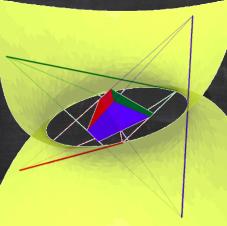
Projective geometry of Wachspress coordinates

Kathlén Kohn KTH



joint works with Kristian Ranestad (Universitetet i Oslo) / Boris Shapiro (Stockholms universitet) & Bernd Sturmfels (MPI MiS Leipzig / UC Berkeley)

The Adjoint of a Polygon

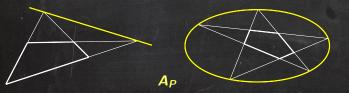
Wachspress (1975)

The Adjoint of a Polygon

Wachspress (1975)

Definition

The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.



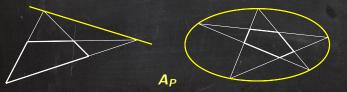
$(\deg A_P = |V(P)| - 3)$

The Adjoint of a Polygon

Wachspress (1975)

Definition

The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.



 $(\deg A_P = |V(P)| - 3)$

Generalization to higher-dimensional polytopes?

Warren (1996)

- *P*: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

- *P*: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$$

where $t = (t_1, ..., t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

$$\textbf{Definition} \qquad \text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$$

where $t = (t_1, ..., t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

 $\operatorname{I} \operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

$$\textbf{Definition} \qquad \text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$$

where $t=(t_1,\ldots,t_n)$ and $\ell_{v}(t)=1-v_1t_1-v_2t_2-\ldots-v_nt_n.$

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$. II If P is a polygon, then $Z(\operatorname{adj}_P) = A_{P^*}$. (Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \ge 0\}$ dual polytope of P)

11 - XVIII

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

$$\textbf{Definition} \qquad \text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{\nu \in V(P) \setminus V(\sigma)} \ell_{\nu}(t),$$

where $t = (t_1, ..., t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - ... - v_n t_n$.

Theorem (Warren)

I adj_{τ(P)}(t) is independent of the triangulation τ(P). So adj_P := adj_{τ(P)}. II If P is a polygon, then Z(adj_P) = A_{P*}. (Recall: P* = {x ∈ ℝⁿ | ∀v ∈ V(P) : ℓ_v(x) ≥ 0} dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?

• P: polytope in \mathbb{P}^n

• \mathcal{H}_P : hyperplane arrangement spanned by facets of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- *P*: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

• P: polytope in \mathbb{P}^n

0

•••••

 \cap

- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

• P: polytope in \mathbb{P}^n

• • •

•••••

 \cap

- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

• P: polytope in \mathbb{P}^n

• • •

•••

 \cap

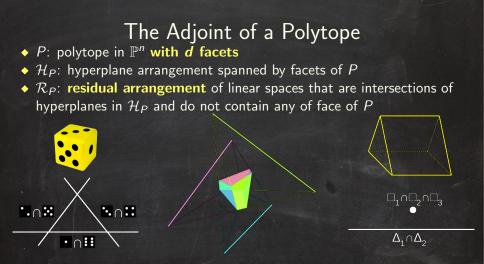
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

 $\Delta_1 \cap \Delta_2$

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

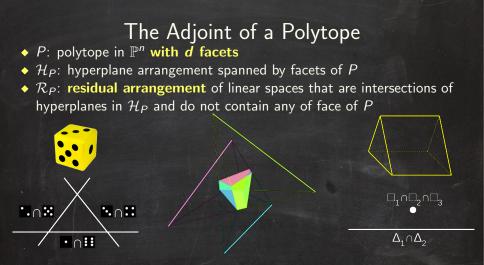
Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),



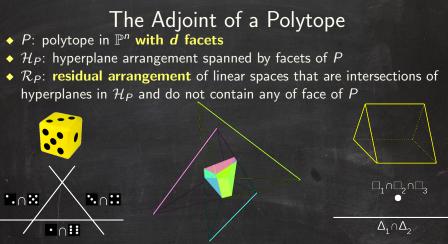
Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),



Theorem (K., Ranestad)

