Invariant theory and scaling algorithms for maximum likelihood estimation

Kathlén Kohn KTH Stockholm

joint with

Carlos Améndola TU Munich

Philipp Reichenbach TU Berlin

Anna Seigal University of Oxford

May 20, 2020

Global picture

Statistics

Invariant theory

I - XVII

Global picture

Statistics

Invariant theory

Given: statistical model sample data S_Y

Global picture

Statistics

Invariant theory

Given: statistical model sample data S_Y Task: find maximum likelihood estimate (MLE) = point in model that best fits S_Y

Given: statistical model sample data S_Y Task: find maximum likelihood estimate (MLE) = point in model that best fits S_Y **Given:** orbit $G \cdot v = \{g \cdot v \mid g \in G\}$

Global picture Statistics Invariant theory

Given: statistical model sample data S_Y Task: find maximum likelihood estimate (MLE) = point in model that best fits S_Y **Given:** orbit $G \cdot v = \{g \cdot v \mid g \in G\}$

Task: compute **capacity** = closest distance of orbit to origin

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $G.v = \{g \cdot v \mid g \in G\} \subset V.$

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $G.v = \{g \cdot v \mid g \in G\} \subset V.$

• v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $G.v = \{g \cdot v \mid g \in G\} \subset V.$

v is unstable iff 0 ∈ G.v (i.e. v can be scaled to 0 in the limit)
v semistable iff 0 ∉ G.v

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $G.v = \{g \cdot v \mid g \in G\} \subset V.$

• v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)

- v semistable iff $0 \notin \overline{G.v}$
- v polystable iff $v \neq 0$ and its orbit G.v is closed

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $G.v = \{g \cdot v \mid g \in G\} \subset V.$

- v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)
- v semistable iff $0 \notin \overline{G.v}$
- v polystable iff $v \neq 0$ and its orbit G.v is closed
- v is stable iff v is polystable and its stabilizer is finite

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

 $\operatorname{cap}_{G}(v) := \inf_{g \in G} \|g \cdot v\|_{2}^{2}.$

Observation: $cap_G(v) = 0$ iff v lies in null cone

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

 $\operatorname{cap}_{G}(v) := \inf_{g \in G} \|g \cdot v\|_{2}^{2}.$

Observation: $cap_G(v) = 0$ iff v lies in null cone

Hence: Testing null cone membership is a minimization problem. → algorithms: [series of 3 papers in 2017 – 2019 by Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]

IV - XVII

Given:

- \mathcal{M} : a statistical **model** = a set of probability distributions
- $Y = (Y_1, \ldots, Y_n)$: *n* samples of observed data

Goal: find a distribution in the model $\mathcal M$ that best fits the empirical data Y

Given:

- *M*: a statistical model = a set of probability distributions
- $Y = (Y_1, \ldots, Y_n)$: *n* samples of observed data

Goal: find a distribution in the model $\mathcal M$ that best fits the empirical data Y

Approach: maximize the likelihood function

 $L_{Y}(\rho) := \rho(Y_1) \cdots \rho(Y_n), \quad \text{where } \rho \in \mathcal{M}.$

A maximum likelihood estimate (MLE) is a distribution in the model \mathcal{M} that maximizes the likelihood L_{Y} .

IV - XVII

Discrete statistical models

A probability distribution on *m* states is determined by is **probability mass** function ρ , where ρ_i is the probability that the *j*-th state occurs.

 ρ is a point in the **probability simplex**

$$\Delta_{m-1} = \left\{ q \in \mathbb{R}^m \mid q_j \geq 0 ext{ and } \sum q_j = 1
ight\}.$$

A discrete statistical model \mathcal{M} is a subset of the simplex Δ_{m-1} .

Discrete statistical models

maximum likelihood estimation

Given data is a vector of counts $Y \in \mathbb{Z}_{\geq 0}^m$, where Y_j is the number of times the *j*-th state occurs.

