Changing Views on Curves and Surfaces

Kathlén Kohn (TU Berlin)

joint work with Bernd Sturmfels (MPI Leipzig, UC Berkeley) and Matthew Trager (Inria)

July 31, 2017

Visual Event Surface

Consider a fixed curve or surface in 3-space. Take pictures of that object with a moving camera.

At some camera points the image undergoes a qualitative change. These points form the visual event surface.

Section 1

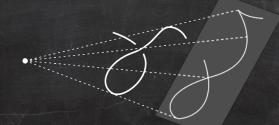
Curves

Visual Event Surface

Consider a smooth curve in 3-space

- that is not contained in any plane, and
- has degree d and genus g.

Projection from a general camera point yields a plane curve with $\frac{1}{2}(d-1)(d-2) - g$ nodes (over \mathbb{C}), and no other singularities.

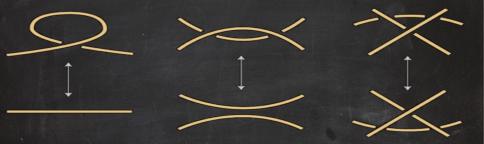


The visual event surface consists of those camera points where the plane curve has a different singularity structure.

Curves

Surfaces

Visual Event Surface: 3 Components



Tangential surface union of all tangent lines to the curve

 \rightsquigarrow cusp in image

Edge surface

union of lines spanned by 2 points on curve whose tangent lines lie in a common plane → tacnode in image Trisecant surface union of lines passing through 3 points on curve

→ triple point in image

III - X

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^3 :

- dual surface C^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to C,
- Chow hypersurface Ch(C) in $Gr(1, \mathbb{P}^3)$: lines meeting C.

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^3 :

- dual surface C^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to C,
- Chow hypersurface Ch(C) in $Gr(1, \mathbb{P}^3)$: lines meeting C.

Their (iterated) singular loci yield the 3 components of the visual event surface of C:

mult. = 0 Ch(*C*) *mult*. = 1

 $Gr(1, \mathbb{P}^3)$

 $\{ \text{secant lines to } C \}$
mult. = 1 + 1

 $\{ trisecant \ lines \} \\ \textit{mult.} = 1 + 1 + 1$

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a curve C in \mathbb{P}^3 :

- dual surface C^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to C,
- Chow hypersurface Ch(C) in $Gr(1, \mathbb{P}^3)$: lines meeting C.

Their (iterated) singular loci yield the 3 components of the visual event surface of C:

(**P**³)* mult. = 1CV mult. = 2dual curve to edge surface *mult*. = 2 + 2

dual curve to

tang. surface *mult*. = 3 $\operatorname{Ch}(C)$ mult. = 1

 $\operatorname{Gr}(1, \mathbb{P}^3)$ mult. = 0

 $\{ \text{secant lines to } C \}$ mult. = 1 + 1

 $\{ trisecant \ lines \} \\ \textit{mult.} = 1 + 1 + 1$

Degrees

For a general space curve C of degree d and genus g, the degrees of the components of its visual event surface are

tangential surface

2(d+g-1),edge surface : 2(d-3)(d+g-1), trisecant surface : $\frac{(d-1)(d-2)(d-3)}{3} - (d-2)g$.

g	tangential surface	edge surface	trisecant surface
0	4	0	0
0	6	6	2
1	8	8	0
0	8	16	8
1	10	20	5
2	12	24	2
0	10	30	20
1	12	36	16
2	14	42	12
3	16	48	8
4	18	54	4
	0 0 1 0 1 2 0 1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Section 2

Surfaces

contour

Visual Event Surface

Consider a general surface in 3-space of degree d.

The branch locus of the projection from a general point is a plane curve with

- degree d(d-1),
- $\frac{1}{2}d(d-1)(d-2)(d-3)$ nodes,
- d(d − 1)(d − 2) cusps,

called contour curve.

The visual event surface consists of those camera points where the contour curve has a different singularity structure.

Edge surface

Surfaces

Cusp crossing surface

Tritangent surface

union of bitangent lines contained in bitangent planes

Cusp crossing surface union of lines with contact of order 3 + 2 at 2 points of the surface

Tritangent surface union of all tritangent lines to the surface Visual Event Surface: 5 Components

Parabolic surface

Surfaces

Over $\ensuremath{\mathbb{R}}$ there are 2 possible singularities in the contour curve.

Flecnodal surface

Parabolic surface

Surfaces

A general point on the surface has 2 lines with contact of order 3. A point is called parabolic if there is just 1 such line.

Over \mathbb{R} there are 2 possible singularities in the contour curve.

Flecnodal surface

Visual Event Surface: 5 Components

Parabolic surface

Surfaces

union of lines with contact of order 3 at a parabolic point of the surface

A general point on the surface has 2 lines with contact of order 3. A point is called parabolic if there is just 1 such line.

Over \mathbb{R} there are 2 possible singularities in the contour curve.

Flecnodal surface

union of lines with contact of order 4 at a point of the surface Curves

Surfaces

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^3 :

- dual surface S^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to S,
- Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}(1, \mathbb{P}^3)$: tangent lines to S.

ves

Surfaces

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^3 :

- ♦ dual surface S^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to S,
- Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}(1, \mathbb{P}^3)$: tangent lines to S.

Their (iterated) singular loci yield the 5 components of the visual event surface of S:

 $\operatorname{Gr}(1, \mathbb{P}^3)$ mult. = 1 $\operatorname{Hur}(S)$ mult. = 2{principal tangents} {bitangents} .. = 3 *mult*. = 2 + 2 mult. = 3{flecnodal lines} {principal bit.} {tritangents} mult. = 4 mult. = 3 + 2 m. = 2 + 2 + 2

 $\operatorname{Gr}(1, \mathbb{P}^3)$

Coisotropic Hypersurfaces

There are 2 coisotropic hypersurface associated to a general surface S in \mathbb{P}^3 :

- dual surface S^{\vee} in $(\mathbb{P}^3)^*$: tangent planes to S,
- Hurwitz hypersurface $\operatorname{Hur}(S)$ in $\operatorname{Gr}(1, \mathbb{P}^3)$: tangent lines to S.

Their (iterated) singular loci yield the 5 components of the visual event surface of S:

mult. = 1 $(\mathbb{P}^{3})^{*}$ $\operatorname{Hur}(S)$ mult. = 1mult. = 2SV {principal tangents} {bitangents} mult = 2*mult*. = 2 + 2mult. = 3dual curve to dual curve to edge surface {flecnodal lines} {principal bit.} {tritangents} parab. surface mult. = 3mult. = 2 + 2mult. = 4mult. = 3 + 2 m. = 2 + 2 + 2 Curves

Surfaces

Degrees

For a general surface S in \mathbb{P}^3 of degree d, the degrees of the components of its visual event surface are

flecnodal surface cusp crossing surface tritangent surface edge surface parabolic surface $2d(d-3)(3d-2),\ d(d-3)(d-4)(d^2+6d-4),\ rac{1}{3}d(d-3)(d-4)(d-5)(d^2+3d-2),\ d(d-2)(d-3)(d^2+2d-4),\ 2d(d-2)(3d-4).$

d	flecnodal	cusp crossing	tritangent	edge	parabolic
3	0	0	0	0	30
4	80	0	0	160	128
5	260	510	0	930	330
6	576	2448	624	3168	672
7	1064	7308	3808	8260	1190

Thanks for your attention