Computing Chow forms, Hurwitz forms and Beyond

Kathlén Kohn (TU Berlin)

August 3, 2017

Section 1

Chow forms

Chow hypersurfaces

Consider an irreducible variety X in $\mathbb{P}^n_{\mathbb{C}}$ of dimension k.

- A general linear space in \mathbb{P}^n of dimension n k 1 does not meet X.
- The set of such linear spaces meeting X is an irreducible hypersurface in the Grassmannian Gr(n − k − 1, Pⁿ), called Chow hypersurface Ch(X).

Chow hypersurfaces

Consider an irreducible variety X in $\mathbb{P}^n_{\mathbb{C}}$ of dimension k.

• A general linear space in \mathbb{P}^n of dimension n - k - 1 does not meet X.

TD3

 The set of such linear spaces meeting X is an irreducible hypersurface in the Grassmannian Gr(n − k − 1, Pⁿ), called Chow hypersurface Ch(X).

curve *C* Ch(*C*) lines meeting *C* surface SCh(S) = S points meeting S

Chow hypersurfaces

Consider an irreducible variety X in $\mathbb{P}^n_{\mathbb{C}}$ of dimension k.

- A general linear space in \mathbb{P}^n of dimension n k 1 does not meet X.
- The set of such linear spaces meeting X is an irreducible hypersurface in the Grassmannian Gr(n − k − 1, Pⁿ), called Chow hypersurface Ch(X).

1003

| - VIII

The Chow hypersurface Ch(X) determines X uniquely.

- Ch(X) is defined by 1 polynomial in Plücker coordinates, which is unique up to scaling and Plücker relations, called Chow form of X.
- The degree of the Chow form of X is deg(X).
- ♦ Chow forms of degree *d* in C[Gr(*n* − *k* − 1, Pⁿ)] parameterize
 k-dimensional subvarieties of Pⁿ with degree *d*.

History:

- 1860: Cayley introduced these forms for space curves
- 1937: Chow and van der Waerden define them for arbitrary varieties

Section 2

Hurwitz forms and beyond

Hurwitz forms and beyond

Hurwitz hypersurfaces

Consider an irreducible variety X in \mathbb{P}^n of dimension k and degree $d \ge 2$.

- A general linear space in \mathbb{P}^n of dimension n k intersects X at d points transversely.
- ◆ The Zariski closure of the set of such linear spaces that intersect X non-transversely at some smooth point is an irreducible hypersurface in Gr(n - k, ℙⁿ), called Hurwitz hypersurface Hur(X). [Sturmfels]

Hurwitz forms and beyond

Hurwitz hypersurfaces

Consider an irreducible variety X in \mathbb{P}^n of dimension k and degree $d \ge 2$.

- A general linear space in ℙⁿ of dimension n − k intersects X at d points transversely.
- The Zariski closure of the set of such linear spaces that intersect X non-transversely at some smooth point is an irreducible hypersurface in Gr(n − k, Pⁿ), called Hurwitz hypersurface Hur(X). [Sturmfels]

<u>т</u>р3

 $\operatorname{Ch}(C)$ $\operatorname{Hur}(C) = C^{\vee}$

Curve C lines meeting C planes tangent to C $\begin{array}{l} \text{surface } S \\ \text{Ch}(S) = S \\ \text{Hur}(S) \end{array} \text{ points meeting } S \\ \text{lines tangent to } S \end{array}$

Hurwitz forms and beyond

Hurwitz hypersurfaces

Consider an irreducible variety X in \mathbb{P}^n of dimension k and degree $d \ge 2$.

- A general linear space in \mathbb{P}^n of dimension n k intersects X at d points transversely.
- The Zariski closure of the set of such linear spaces that intersect X non-transversely at some smooth point is an irreducible hypersurface in Gr(n − k, Pⁿ), called Hurwitz hypersurface Hur(X). [Sturmfels]

Hurwitz forms and beyond

Coisotropic hypersurfaces

Consider an irreducible variety X in \mathbb{P}^n of dimension k, and let $0 \le i \le k$.

- A general linear space in ℙⁿ of dimension n − k + i intersects X transversely at all smooth intersection points.
- The Zariski closure of the set of such linear spaces that intersect X non-transversely at some smooth point is an irreducible variety in Gr(n − k + i, Pⁿ), called *i*-th coisotropic variety CH_i(X). [GKZ]

Hurwitz forms and beyond

Coisotropic hypersurfaces

Consider an irreducible variety X in \mathbb{P}^n of dimension k, and let $0 \le i \le k$.