The empirical distribution is $S_Y = \frac{1}{n}Y \in \Delta_{m-1}$, where $n = Y_1 + \ldots + Y_m$.

Discrete statistical models

maximum likelihood estimation

Given data is a vector of counts $Y \in \mathbb{Z}_{\geq 0}^m$, where Y_j is the number of times the *j*-th state occurs.

The empirical distribution is $S_Y = \frac{1}{n}Y \in \Delta_{m-1}$, where $n = Y_1 + \ldots + Y_m$.

The likelihood function takes the form $L_Y(\rho) = \rho_1^{Y_1} \cdots \rho_m^{Y_m}$, where $\rho \in \mathcal{M}$.

An MLE is a point in model \mathcal{M} that maximizes the likelihood L_Y of observing Y.

Log-linear models

= set of distributions whose logarithms lie in a fixed linear space. Let $A \in \mathbb{Z}^{d \times m}$, and define

 $\mathcal{M}_{\mathcal{A}} = \{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(\mathcal{A})\}.$

We assume that $1 := (1, ..., 1) \in \text{rowspan}(A)$ (i.e., uniform distribution in \mathcal{M}_A).

Log-linear models

= set of distributions whose logarithms lie in a fixed linear space. Let $A \in \mathbb{Z}^{d \times m}$, and define

 $\mathcal{M}_{\mathcal{A}} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(\mathcal{A}) \}.$

We assume that $1 := (1, ..., 1) \in \text{rowspan}(A)$ (i.e., uniform distribution in \mathcal{M}_A).

Matrix $A = [a_1 | a_2 | \dots | a_m]$ also defines an action by the torus

- GT_d = group of complex, diagonal, invertible d × d matrices
 on ℂ^m:
- ♦ $g \in GT_d$ acts on $x \in \mathbb{C}^m$ by left multiplication with

$$\left. egin{array}{ccc} g^{a_1} & & \ & \ddots & \ & & & \\ & & g^{a_m} \end{array}
ight|, \quad ext{where } g^{a_j} = g_1^{a_{1j}} \ldots$$

VII - XVII

Log-linear models

= set of distributions whose logarithms lie in a fixed linear space. Let $A \in \mathbb{Z}^{d \times m}$, and define

 $\mathcal{M}_{A} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}.$

We assume that $1 := (1, ..., 1) \in \text{rowspan}(A)$ (i.e., uniform distribution in \mathcal{M}_A).

Matrix $A = [a_1 | a_2 | \dots | a_m]$ also defines an action by the torus

- ◆ GT_d = group of complex, diagonal, invertible d × d matrices
 ◆ on ℂ^m:
- $g \in \operatorname{GT}_d$ acts on $x \in \mathbb{C}^m$ by left multiplication with

$$\left[egin{array}{cccc} g^{a_1} & & \ & \ddots & \ & & & \\ & & g^{a_m} \end{array}
ight], \quad ext{ where } g^{a_j} = g_1^{a_{1j}} \dots g_d^{a_{dj}}$$

 \mathcal{M}_A is the orbit of the uniform distribution in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$.

$\begin{array}{l} \textbf{Example}\\ \mathcal{M}_{A} = \{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\} \, . \quad A = \left[\begin{array}{cc} 2 & 1 & 0\\ 0 & 1 & 2 \end{array} \right]\\ g \in \operatorname{GT}_{2} \text{ acts on } x \in \mathbb{C}^{3} \text{ by } \left[\begin{array}{cc} g^{a_{1}} \\ g^{a_{2}} \\ \\ \\ \end{array} \right] = \left[\begin{array}{cc} g_{1}^{2} \\ g_{1}g_{2} \\ \\ \\ \end{array} \right] \right]. \end{array}$