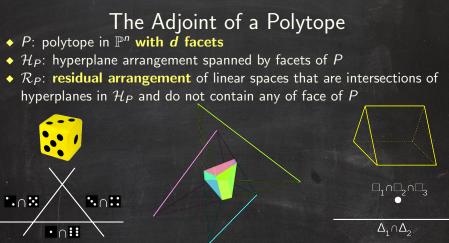
If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.



adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.



adjoint quadric surface

adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

The Adjoint of a Polytope P: polytope in Pⁿ with d facets H_P: hyperplane arrangement spanned by facets of P R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

adjoint double plane adjoint quadric surface

 $\Delta_1 \cap \Delta_2$ adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d - n - 1 passing through \mathcal{R}_P . A_P is called the **adjoint** of P.

\/ _ X

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_{P} vanishes along \mathcal{R}_{P^*} . If \mathcal{H}_{P^*} is simple, then $Z(\operatorname{adj}_{P}) = A_{P^*}$.

Aluffi

♦ V: smooth variety

• X_1, \ldots, X_n : smooth hypersurfaces meeting with normal crossings in V

Aluffi

V: smooth variety

 X₁,...,X_n: smooth hypersurfaces meeting with normal crossings in V
 X^I: hypersurface obtained by taking X_{ij} with multiplicity ij for I = (i₁, i₂,..., i_n) ∈ Zⁿ_{>0}

Aluffi

V: smooth variety

• X_{1}, \ldots, X_{n} : smooth hypersurfaces meeting with normal crossings in V

• $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j

for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$

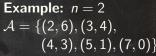
ullet $\mathcal{A} \subset \mathbb{Z}^n_{\geq 0}$ defines a monomial subscheme

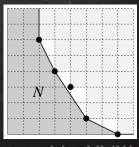
 $S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$

Aluffi

- V: smooth variety
- X₁,...,X_n: smooth hypersurfaces meeting with normal crossings in V
 X^I: hypersurface obtained by taking X_i, with multiplicity i_j
 - for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^n$ defines a monomial subscheme

 $S_{\mathcal{A}} = igcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$ and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$





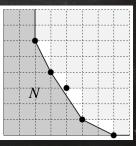
Aluffi

- V: smooth variety
- X₁,...,X_n: smooth hypersurfaces meeting with normal crossings in V
 X^I: hypersurface obtained by taking X_i, with multiplicity i_j
 - for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^n$ defines a monomial subscheme

 $S_{\mathcal{A}} = igcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$ and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example: n = 2 $\mathcal{A} = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

 $N_{\mathcal{A}} := \mathbb{R}^n_{\geq 0} \setminus \operatorname{convHull}\left(\bigcup_{\mathcal{I} \in \mathcal{A}} (\mathbb{R}^n_{> 0} + \mathcal{I})\right)^{1}$



Aluffi

V: smooth variety

X₁,...,X_n: smooth hypersurfaces meeting with normal crossings in V
 X^I: hypersurface obtained by taking X_i, with multiplicity i_j

for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$

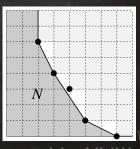
• $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^n$ defines a monomial subscheme

$$\mathcal{S}_{\mathcal{A}} = igcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example: n = 2 $\mathcal{A} = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

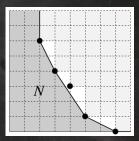
$$N_{\mathcal{A}} := \mathbb{R}^{n}_{\geq 0} \setminus \text{convHull} \left(\bigcup_{\mathcal{I} \in \mathcal{A}} (\mathbb{R}^{n}_{>0} + \mathcal{I}) \right)$$
eorem (Aluffi, (K., Ranestad))

$$\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod\limits_{v \in V(N_{\mathcal{A}})} \ell_v(-X)}, \text{ if } N_{\mathcal{A}} \text{ is finite.}$$



Aluffi

N_A may have vertices at ∞ in the direction of the standard basis vectors *e*₁,..., *e_n* Example: n = 2 $\mathcal{A} = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$



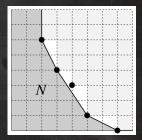
Aluffi

- N_A may have vertices at ∞ in the direction of the standard basis vectors e₁,..., e_n
- for vertex v_i at ∞ in direction of e_i : $\ell_{v_i}(t) := -t_i$