- A general linear space in ℙⁿ of dimension n − k + i intersects X transversely at all smooth intersection points.
- The Zariski closure of the set of such linear spaces that intersect X non-transversely at some smooth point is an irreducible variety in Gr(n − k + i, Pⁿ), called *i*-th coisotropic variety CH_i(X). [GKZ]
- ◆ CH_i(X) is a hypersurface if and only if i ≤ k − codim(X[∨]) + 1.
 In this case, its defining equation is called *i*-th coisotropic form of X.

The dual variety X^{\vee} is the Zariski closure in $(\mathbb{P}^n)^*$ of the set of all hyperplanes that are tangent to X at some smooth point.

Hurwitz forms and beyond

Coisotropic hypersurfaces

V - VIII

Hurwitz forms and beyond

Applications

 Bürgisser, Lerario (2016): Unitary group acts transitively on the tangent spaces of a coisotropic hypersurface

 \rightsquigarrow can compute volume of coisotropic hypersurfaces via kinematic formula

- → probabilistic Schubert calculus
- → Bürgisser (2015): condition of intersecting varieties with linear spaces

Hurwitz forms and beyond

Applications

 Bürgisser, Lerario (2016): Unitary group acts transitively on the tangent spaces of a coisotropic hypersurface

- \rightsquigarrow can compute volume of coisotropic hypersurfaces via kinematic formula
- **~> probabilistic Schubert calculus**
- →→ Bürgisser (2015): condition of intersecting varieties with linear spaces

hyperdeterminants are coisotropic forms in matrix coordinates

Hurwitz forms and beyond

Applications

 Bürgisser, Lerario (2016): Unitary group acts transitively on the tangent spaces of a coisotropic hypersurface

- \rightsquigarrow can compute volume of coisotropic hypersurfaces via kinematic formula
- **~> probabilistic Schubert calculus**
- →→ Bürgisser (2015): condition of intersecting varieties with linear spaces
- hyperdeterminants are coisotropic forms in matrix coordinates
- K., Sturmfels, Trager (2017): The (iterated) singular loci of the coisotropic hypersurfaces of a space curve or surface X parameterize the visual events of X
- Connections to polar geometry: Coisotropic hypersurfaces are the analogue of polar varieties in Grassmannians

Hurwitz forms and beyond

Computational questions

Every coisotropic hypersurface $CH_i(X)$ determines X uniquely.

- How to compute the *i*-th coisotropic form of X from I(X)?
- How to compute I(X) and i from a coisotropic form?
- How to test if a polynomial in Plücker coordinates is a coisotropic form?

Hurwitz forms and beyond

Computational questions

Every coisotropic hypersurface $CH_i(X)$ determines X uniquely.

- How to compute the *i*-th coisotropic form of X from I(X)?
- How to compute I(X) and i from a coisotropic form?
- How to test if a polynomial in Plücker coordinates is a coisotropic form?

General algorithms that compute coisotropic forms:

- Input: any homogeneous ideal I, any index i
- Output: *i*-th coisotropic form of V(I)
- Macaulay2 package "Resultants"
- Macaulay2 package "Coisotropy" (only available from my website)
- these general implementations are slow
 develop specialized algorithms for computable cases

Hurwitz forms and beyond

Test coisotropy and recover (X, i)

- Let Q be a polynomial in Plücker coordinates of $Gr(k, \mathbb{P}^n)$.
- Every k-dimensional linear space in Pⁿ is the kernel of an (n − k) × (n + 1)-matrix A = (a_{i,j}).
- Form the $(n k) \times (n + 1)$ -Jacobian matrix $J = (\frac{\partial Q}{\partial a_{i,j}})$.

 \overline{Q} is a coisotropic form if and only if $\mathrm{rank}(J(A)) \leq 1$ for all $A \in V(\widetilde{Q})$.

Hurwitz forms and beyond

Test coisotropy and recover (X, i)

- Let Q be a polynomial in Plücker coordinates of $Gr(k, \mathbb{P}^n)$.
- Every k-dimensional linear space in Pⁿ is the kernel of an (n − k) × (n + 1)-matrix A = (a_{i,j}).
- Form the $(n k) \times (n + 1)$ -Jacobian matrix $J = (\frac{\partial Q}{\partial a_{i,j}})$.

Q is a coisotropic form if and only if $\operatorname{rank}(J(A)) \leq 1$ for all $A \in V(\tilde{Q})$. In this case, $V(\tilde{Q})^{\vee} = \mathbb{P}^{n-k-1} \times X$ and $n-k-1 = \dim(X) - i$.

Thanks for your attention