Example

Example

Example

 $\mathcal{M}_{\mathcal{A}} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(\mathcal{A}) \} . \qquad \mathcal{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ $g \in \operatorname{GT}_2$ acts on $x \in \mathbb{C}^3$ by $\begin{vmatrix} g^{a_1} \\ g^{a_2} \end{vmatrix} = \begin{vmatrix} g_1^2 \\ g_1g_2 \\ g^{a_3} \end{vmatrix} = \begin{vmatrix} g_1^2 \\ g_1g_2 \\ g^2_2 \end{vmatrix}$. $\mathcal{M}_{\mathcal{A}} = (\mathrm{GT}_2 \cdot \frac{1}{3}\mathbb{1}) \cap \Delta_2 \cap \mathbb{R}^3_{>0}$ $=\left\{rac{1}{3}\left(g_{1}^{2},g_{1}g_{2},g_{2}^{2}
ight)\mid g_{1},g_{2}>0,\,\,g_{1}^{2}+g_{1}g_{2}+g_{2}^{2}=3
ight\}$ 1.5 $= \left\{ \rho \in \mathbb{R}^3_{>0} \mid \rho_2^2 = \rho_1 \rho_3, \, \rho_1 + \rho_2 + \rho_3 = 1 \right\}$ 1.0 0.5 other examples: independence model, graphical models, hierarchical models, ...

0.5

1.0

1.5

VIII - XVII

for log-linear models

An MLE in \mathcal{M}_A given data Y is a point $\hat{\rho}$ in the model such that

$$A\hat{\rho} = AS_Y$$
, where $S_Y = \frac{1}{n}Y$.

The MLE is unique if it exists!

for log-linear models

An MLE in \mathcal{M}_A given data Y is a point $\hat{\rho}$ in the model such that

$$A\hat{\rho} = AS_Y$$
, where $S_Y = -\frac{1}{p}Y$

The MLE is unique if it exists!

Model M_A is not closed: MLE may not exist if S_Y has zeroes. True maximizer could be on boundary of model.

for log-linear models

MLE

An MLE in \mathcal{M}_A given data Y is a point $\hat{\rho}$ in the model such that

$$A\hat{\rho} = AS_Y$$
, where $S_Y = \frac{1}{n}Y$

The MLE is unique if it exists!

Model M_A is not closed: MLE may not exist if S_Y has zeroes. True maximizer could be on boundary of model.

polyhedral condition for MLE existence: For $A = [a_1 | a_2 | ... | a_m] \in \mathbb{Z}^{d \times m}$, we define

$$P(A) = \operatorname{conv} \{a_1, a_2, \ldots, a_m\} \subset \mathbb{R}^d.$$

Theorem (Eriksson, Fienberg, Rinaldo, Sullivant '06) MLE given Y exists in \mathcal{M}_A iff AS_Y is in relative interior of P(A).

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

A linearization is a consistent action on \mathbb{C}^m , given by a character $b \in \mathbb{Z}^d$:

$$g \in \operatorname{GT}_d$$
 acts on $x \in \mathbb{C}^m$ by $\left[egin{array}{cc} g^{a_1-b} & & \ & \ddots & \ & & g^{a_m-b} \end{array}
ight]$

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

A linearization is a consistent action on \mathbb{C}^m , given by a character $b \in \mathbb{Z}^d$:

$$g \in \operatorname{GT}_d$$
 acts on $x \in \mathbb{C}^m$ by $\begin{bmatrix} g^{a_1-b} & & \ & \ddots & \ & & g^{a_m-b} \end{bmatrix}$.

polyhedral conditions for stability:

Define sub-polytopes of $P(A) = \operatorname{conv}\{a_1, a_2, \ldots, a_m\}$ that depend on $x \in \mathbb{C}^m$:

 $P_x(A) = \operatorname{conv} \{a_j \mid j \in \operatorname{supp}(x)\}.$

Theorem (standard, proof via Hilbert-Mumford criterion) Consider the action of GT_d given by matrix $A \in \mathbb{Z}^{d \times m}$ with linearization $b \in \mathbb{Z}^d$.