Theorem (Aluffi, (K., Ranestad)) The Segre class of S_A in the Chow ring of V is

 $\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod_{\nu \in V(N_{\mathcal{A}})} \ell_{\nu}(-X)}.$

Example: n = 2 $\mathcal{A} = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

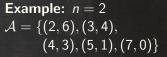


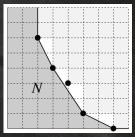
Aluffi

- *N_A* may have vertices at ∞ in the direction of the standard basis vectors *e*₁,..., *e_n*
- for vertex v_i at ∞ in direction of e_i : $\ell_{v_i}(t) := -t_i$

Theorem (Aluffi, (K., Ranestad)) The Segre class of S_A in the Chow ring of V is

 $\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod_{\nu \in V(N_{\mathcal{A}})} \ell_{\nu}(-X)}.$





Example: $2X_1X_2 \operatorname{adj}_{N_{\mathcal{A}}}(-X_1, -X_2)$ $X_2(1+2X_1+6X_2)(1+3X_1+4X_2)(1+5X_1+X_2)(1+7X_1), \quad \text{where}$ $\operatorname{adj}_{N_{\mathcal{A}}}(t) = 1 - 15t_1 - 22t_2 + 71t_1^2 + 212t_1t_2 + 95t_2^2 - 105t_1^3 - 476t_1^2t_2 - 511t_1t_2^2 - 84t_2^3.$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- *P*: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- *P*: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \dots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- *P*: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P

moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \dots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Proposition (K., Shapiro, Sturmfels)

$$\sum_{\mathcal{I}\in\mathbb{Z}_{\geq 0}^n} c_\mathcal{I} \ m_\mathcal{I}(P) \ t^\mathcal{I} = rac{\mathrm{adj}_\mathrm{P}(\mathrm{t})}{\mathrm{vol}(P) \prod\limits_{\mathbf{v}\in V(P)} \ell_{\mathbf{v}}(t)}$$

where $c_{\mathcal{I}} := {i_1 + i_2 + ... + i_n + n \choose i_1, i_2, ..., i_n, n}$.

٧.,

 $egin{array}{l} eta_{m{v}_i}(m{p}) := rac{ \operatorname{area}(riangle_i) }{\operatorname{area}(riangle_1) + \operatorname{area}(riangle_2) + \operatorname{area}(riangle_3) } \ & ext{for } i = 1, 2, 3 \end{array}$

Definition

Let *P* be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u : P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for *P* if, for all $p \in P^\circ$,

- $\forall u \in V(P) : \beta_u(p) > 0$,
- $\sum_{u \in V(P)} \beta_u(p) = 1$, and
- $\sum_{u\in V(P)}\beta_u(p)u=p.$

 $egin{array}{l} eta_{v_i}(p) := rac{ \operatorname{area}(riangle_i) }{\operatorname{area}(riangle_1) + \operatorname{area}(riangle_2) + \operatorname{area}(riangle_3) } \ & ext{for } i = 1, 2, 3 \end{array}$

Definition

Let *P* be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u : P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for *P* if, for all $p \in P^\circ$,

- $\forall u \in V(P) : \beta_u(p) > 0$,
- $\sum_{u \in V(P)} eta_u(p) = 1$, and
- $\sum_{u\in V(P)}\beta_u(p)u=p.$

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric coordinates which are rational functions of minimal degree.

_ X

Warren (1996)

P: convex polytope in ℝⁿ *F*(*P*): set of facets of *P*

Warren (1996)

P: convex polytope in ℝⁿ
F(P): set of facets of P
V(P) ↔ F(P*)
v ↦ F_v

Warren (1996)

P: convex polytope in ℝⁿ
F(P): set of facets of P
V(P) ↔ F(P*)
v ↦ F_v

 $\mathcal{F}(P) \stackrel{\text{1:1}}{\longleftrightarrow} V(P^*)$ $F \longmapsto v_F$

Warren (1996)

