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Global picture
Statistics Invariant theory

Given: statistical model Given: orbit G · v = {g ·v | g ∈G}
sample data SY

Task: find maximum likelihood Task: compute capacity
estimate (MLE) = closest distance of orbit to origin

= point in model that best fits SY
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Invariant theory
Stability notions

The orbit of a vector v in a vector space V under an
action by a group G is

G .v = {g · v | g ∈ G} ⊂ V .

v is unstable iff 0 ∈ G .v (i.e. v can be scaled to 0 in the limit)

v semistable iff 0 /∈ G .v

v polystable iff v 6= 0 and its orbit G .v is closed

v is stable iff v is polystable and its stabilizer is finite

The null cone of the action by G is the set of unstable vectors v .
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Invariant theory
Null cone membership testing

Classical and often hard question: Describe null cone
(essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

capG (v) := inf
g∈G
‖g · v‖2

2.

Observation: capG (v) = 0 iff v lies in null cone

Hence: Testing null cone membership is a minimization problem.
 algorithms: [series of 3 papers in 2017 – 2019 by

Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]
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Maximum likelihood estimation

Given:

M: a statistical model = a set of probability distributions

Y = (Y1, . . . ,Yn): n samples of observed data

Goal: find a distribution in the model M that best fits the empirical data Y

Approach: maximize the likelihood function

LY (ρ) := ρ(Y1) · · · ρ(Yn), where ρ ∈M.

A maximum likelihood estimate (MLE) is a distribution in the model M that
maximizes the likelihood LY .
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Discrete statistical models

A probability distribution on m states is determined by is probability mass
function ρ, where ρj is the probability that the j-th state occurs.

ρ is a point in the probability simplex

∆m−1 =
{
q ∈ Rm | qj ≥ 0 and

∑
qj = 1

}
.

A discrete statistical modelM is a subset of the simplex ∆m−1.
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Discrete statistical models
maximum likelihood estimation

Given data is a vector of counts Y ∈ Zm
≥0,

where Yj is the number of times the j-th state occurs.

The empirical distribution is SY = 1
nY ∈ ∆m−1, where n = Y1 + . . .+ Ym.

The likelihood function takes the form LY (ρ) = ρY1
1 · · · ρYm

m , where ρ ∈M.

An MLE is a point in model M that maximizes the likelihood LY of observing Y .
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Log-linear models
= set of distributions whose logarithms lie in a fixed linear space.

Let A ∈ Zd×m, and define

MA = {ρ ∈ ∆m−1 | log ρ ∈ rowspan(A)} .

We assume that 1 := (1, . . . , 1) ∈ rowspan(A) (i.e., uniform distribution in MA).

Matrix A = [a1 | a2 | . . . | am] also defines an action by the torus

GTd = group of complex, diagonal, invertible d × d matrices

on Cm:

g ∈ GTd acts on x ∈ Cm by left multiplication with g a1

. . .

g am

 , where g aj = g
a1j

1 . . . g
adj
d .

MA is the orbit of the uniform distribution in ∆m−1 ∩ Rm
>0.
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Example
MA = {ρ ∈ ∆m−1 | log ρ ∈ rowspan(A)} . A =

[
2 1 0
0 1 2

]

g ∈ GT2 acts on x ∈ C3 by

 g a1

g a2

g a3

 =

 g2
1

g1g2

g2
2

.

MA = (GT2 ·
1

3
1) ∩∆2 ∩ R3

>0

=

{
1

3

(
g2

1 , g1g2, g
2
2

)
| g1, g2 > 0, g2

1 + g1g2 + g2
2 = 3

}

=
{
ρ ∈ R3

>0 | ρ2
2 = ρ1ρ3, ρ1 + ρ2 + ρ3 = 1

}

other examples: independence model,
graphical models, hierarchical models, . . .
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Maximum likelihood estimation
for log-linear models

An MLE in MA given data Y is a point ρ̂ in the model
such that

Aρ̂ = ASY , where SY =
1

n
Y .

The MLE is unique if it exists!

Model MA is not closed: MLE may not exist if SY has zeroes.
True maximizer could be on boundary of model.

polyhedral condition for MLE existence:
For A = [a1 | a2 | . . . | am] ∈ Zd×m, we define

P(A) = conv {a1, a2, . . . , am} ⊂ Rd .

Theorem (Eriksson, Fienberg, Rinaldo, Sullivant ’06)
MLE given Y exists in MA iff ASY is in relative interior of P(A).
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Stability for torus actions
The action of the torus GTd given by the matrix A ∈ Zd×m is in fact well-defined on
projective space Pm−1.

A linearization is a consistent action on Cm, given by a character b ∈ Zd :

g ∈ GTd acts on x ∈ Cm by

 g a1−b

. . .

g am−b

.

polyhedral conditions for stability:
Define sub-polytopes of P(A) = conv{a1, a2, . . . , am} that depend on x ∈ Cm:

Px(A) = conv {aj | j ∈ supp(x)} .

Theorem (standard, proof via Hilbert-Mumford criterion)
Consider the action of GTd given by matrix A ∈ Zd×m with linearization b ∈ Zd .