(a)	x unstable	\Leftrightarrow	$b \notin P_x(A)$	can be scaled to 0 in the limit
(b)	x semistable	\Leftrightarrow	$b \in P_x(A)$	cannot be scaled to 0 in the limit
(c)	x polystable	\Leftrightarrow	$b \in \operatorname{relint} P_x(A)$	closed orbit
(d)	x stable	\Leftrightarrow	$b \in \operatorname{int} P_x(A)$	finite stabilizery

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

A linearization is a consistent action on \mathbb{C}^m , given by a character $b \in \mathbb{Z}^d$:

$$g \in \mathrm{GT}_d$$
 acts on $x \in \mathbb{C}^m$ by $\begin{bmatrix} g^{a_1-b} & & \\ & \ddots & \\ & & g^{a_m-b} \end{bmatrix}$.

polyhedral conditions for stability:

Define sub-polytopes of $P(A) = \operatorname{conv}\{a_1, a_2, \ldots, a_m\}$ that depend on $x \in \mathbb{C}^m$:

 $P_x(A) = \operatorname{conv} \{a_j \mid j \in \operatorname{supp}(x)\}.$

Theorem (standard, proof via Hilbert-Mumford criterion) Consider the action of GT_d given by matrix $A \in \mathbb{Z}^{d \times m}$ with linearization $b \in \mathbb{Z}^d$. (a) x unstable $\Leftrightarrow b \notin P_x(A)$ can be scaled to 0 in the limit

(b) x semistable \Leftrightarrow $b \in P_x(A)$ cannot be scaled to 0 in the limit

(c) x polystable $\Leftrightarrow b \in \operatorname{relint} P_x(A)$ closed orbit

(d) x stable \Leftrightarrow $b \in int P_x(A)$

ot be scaled to 0 in the lim closed orbit finite stabilizer _ X

Theorem (Améndola, Kohn, Reichenbach, Seigal) Consider a vector of counts $Y \in \mathbb{Z}^m$ with $n = \sum Y_j$, matrix $A \in \mathbb{Z}^{d \times m}$, and $b = AY \in \mathbb{Z}^d$. The MLE given Y in \mathcal{M}_A exists iff $\mathbb{1} \in \mathbb{C}^m$ is polystable under the action of GT_d given by matrix nA with linearization b.

Theorem (Améndola, Kohn, Reichenbach, Seigal) Consider a vector of counts $Y \in \mathbb{Z}^m$ with $n = \sum Y_j$, matrix $A \in \mathbb{Z}^{d \times m}$, and $b = AY \in \mathbb{Z}^d$. The MLE given Y in \mathcal{M}_A exists iff $\mathbb{1} \in \mathbb{C}^m$ is polystable under the action of GT_d given by matrix nA with linearization b.

attains its maximum ↔ attains its minimum How are the two optimal points related?

Theorem (cont'd) If $x \in \mathbb{C}^m$ is a point of minimal norm in the orbit $\operatorname{GT}_d \cdot \mathbb{1}$, then the MLE is $\frac{x^{(2)}}{\|x\|^2}, \quad \text{where } x^{(2)} \text{ is the vector with } j\text{-th entry } |x_j|^2.$

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

maximize likelihood ⇔ minimize KL divergence

minimize ℓ_2 -norm

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

maximize likelihood ⇔ minimize KL divergence

model lives in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$

minimize ℓ_2 -norm

orbit lives in \mathbb{C}^m

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

maximize likelihood ⇔ minimize KL divergence

model lives in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$

trivial linearization **b** = 0 (defines model and steps of IPS) minimize ℓ_2 -norm

orbit lives in \mathbb{C}^m

linearization b = AY

The density function of an *m*-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}}\exp{\left(-rac{1}{2}y^{T}\Sigma^{-1}y
ight)}, \hspace{1em} ext{where} \hspace{1em} y \in \mathbb{R}^{m}.$$

The **concentration matrix** $\Psi = \Sigma^{-1}$ is positive definite.