◆ P: convex polytope in ℝⁿ
◆ F(P): set of facets of P
V(P) ↔ F(P*)
v ↦ F_v

 $\mathcal{F}(P) \stackrel{\text{1:1}}{\longleftrightarrow} V(P^*)$ $F \longmapsto v_F$

Definition (Warren) The Wachspress coordinates of *P* are

 $orall u \in V(P): \quad eta_u(t):=rac{\mathrm{adj}_{F_u}(t)\cdot \prod\limits_{F\in\mathcal{F}(P):\ u
otin F\in\mathcal{F}(P)}\ell_{v_F}(t)}{\mathrm{adj}_{P^*}(t)}.$

$$orall u \in V(P): \quad eta_u(t) := rac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \ u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}$$

• P: polytope in \mathbb{P}^n with d facets

• \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

$$orall u \in V(P): \quad eta_u(t) := rac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \ u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}$$

• *P*: polytope in \mathbb{P}^n with *d* facets

H_P: simple hyperplane arrangement spanned by facets of *P* The numerators of the Wachspress coordinates define the Wachspress map:

$$\omega_P: \mathbb{P}^n \dashrightarrow \mathbb{P}^{|V(P)|-1}.$$

 $t \longmapsto$

$$orall u \in V(P): \quad eta_u(t) := rac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \ u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}$$

• P: polytope in \mathbb{P}^n with d facets

H_P: simple hyperplane arrangement spanned by facets of *P* The numerators of the Wachspress coordinates define the Wachspress map:

$$egin{aligned} &\mathcal{D}_P: \mathbb{P}^n & \dashrightarrow & \mathbb{P}^{|V(P)|-1}, \ & t \longmapsto & \left(\prod_{F \in \mathcal{F}(P): \ u \notin F} \ell_F(t)
ight)_{u \in V(P)} \end{aligned}$$

where ℓ_F is a homogeneous linear equation defining the hyperplane span{F}. XI = XVIII

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$

$$t\longmapsto \left(\prod_{F\in\mathcal{F}(P):\ u\notin F}\ell_F(t)
ight)_{u\in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement \mathcal{R}_P .

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$

$$t\longmapsto \left(\prod_{F\in\mathcal{F}(P):\ u\notin F}\ell_F(t)
ight)_{u\in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement \mathcal{R}_P .

 $H \Rightarrow \forall u \in V(P) : \omega_{P,u} \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$

$$t\longmapsto \left(\prod_{F\in\mathcal{F}(P):\ u\notin F}\ell_F(t)\right)_{u\in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement \mathcal{R}_P .

 $H \Rightarrow \forall u \in V(P) : \omega_{P,u} \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$

Theorem (K., Ranestad)

dim $\Omega_P = |V(P)|$, so $\{\omega_{P,u} \mid u \in V(P)\}$ is a basis of Ω_P .

XII - XVIII

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \longrightarrow \mathbb{P}^{|V(P)|-1}$

$$t\longmapsto \left(\prod_{F\in\mathcal{F}(P):\ u\notin F}\ell_F(t)
ight)_{u\in V(P)}$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement \mathcal{R}_P .

| $\Rightarrow \forall u \in V(P) : \omega_{P,u} \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$

Theorem (K., Ranestad)

dim $\Omega_P = |V(P)|$, so $\{\omega_{P,u} \mid u \in V(P)\}$ is a basis of Ω_P .

 $\overline{ \Rightarrow \omega_P} : \mathbb{P}^n \dashrightarrow \mathbb{P}(\Omega_P^*) \cong \mathbb{P}^{|V(P)|-1}$

₽**n**

WP

 $\mathbb{P}(\Omega_P^*) \cong \mathbb{P}^{|V(P)|-1}$

• *P*: polytope in \mathbb{P}^n with *d* facets

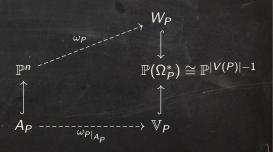
• \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety

• P: polytope in \mathbb{P}^n with d facets

• \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety
- $\mathbb{V}_P := \operatorname{span}\{\omega_P(A_P)\}$



• P: polytope in \mathbb{P}^n with d facets

• \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety
- $\mathbb{V}_P := \operatorname{span}\{\omega_P(A_P)\}$

Theorem (K., Ranestad) dim $\mathbb{V}_P = |V(P)| - n - 2$.