(a) x unstable ⇔ b /∈ Px(A) can be scaled to 0 in the limit
(b) x semistable ⇔ b ∈ Px(A) cannot be scaled to 0 in the limit
(c) x polystable ⇔ b ∈ relintPx(A) closed orbit
(d) x stable ⇔ b ∈ intPx(A) finite stabilizer
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Combining both worlds
Theorem (Améndola, Kohn, Reichenbach, Seigal)
Consider a vector of counts Y ∈ Zm with n =

∑
Yj , matrix A ∈ Zd×m, and

b = AY ∈ Zd . The MLE given Y in MA exists iff 1 ∈ Cm is polystable under the
action of GTd given by matrix nA with linearization b.

attains its maximum ⇔ attains its minimum

How are the two optimal points related?

Theorem (cont’d)
If x ∈ Cm is a point of minimal norm in the orbit GTd · 1, then the MLE is

x (2)

‖x‖2
, where x (2) is the vector with j-th entry |xj |2.
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Algorithmic consequences

algorithms for finding MLE, e.g. ↔ scaling algorithms to
iterative proportional scaling (IPS) compute capacity

maximize likelihood ⇔ minimize KL divergence minimize `2-norm

model lives in ∆m−1 ∩ Rm
>0 orbit lives in Cm

trivial linearization b = 0 linearization b = AY
(defines model and steps of IPS)
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Gaussian statistical models
The density function of an m-dimensional Gaussian with mean zero and covariance
matrix Σ ∈ Rm×m is

ρΣ(y) =
1√

det(2πΣ)
exp

(
−1

2
yTΣ−1y

)
, where y ∈ Rm.

The concentration matrix Ψ = Σ−1 is positive definite.

A Gaussian modelM is a set of concentration matrices, i.e. a subset of the cone
of m ×m positive definite matrices.

Given data Y = (Y1, . . . ,Yn), the likelihood is

LY (Ψ) = ρΨ−1 (Y1) · · · ρΨ−1 (Yn), where Ψ ∈M.

likelihood LY can be unbounded from above

MLE might not exist

MLE might not be unique
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Gaussian group model
The Gaussian group model of a group G with a representation G

ϕ−→ GLm on Rm is

MG :=
{

Ψg = ϕ(g)Tϕ(g) | g ∈ G
}
.

(depends only on image of G in GLm, hence may assume G ⊆ GLm)

We want to find an MLE, i.e. a maximizer of

log LY (Ψg ) =
1

2

(
n log det Ψg − ‖g · Y ‖2

2

)︸ ︷︷ ︸
`Y (Ψg )

−nm

2
log(2π) for g ∈ G .
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Combining both worlds

Invariant theory classically over C – can also define Gaussian (group) models over C

Proposition (Améndola, Kohn, Reichenbach, Seigal)
For Y = (Y1, . . . ,Yn) with Yi ∈ Cm and a group G ⊂ GLm(C) closed under
non-zero scalar multiples (i.e., g ∈G , λ ∈ C, λ 6= 0⇒ λg ∈G ),

sup
g∈G

`Y (Ψg ) = − inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm

‖h · Y ‖2
2

)
− nm log τ

)
.

If h · Y is a point of minimal norm in the G ∩ SLm-orbit of Y , then an MLE for the
Gaussian group model MG is

τh∗h, where τ is the unique value minimizing τ ‖h · Y ‖2
2 − nm log τ.

Theorem (Améndola, Kohn, Reichenbach, Seigal)
Let Y and G as above. If G is linearly reductive,
ML estimation for MG relates to the action by G ∩ SLm(C) as follows:

(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇔ finitely many MLEs exist ⇔ unique MLE
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Proposition (Améndola, Kohn, Reichenbach, Seigal)
For Y = (Y1, . . . ,Yn) with Yi ∈ Cm and a group G ⊂ GLm(C) closed under
non-zero scalar multiples (i.e., g ∈G , λ ∈ C, λ 6= 0⇒ λg ∈G ),

sup
g∈G

`Y (Ψg ) = − inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm

‖h · Y ‖2
2

)
− nm log τ

)
.

If h · Y is a point of minimal norm in the G ∩ SLm-orbit of Y , then an MLE for the
Gaussian group model MG is

τh∗h, where τ is the unique value minimizing τ ‖h · Y ‖2
2 − nm log τ.
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Combining both worlds
Real examples

Theorem (Améndola, Kohn, Reichenbach, Seigal)
Let Y = (Y1, . . . ,Yn) with Yi ∈ Rm, and let G ⊂ GLm(R) be a linearly reductive group
which is closed under non-zero scalar multiples.
ML estimation for MG relates to the action by G ∩ SLm(R) as follows:

(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇒ finitely many MLEs exist ⇔ unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem (Améndola, Kohn, Reichenbach, Seigal)
Let Y = (Y1, . . . ,Yn) with Yi ∈ Rm, and let G ⊂ GLm(R) be a group which is closed under
non-zero scalar multiples, but not necessarily linearly reductive.
ML estimation for MG relates to the action by G ∩ SL±

m (R) as follows:
(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇒ MLE exists

Example: Gaussian graphical models
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Summary

Invariant theory Statistics

historical
progression

y
describe null cone algorithms to find MLE

algorithmic null cone convergence analysis
membership testing
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