The density function of an *m*-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp{\left(-rac{1}{2}y^T\Sigma^{-1}y
ight)}, \quad ext{ where } y \in \mathbb{R}^m.$$

The concentration matrix $\Psi = \Sigma^{-1}$ is positive definite. A Gaussian model \mathcal{M} is a set of concentration matrices, i.e. a subset of the cone of $m \times m$ positive definite matrices.

The density function of an *m*-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp{\left(-rac{1}{2}y^T\Sigma^{-1}y
ight)}, \hspace{1em} ext{where} \hspace{1em} y \in \mathbb{R}^m.$$

The **concentration matrix** $\Psi = \Sigma^{-1}$ is positive definite.

A **Gaussian model** \mathcal{M} is a set of concentration matrices, i.e. a subset of the cone of $m \times m$ positive definite matrices. Given data $Y = (Y_1, \ldots, Y_n)$, the likelihood is

 $L_Y(\Psi) =
ho_{\Psi^{-1}}(Y_1) \cdots
ho_{\Psi^{-1}}(Y_n), \quad ext{ where } \Psi \in \mathcal{M}.$

The density function of an *m*-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp{\left(-rac{1}{2}y^{T}\Sigma^{-1}y
ight)}, \hspace{1em} ext{where} \hspace{1em} y \in \mathbb{R}^{m}.$$

The **concentration matrix** $\Psi = \Sigma^{-1}$ is positive definite.

A **Gaussian model** \mathcal{M} is a set of concentration matrices, i.e. a subset of the cone of $m \times m$ positive definite matrices. Given data $Y = (Y_1, \dots, Y_n)$, the likelihood is

$$\mathcal{L}_{Y}(\Psi)=
ho_{\Psi^{-1}}(Y_{1})\cdots
ho_{\Psi^{-1}}(Y_{n}), \hspace{1em} ext{where} \hspace{1em} \Psi\in\mathcal{M}.$$

likelihood L_Y can be unbounded from above MLE might not exist MLE might not be unique

XIII - XVII

Gaussian group model

The **Gaussian group model** of a group G with a representation $G \xrightarrow{\varphi} GL_m$ on \mathbb{R}^m is

 $\mathcal{M}_{G} := \left\{ \Psi_{g} = \varphi(g)^{T} \varphi(g) \mid g \in G \right\}.$

(depends only on image of G in GL_m , hence may assume $G\subseteq\operatorname{GL}_m)$

Gaussian group model

The **Gaussian group** model of a group G with a representation $G \xrightarrow{\varphi} GL_m$ on \mathbb{R}^m is

 $\mathcal{M}_{G} := \left\{ \Psi_{g} = \varphi(g)^{T} \varphi(g) \mid g \in G \right\}.$

(depends only on image of G in GL_m , hence may assume $G \subseteq \operatorname{GL}_m$)

We want to find an MLE, i.e. a maximizer of

 $L_Y(\Psi_g)$

Gaussian group model

The **Gaussian group** model of a group G with a representation $G \xrightarrow{\varphi} GL_m$ on \mathbb{R}^m is

 $\mathcal{M}_{G} := \left\{ \Psi_{g} = \varphi(g)^{T} \varphi(g) \mid g \in G \right\}.$

(depends only on image of G in GL_m , hence may assume $G \subseteq \operatorname{GL}_m$)

We want to find an MLE, i.e. a maximizer of

 $\log L_Y(\Psi_g) = \frac{1}{2} \underbrace{\left(n \log \det \Psi_g - \|g \cdot Y\|_2^2 \right)}_{q} - \frac{nm}{2} \log(2\pi) \quad \text{ for } g \in G.$ $\ell_Y(\Psi_g)$ MIF

$$\sup_{g \in G} \ell_{Y}(\Psi_{g}) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap \mathrm{SL}_{\mathrm{m}}} \|h \cdot Y\|_{2}^{2} \right) - nm \log \tau \right)$$

Invariant theory classically over $\mathbb C$ – can also define Gaussian (group) models over $\mathbb C$