The projection $\operatorname{pr}_{\mathbb{V}_P} : \mathbb{P}(\Omega_P^*) \dashrightarrow \mathbb{P}^n$ from \mathbb{V}_P W_{P} \downarrow $\mathbb{P}^{n} \xleftarrow{\dots} \mathbb{P}(\Omega_{P}^{*}) \cong \mathbb{P}^{|V(P)|-1}$ \uparrow $A_{P} \xrightarrow{\dots} \mathbb{V}_{P} \cong \mathbb{P}^{|V(P)|-n-2}$

XIII - XVIII

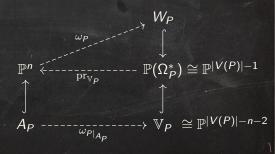
• P: polytope in \mathbb{P}^n with d facets

• \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

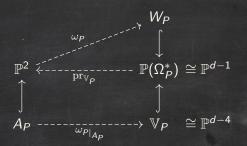
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d-n))$
- $W_P := \overline{\omega_P(\mathbb{P}^n)}$ is the Wachspress variety
- $\mathbb{V}_P := \operatorname{span}\{\omega_P(A_P)\}$

Theorem (K., Ranestad) dim $\mathbb{V}_P = |V(P)| - n - 2$.

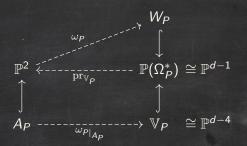
The projection $\operatorname{pr}_{\mathbb{V}_P} : \mathbb{P}(\Omega_P^*) \dashrightarrow \mathbb{P}^n$ from \mathbb{V}_P restricted to the Wachspress variety W_P is the inverse of the Wachspress map ω_P .



XIII - XVIII

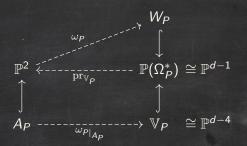


Theorem (Irving, Schenck) Let P be a d-gon in \mathbb{P}^2 .



Theorem (Irving, Schenck) Let P be a d-gon in \mathbb{P}^2 .

• The Wachspress variety W_P is a surface of degree $\binom{d-2}{2} + 1$.

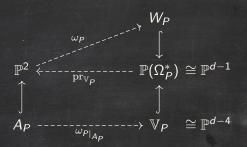


Theorem (Irving, Schenck)

Let P be a d-gon in \mathbb{P}^2 .

• The Wachspress variety W_P is a surface of degree $\binom{d-2}{2} + 1$.

 The image of the adjoint curve A_P under ω_P is a curve of degree (^{d−3}₂), if d > 4.



Theorem (Irving, Schenck)

Let P be a d-gon in \mathbb{P}^2 .

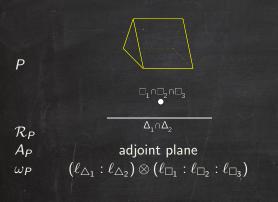
- The Wachspress variety W_P is a surface of degree $\binom{d-2}{2} + 1$.
- The image of the adjoint curve A_P under ω_P is a curve of degree (^{d−3}₂), if d > 4.
- If d = 4, the image of the adjoint line A_P is a point.

