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Chow forms



Chow forms Hurwitz forms and beyond

Chow hypersurfaces

Consider an irreducible variety X in Pn
C of dimension k .

A general linear space in Pn of dimension n − k − 1 does not meet X .

The set of such linear spaces meeting X is an irreducible hypersurface in
the Grassmannian Gr(n− k − 1,Pn), called Chow hypersurface Ch(X).

P3

curve C
Ch(C) lines meeting C

surface S
Ch(S) = S points meeting S

P4

curve C
Ch(C) planes meeting C

surface S
Ch(S) lines meeting S

threefold T
Ch(T ) = T points meeting T

I - VIII
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Chow forms

The Chow hypersurface Ch(X ) determines X uniquely.

Ch(X ) is defined by 1 polynomial in Plücker coordinates, which is
unique up to scaling and Plücker relations, called Chow form of X .

The degree of the Chow form of X is deg(X ).

Chow forms of degree d in C[Gr(n − k − 1,Pn)] parameterize
k-dimensional subvarieties of Pn with degree d .

History:

1860: Cayley introduced these forms for space curves

1937: Chow and van der Waerden define them for arbitrary varieties
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Hurwitz hypersurfaces
Consider an irreducible variety X in Pn of dimension k and degree d ≥ 2.

A general linear space in Pn of dimension n − k intersects X at d points
transversely.

The Zariski closure of the set of such linear spaces that intersect X
non-transversely at some smooth point is an irreducible hypersurface in
Gr(n − k ,Pn), called Hurwitz hypersurface Hur(X ). [Sturmfels]

P3

curve C
Ch(C) lines meeting C
Hur(C) = C∨ planes tangent to C

surface S
Ch(S) = S points meeting S
Hur(S) lines tangent to S

P4

curve C
Ch(C) planes meeting C
Hur(C) = C∨ tangent hyperplanes

surface S
Ch(S) lines meeting S
Hur(S) planes containing tangent lines

threefold T
Ch(T ) = T points meeting T
Hur(T ) tangent lines

III - VIII
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Coisotropic hypersurfaces

Consider an irreducible variety X in Pn of dimension k , and let 0 ≤ i ≤ k .

A general linear space in Pn of dimension n − k + i intersects X
transversely at all smooth intersection points.

The Zariski closure of the set of such linear spaces that intersect X
non-transversely at some smooth point is an irreducible variety in
Gr(n − k + i ,Pn), called i-th coisotropic variety CHi (X ). [GKZ]

CHi (X ) is a hypersurface if and only if i ≤ k − codim(X∨) + 1.
In this case, its defining equation is called i-th coisotropic form of X .

The dual variety X∨ is the Zariski closure in (Pn)∗ of the set of all hyperplanes
that are tangent to X at some smooth point.

IV - VIII
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Coisotropic hypersurfaces

P3

curve C

Ch(C) lines meeting C
Hur(C) = C∨ planes tangent to C

surface S

Ch(S) = S points meeting S
Hur(S) lines tangent to S
CH2(S) = S∨ planes tangent to S

P4

curve C

Ch(C) planes meeting C
Hur(C) = C∨ tangent hyperplanes

surface S

Ch(S) lines meeting S
Hur(S) planes containing tangent lines
CH2(S) = S∨ tangent hyperplanes

threefold T

Ch(T ) = T points meeting T
Hur(T ) tangent lines
CH2(T ) tangent planes
CH3(T ) = T∨ tangent hyperplanes
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Applications
Bürgisser, Lerario (2016): Unitary group acts transitively on the tangent spaces
of a coisotropic hypersurface
 can compute volume of coisotropic hypersurfaces via kinematic formula
 probabilistic Schubert calculus
 Bürgisser (2015): condition of intersecting varieties with linear spaces

hyperdeterminants are coisotropic forms in matrix coordinates

K., Sturmfels, Trager (2017): The (iterated) singular loci of the coisotropic
hypersurfaces of a space curve or surface X parameterize the visual events of X

Connections to polar geometry: Coisotropic hypersurfaces are the analogue of
polar varieties in Grassmannians

VI - VIII
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Computational questions

Every coisotropic hypersurface CHi (X ) determines X uniquely.

How to compute the i-th coisotropic form of X from I(X )?

How to compute I(X ) and i from a coisotropic form?

How to test if a polynomial in Plücker coordinates is a coisotropic form?

General algorithms that compute coisotropic forms:

Input: any homogeneous ideal I, any index i

Output: i-th coisotropic form of V (I)

Macaulay2 package ”Resultants”

Macaulay2 package ”Coisotropy” (only available from my website)

these general implementations are slow
 develop specialized algorithms for computable cases

VII - VIII
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Test coisotropy and recover (X , i)

Let Q be a polynomial in Plücker coordinates of Gr(k,Pn).

Every k-dimensional linear space in Pn is the kernel of an
(n − k)× (n + 1)-matrix A = (ai ,j).

Substitute Plücker coordinates by maximal minors of A to derive
Q̃ ∈ C[ai ,j ] from Q.

Form the (n − k)× (n + 1)-Jacobian matrix J = ( ∂Q̃
∂ai,j

).

Q is a coisotropic form if and only if rank(J(A)) ≤ 1 for all A ∈ V (Q̃).

In this case, V (Q̃)∨ = Pn−k−1 × X and n − k − 1 = dim(X )− i .
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