4i )

area(41) + area(42) + area(43)

for i = 1, 2, 3

Definition
Let P be a convex polytope in Rn. A set of
functions {βu : P◦ → R | u ∈ V (P)} is called
generalized barycentric coordinates for P
if, for all p ∈ P◦,

∀u ∈ V (P) : βu(p) > 0,∑
u∈V (P)

βu(p) = 1, and∑
u∈V (P)

βu(p)u = p.

Barycentric coordinates for
simplices are uniquely

determined from (i)-(iii).

This is not true for other polytopes!
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Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

mean value coordinates

Wachspress coordinates

Applications of generalized barycentric coordinates include:

mesh parameterizations in geometric modelling

deformations in computer graphics

polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric
coordinates which are rational functions of minimal degree.
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The Wachspress coordinates are the unique generalized barycentric
coordinates which are rational functions of minimal degree.
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Wachspress Coordinates
Warren (1996)

P: convex polytope in Rn

F(P): set of facets of P

V (P)
1:1←→ F(P∗)

v 7−→ Fv

F(P)
1:1←→ V (P∗)

F 7−→ vF

Definition (Warren)

The Wachspress coordinates of P are

∀u ∈ V (P) : βu(t) :=

adjFu
(t) ·

∏
F∈F(P): u/∈F

`vF (t)

adjP∗(t)
.
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Wachspress Map

∀u ∈ V (P) : βu(t) :=

adjFu
(t) ·

∏
F∈F(P): u/∈F

`vF (t)

adjP∗(t)
.

P: polytope in Pn with d facets

HP : simple hyperplane arrangement spanned by facets of P

The numerators of the Wachspress coordinates define the Wachspress map:

ωP : Pn 99K P|V (P)|−1,

t 7−→

 ∏
F∈F(P): u/∈F

`F (t)


u∈V (P)

where `F is a homogeneous linear equation defining the hyperplane span{F}.
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Wachspress Map
P: polytope in Pn with d facets
HP : simple hyperplane arrangement spanned by facets of P
Wachspress map: ωP : Pn 99K P|V (P)|−1,

t 7−→

 ∏
F∈F(P): u/∈F

`F (t)


u∈V (P)

Theorem (K., Ranestad)

The base locus of the Wachspress map ωP is the residual arrangement RP .

⇒ ∀u ∈ V (P) : ωP,u ∈ ΩP := H0(Pn,IRP (d − n))

Theorem (K., Ranestad)

dim ΩP = |V (P)|, so {ωP,u | u ∈ V (P)} is a basis of ΩP .

⇒ ωP : Pn 99K P(Ω∗P) ∼= P|V (P)|−1
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Wachspress Map

P: polytope in Pn with d facets

HP : simple hyperplane arrangement spanned by facets of P

ΩP := H0(Pn, IRP
(d − n))

WP := ωP(Pn) is the Wachspress variety

VP := span{ωP(AP)}

Theorem (K., Ranestad)

dimVP = |V (P)| − n − 2.

The projection
prVP

: P(Ω∗P) 99K Pn from VP

restricted to the Wachspress
variety WP is the inverse of
the Wachspress map ωP .

WP

Pn P(Ω∗P) ∼= P|V (P)|−1

AP VP
∼= P|V (P)|−n−2

ωP

prVP

ωP|AP
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Wachspress Surfaces

WP

P2 P(Ω∗P) ∼= Pd−1

AP VP
∼= Pd−4

ωP

prVP

ωP|AP

Theorem (Irving, Schenck)

Let P be a d-gon in P2.

The Wachspress variety WP is a surface of degree
(d−2

2

)
+ 1.

The image of the adjoint curve AP under ωP is a curve of degree
(d−3

2

)
,

if d > 4.

If d = 4, the image of the adjoint line AP is a point.
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Wachspress Threefolds

P

RP

AP adjoint plane

adjoint quadric surface
ωP (`41 : `42)⊗ (`�1 : `�2 : `�3) (`1 : `6)⊗ (`2 : `5)⊗ (`3 : `4)
WP P1 × P2 ↪→ P5 P1 × P1 × P1 ↪→ P7

ωP|AP
projection from point contracts ruling of lines

ωP(AP) line twisted cubic curve
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Wachspress Threefolds
P: polytope in P3 with d facets
HP : simple hyperplane arrangement spanned by facets of P
a: number of isolated points in RP

b: number of double points in RP

c: number of triple points in RP

Proposition (K., Ranestad)
The Wachspress variety WP ⊂ P2d−5 is a threefold of degree

2b + 4c − a− 1

2
(d − 3)(d2 − 11d + 26) = b + 2c + 1− 1

6
(d − 3)(d − 4)(d − 11)

and sectional genus b + 2c + 1 + 1
2 (d − 3)(d − 6).

The image of the adjoint surface AP under ωP is a surface iff P is neither a
tetrahedron, a triangular prism nor a cube. In that case, its degree is

2b + 4c − a− 1

2
(d − 3)(d − 4)(d − 6) = b + 2c + 1− 1

6
(d − 3)(d2 − 12d + 38)

and its sectional genus is b + 2c + 1− 1
2 (d − 3)(d − 4).
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Why “Adjoint”?
P: polytope in Pn with d facets

HP : simple hyperplane arrangement spanned by facets of P

Rc
P : codimension-c part of RP

Idea:

Pn X smooth

P HP

D D̃ smooth

hypersurface
of degree d

polytopal hypersurface:
hypersurface of degree d ,
multiplicity c along Rc

P ,
smooth outside of RP

blowup π

Adjunction formula: KD̃ = (KX + [D̃])|D̃
Def.: An adjoint to D̃ in X is a hypersurface A in X s.t. [A] = KX + [D̃].

Proposition (K., Ranestad)

D̃ has a unique adjoint A in X , and thus a unique canonical divisor: A ∩ D̃.
Moreover, π(A) = AP .

When can we find

a polytopal hypersurface D?
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multiplicity c along Rc

P ,
smooth outside of RP

blowup π

Adjunction formula: KD̃ = (KX + [D̃])|D̃
Def.: An adjoint to D̃ in X is a hypersurface A in X s.t. [A] = KX + [D̃].

Proposition (K., Ranestad)

D̃ has a unique adjoint A in X , and thus a unique canonical divisor: A ∩ D̃.
Moreover, π(A) = AP .

When can we find

a polytopal hypersurface D?
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Polytopal Hypersurfaces
Proposition (K., Ranestad)

Let P be a general d-gon in P2. There is a polygonal curve D iff d ≤ 6.
In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let C be a combinatorial type of simple polytopes in P3 and let P be a
general polytope of type C. There is a polytopal surface D iff C is one of:

In that case, the general D is either an elliptic surface or a K3-surface.
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