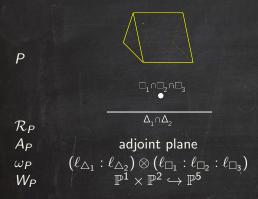
 $\Delta_1 \cap \Delta_2$

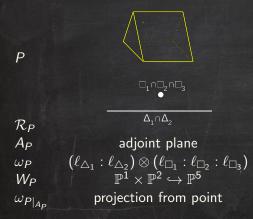
adjoint plane

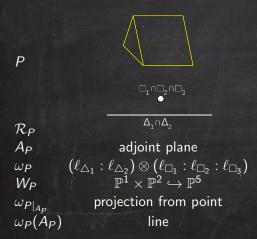
 \mathcal{R}_P A_P

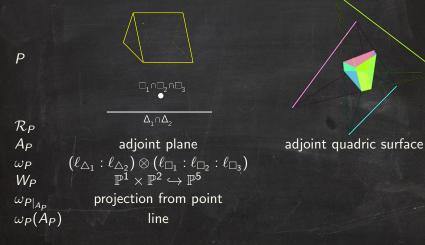
P

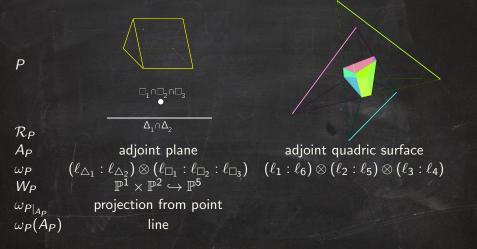


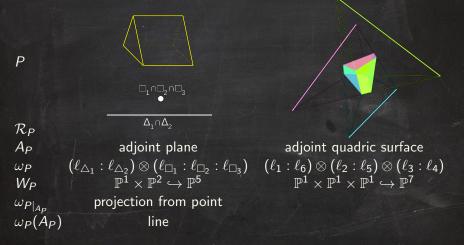


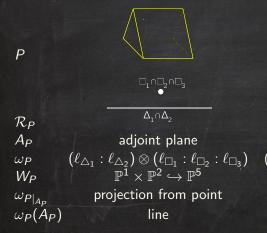












adjoint quadric surface $(\ell_1 : \ell_6) \otimes (\ell_2 : \ell_5) \otimes (\ell_3 : \ell_4)$ $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^7$ contracts ruling of lines

XV - XVIII



adjoint quadric surface $(\ell_1 : \ell_6) \otimes (\ell_2 : \ell_5) \otimes (\ell_3 : \ell_4)$ $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^7$ contracts ruling of lines twisted cubic curve

XV - XVIII

• *P*: polytope in \mathbb{P}^3 with *d* facets

• \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P

- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Wachspress Threefolds

- *P*: polytope in \mathbb{P}^3 with *d* facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- *b*: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad) The Wachspress variety $W_P \subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - rac{1}{2}(d-3)(d^2 - 11d + 26) = b + 2c + 1 - rac{1}{6}(d-3)(d-4)(d-11)$$

and sectional genus $b + 2c + 1 + \frac{1}{2}(d - 3)(d - 6)$.

Wachspress Threefolds

- *P*: polytope in \mathbb{P}^3 with *d* facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad) The Wachspress variety $W_P \subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - \frac{1}{2}(d-3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6}(d-3)(d-4)(d-11)$$

and sectional genus $b + 2c + 1 + \frac{1}{2}(d-3)(d-6)$. The image of the adjoint surface A_P under ω_P is a surface iff P is neither a tetrahedron, a triangular prism nor a cube.

Wachspress Threefolds

- *P*: polytope in \mathbb{P}^3 with *d* facets
- \mathcal{H}_P : simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad) The Wachspress variety $W_P \subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - \frac{1}{2}(d-3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6}(d-3)(d-4)(d-11)$$

and sectional genus $b + 2c + 1 + \frac{1}{2}(d-3)(d-6)$. The image of the adjoint surface A_P under ω_P is a surface iff P is neither a tetrahedron, a triangular prism nor a cube. In that case, its degree is

$$2b + 4c - a - \frac{1}{2}(d - 3)(d - 4)(d - 6) = b + 2c + 1 - \frac{1}{6}(d - 3)(d^2 - 12d + 38)$$

and its sectional genus is $b + 2c + 1 - \frac{1}{2}(d-3)(d-4)$.