Proposition (Améndola, Kohn, Reichenbach, Seigal) For $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{C}^m$ and a group $G \subset \operatorname{GL}_m(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

 $\sup_{g \in G} \ell_{Y}(\Psi_{g}) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap SL_{m}} \|h \cdot Y\|_{2}^{2} \right) - nm \log \tau \right).$

Invariant theory classically over $\mathbb C$ – can also define Gaussian (group) models over $\mathbb C$

Proposition (Améndola, Kohn, Reichenbach, Seigal) For $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{C}^m$ and a group $G \subset \operatorname{GL}_m(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$\sup_{g \in G} \ell_{Y}(\Psi_{g}) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap \mathrm{SL}_{\mathrm{m}}} \|h \cdot Y\|_{2}^{2} \right) - nm \log \tau \right).$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap SL_m$ -orbit of Y, then an MLE for the Gaussian group model \mathcal{M}_G is

 $\tau h^* h$, where τ is the unique value minimizing $\tau \|h \cdot Y\|_2^2 - nm \log \tau$.

Invariant theory classically over $\mathbb C$ – can also define Gaussian (group) models over $\mathbb C$

Proposition (Améndola, Kohn, Reichenbach, Seigal) For $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{C}^m$ and a group $G \subset \operatorname{GL}_m(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$\sup_{g \in G} \ell_{\boldsymbol{Y}}(\Psi_g) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap \mathrm{SL}_{\mathrm{m}}} \|h \cdot \boldsymbol{Y}\|_2^2 \right) - nm \log \tau \right).$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap SL_m$ -orbit of Y, then an MLE for the Gaussian group model \mathcal{M}_G is

 $\tau h^* h$, where τ is the unique value minimizing $\tau \|h \cdot Y\|_2^2 - nm \log \tau$.

Theor	em (Améndola,	Kohr	n, Reichenbach [,] Seigal)		
Let Y	and G as above	e. If G	G is linearly reductive,		
ML es	timation for \mathcal{M}_{0}	; rela	tes to the action by $G \cap \operatorname{SL}_m($	$\mathbb C)$ as	follows:
(a)	Y unstable	\Leftrightarrow	ℓ_{Y} not bounded from above		
(b)	Y semistable	\Leftrightarrow	ℓ_{Y} bounded from above		
(c)	Y polystable	\Leftrightarrow	MLE exists		
(b)	Y stable	\Leftrightarrow	finitely many MLEs exist	\Leftrightarrow	unique MLE

Real examples

Real examples

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a linearly reductive group which is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows:

(a)	Y unstable	\Leftrightarrow	ℓ_Y not bounded from above		
(b)	Y semistable	\Leftrightarrow	ℓ_Y bounded from above		
(c)	Y polystable	\Leftrightarrow	MLE exists		
(d)	Y stable	\Rightarrow	finitely many MLEs exist	\Leftrightarrow	unique ML

Real examples

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a linearly reductive group which is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows: (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above (c) Y polystable $\Leftrightarrow MLE$ exists (d) Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Real examples

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a linearly reductive group which is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows: (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above

- (c) Y polystable ⇔ MLE exists
- (d) Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a group which is closed under non-zero scalar multiples, but not necessarily linearly reductive. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m^{\pm}(\mathbb{R})$ as follows:

- (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above
- (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above
- (c) Y polystable \Rightarrow MLE exists

Real examples

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a linearly reductive group which is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows: (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above (c) Y polystable $\Leftrightarrow MLE$ exists

(d) Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a group which is closed under non-zero scalar multiples, but not necessarily linearly reductive. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL^{\pm}_m(\mathbb{R})$ as follows:

- (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above
- (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above
- (c) Y polystable \Rightarrow MLE exists

Example: Gaussian graphical models

Summary

 Invariant theory
 Statistics

 describe null cone
 algorithms to find MLE

 progression
 algorithmic null cone
 convergence analysis

 membership testing
 algorithmic null cone
 convergence analysis

XVII - XVII