Changing Views on Curves and Surfaces

Kathlén Kohn (TU Berlin)

joint work with Bernd Sturmfels (MPI Leipzig, UC Berkeley) and Matthew Trager (Inria)

$$
\text { July 31, } 2017
$$

Visual Event Surface

Consider a fixed curve or surface in 3-space. Take pictures of that object with a moving camera.

At some camera points the image undergoes a qualitative change. These points form the visual event surface.

Section 1

Curves

Visual Event Surface

Consider a smooth curve in 3-space

- that is not contained in any plane, and
- has degree d and genus g.

Projection from a general camera point yields a plane curve with $\frac{1}{2}(d-1)(d-2)-g$ nodes (over $\left.\mathbb{C}\right)$, and no other singularities.

The visual event surface consists of those camera points where the plane curve has a different singularity structure.

Visual Event Surface: 3 Components

Tangential surface union of all tangent lines to the curve
\rightsquigarrow cusp in image

Edge surface union of lines spanned by 2 points on curve whose tangent lines lie in a common plane \rightsquigarrow tacnode in image

Trisecant surface union of lines passing through 3 points on curve
\rightsquigarrow triple point in image

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^{3} :

- dual surface C^{\vee} in $\left(\mathbb{P}^{3}\right)^{*}$: tangent planes to C,
- Chow hypersurface $\operatorname{Ch}(C)$ in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$: lines meeting C.

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^{3} :

- dual surface C^{\vee} in $\left(\mathbb{P}^{3}\right)^{*}$: tangent planes to C,
- Chow hypersurface $\operatorname{Ch}(C)$ in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$: lines meeting C.

Their (iterated) singular loci yield the 3 components of the visual event surface of C :
$\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$
mult. $=0$
Ch (C)
mult. $=1$
$\{$ secant lines to $C\}$
mult. $=1+1$
\{trisecant lines $\}$
mult. $=1+1+1$

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^{3} :

- dual surface C^{\vee} in $\left(\mathbb{P}^{3}\right)^{*}$: tangent planes to C,
- Chow hypersurface $\operatorname{Ch}(C)$ in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$: lines meeting C.

Their (iterated) singular loci yield the 3 components of the visual event surface of C :

$\left(\mathbb{P}^{3}\right)^{*}$	$\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ mult. $=0$
mult. $=1$	mult. $=1$

Degrees

For a general space curve C of degree d and genus g, the degrees of the compononents of its visual event surface are

tangential surface	$:$
edge surface	$:$
trisecant surface	$:$
	$\frac{(d-1)(d-2)(d-3)(d-3)}{3}-(d-2)$,

d	g	tangential surface	edge surface	trisecant surface
3	0	4	0	0
4	0	6	6	2
4	1	8	8	0
5	0	8	16	8
5	1	10	20	5
5	2	12	24	2
6	0	10	30	20
6	1	12	36	16
6	2	14	42	12
6	3	16	48	8
6	4	18	54	4

Section 2

Surfaces

Visual Event Surface

Consider a general surface in 3-space of degree d.
The branch locus of the projection from a general point is a plane curve with

- degree $d(d-1)$,
- $\frac{1}{2} d(d-1)(d-2)(d-3)$ nodes,
- $d(d-1)(d-2)$ cusps,
called contour curve.
(

The visual event surface consists of those camera points where the contour curve has a different singularity structure.

Visual Event Surface: 5 Components

Edge surface

Cusp crossing surface

Tritangent surface

Visual Event Surface: 5 Components

Edge surface
union of bitangent lines contained in bitangent planes

Cusp crossing surface union of lines with contact of order $3+2$ at 2 points of the surface

Tritangent surface union of all tritangent lines to the surface

Visual Event Surface: 5 Components

Parabolic surface

Over \mathbb{R} there are 2 possible singularities in the contour curve.

Flecnodal surface

Visual Event Surface: 5 Components

Parabolic surface

A general point on the surface has 2 lines with contact of order 3. A point is called parabolic if there is just 1 such line.
Over \mathbb{R} there are 2 possible singularities in the contour curve.

Flecnodal surface

Visual Event Surface: 5 Components

Parabolic surface
union of lines with contact of order 3 at a parabolic point of the surface
A general point on the surface has 2 lines with contact of order 3. A point is called parabolic if there is just 1 such line.
Over \mathbb{R} there are 2 possible singularities in the contour curve.

Flecnodal surface
union of lines with contact of order 4 at a point of the surface

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^{3} :

- dual surface S^{\vee} in $\left(\mathbb{P}^{3}\right)^{*}$: tangent planes to S,
- Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$: tangent lines to S.

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^{3} :

- dual surface S^{\vee} in $\left(\mathbb{P}^{3}\right)^{*}$: tangent planes to S,
- Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$: tangent lines to S.

Their (iterated) singular loci yield the 5 components of the visual event surface of S :

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^{3} :

- dual surface S^{\vee} in $\left(\mathbb{P}^{3}\right)^{*}$: tangent planes to S,
- Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$: tangent lines to S.

Their (iterated) singular loci yield the 5 components of the visual event surface of S :

Degrees

For a general surface S in \mathbb{P}^{3} of degree d, the degrees of the compononents of its visual event surface are
flecnodal surface cusp crossing surface tritangent surface edge surface parabolic surface

$$
\begin{array}{r}
2 d(d-3)(3 d-2), \\
d(d-3)(d-4)\left(d^{2}+6 d-4\right), \\
\frac{1}{3} d(d-3)(d-4)(d-5)\left(d^{2}+3 d-2\right), \\
d(d-2)(d-3)\left(d^{2}+2 d-4\right), \\
2 d(d-2)(3 d-4)
\end{array}
$$

d	flecnodal	cusp crossing	tritangent	edge	parabolic
3	0	0	0	0	30
4	80	0	0	160	128
5	260	510	0	930	330
6	576	2448	624	3168	672
7	1064	7308	3808	8260	1190

Thanks for your attention