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

Idea:

 $P \xrightarrow{} \mathcal{H}_P$

hypersurface of degree d

- X

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

• \mathcal{R}_P^c : codimension-*c* part of \mathcal{R}_P

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

_ X

blowup π

X smooth

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

™

• \mathcal{R}_P^c : codimension-*c* part of \mathcal{R}_P

Idea:

hypersurface of degree d polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D \xrightarrow{} D \xrightarrow{} \mathcal{D} \xrightarrow{} D$

blowup π

— X smooth

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

™

• \mathcal{R}_P^c : codimension-*c* part of \mathcal{R}_P

Idea:

 $P \rightarrow \mathcal{H}_P \rightarrow \mathcal{H}_P \rightarrow \mathcal{D} \rightarrow$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

blowup π

— X smooth

• P: polytope in \mathbb{P}^n with d facets

• $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

• \mathcal{R}_P^c : codimension-*c* part of \mathcal{R}_P

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D \xrightarrow{} D \xrightarrow{} \mathcal{D}_s$ mooth

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$ Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

blowup π

— X smooth

I _ X

• P: polytope in \mathbb{P}^n with d facets

ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

• \mathcal{R}_P^c : codimension-*c* part of \mathcal{R}_P

Idea:

 $P \xrightarrow{} \mathcal{H}_P \xrightarrow{} D \xrightarrow{} D \xrightarrow{} D$ smooth

hypersurface of degree d polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$ Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

 \tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A) = A_P$.

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c : codimension-*c* part of \mathcal{R}_P

Idea: $\begin{array}{c}
\mathbb{P}^{n} \xleftarrow{\text{blowup } \pi} \\
\uparrow \\
P \xrightarrow{} \\
P \xrightarrow{} \\
\mathcal{H}_{P} \xrightarrow{} \\
\mathcal{H}$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c} , smooth outside of \mathcal{R}_{P}

When can we find a polytopal hypersurface *D*?

- X smooth

D_smooth

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$ Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

 \tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A) = A_P$.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let C be a combinatorial type of simple polytopes in \mathbb{P}^3 and let P be a general polytope of type C. There is a polytopal surface D iff C is one of:

$\begin{array}{c} \operatorname{comb.} \\ \operatorname{type} \end{array}$	facet sizes	\mathcal{R}_P	(a,b,c)	W_P (deg., sec. genus)	$\overline{w_P(A_P)}$ (deg., sec. genus)	$\dim \Gamma_P$	$\overline{w_P(D)}$ (deg., sec. genus)
	3333		(0, 0, 0)	$\mathbb{P}^3 \ (1,0)$	0	34	$\begin{array}{c} {\rm minimal}\ {\rm K3}\\ ({\rm smooth}\ {\rm quartic}\ {\rm in}\ \mathbb{P}^3) \end{array}$
	44433	•	(1, 0, 0)	$ \mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5 $ (3,0)	line	23	$\begin{array}{c} \text{minimal K3} \\ (8,5) \end{array}$
	444444		(0, 0, 0)	$ \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7 $ $(6,1) $	twisted cubic curve	26	$\begin{array}{c} \text{minimal K3} \\ (12,7) \end{array}$
	554433	_ • • /	(2, 2, 0)	$W_P \subset \mathbb{P}^7$ (8,3)	quadric surface $(2,0)$	17	non-minimal K3 $(14,9)$
	5554443	ו	(1, 6, 0)	$W_P \subset \mathbb{P}^9$ (15,9)	$\begin{array}{c} \operatorname{del} \operatorname{Pezzo} \operatorname{surface} \operatorname{in} \mathbb{P}^5 \\ (5,1) \end{array}$	7	non-minimal K3 $(19, 12)$
	5544444		(0, 5, 0)	Fano 3-fold in \mathbb{P}^9 (14, 8)	$\begin{array}{c} \text{rational scroll in } \mathbb{P}^5\\ (4,0) \end{array}$	12	non-minimal K3 $(18, 11)$
	6644433		(3, 6, 1)	$W_P \subset \mathbb{P}^9$ (17,11)	rational elliptic surface in \mathbb{P}^5 $(7,3)$	4	$\begin{array}{c} \text{minimal elliptic} \\ (22,15) \end{array}$
	664444444		(0, 12, 2)	$W_P \subset \mathbb{P}^{11}$ (27, 22)	elliptic K3-surface in \mathbb{P}^7 (12, 7)	3	$\begin{array}{c} \text{minimal elliptic} \\ (26,17) \end{array}$
	55554444		(0, 16, 0)	$W_P \subset \mathbb{P}^{11}$ (27, 22)	K3-surface in \mathbb{P}^7 (12, 7)	1	non-minimal K3 $(24, 15)$