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feedforward neural networks

M = im(u) = neuromanifold

it is a manifold with boundary
and singularities

are parametrized families of functions
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training a network

Given training data D, the goal is to minimize the loss
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training a network

Given training data D, the goal is to minimize the loss
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Geometric questions:

¢ How does the network
architecture affect the geometry
— * , of the function space?
¢ How does the geometry of the
function space impact the
training of the network?
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understanding networks via algebraic optimization

For piecewise algebraic activation, the neuromanifold is a semi-algebraic set
(defined by polynomial equalities and inequalities).

activation loss
identity squared-error loss
Examples: Sl
RelLU Wasserstein distance
polynomial cross-entropy

If the loss is also algebraic (or has at least algebraic derivatives), network
training is an algebraic optimization problem.
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baby example: linear dense networks
In this example:

i R2><4 % ]R3><2 S ]R3><4
(Wl, W2) Fe W2W1.

M = {W € R¥* | rank(W) < 2}

In general:
/,L:RlekO XszXkl S XRkLXkL_l RkLXkO’

(Wl,WQ,...,WL)i—> WL'~~W2W1.

M = {W € Rkxko | rank(W) < min(ko, ...,k )} is an algebraic variety and
we know its singularities etc.
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example: attention networks

A single-layer lightning self-attention network with weights @, K € R?*9 and
V. e R¥*diis

dxt d'xt
R — R 7F

e VX X TKTOX

A slice of the 5-dimensional
neuromanifold M for
gl =t Ped % |

It is singular along the orange
curve, and has boundary
points where the curve
leaves/enters M.

It is not a variety, but a
semialgebraic set.
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a dictionary

machine learning

algebraic geometry

sample complexity
identifiability

expressivity

subnetworks & hidden bias

learning dynamics

dimension
fibers
degree
singularities

algebraic critical point theory
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fundamental theorem:
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dimension and fibers

fundamental theorem:
The dimension of the neuromanifold M scales linearly with the sample
complexity of learnability (in the PAC sense).

Identifiability / hidden symmetries:
Which network parameters give rise to the same function?

In algebraic geometry terms:
Given f € M, which parameters @ are in the fiber ;~1(f)?

fiber/image theorem:
The dimension of the image of an algebraic map equals the co-dimension of
its generic fiber.
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intersections with a linear space (of the correct dimension).
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degree
The degree of an affine/projective algebraic variety is the number of
intersections with a linear space (of the correct dimension).
It measures how twisted the variety is, and its approximation capabilities:

Weyl Tube Formula:
The volume of the e-tube around an algebraic variety of dimension n,
co-dimension m, and degree d increases as O(nde)™.
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Singularities of a variety are points where the variety
does not look locally like a smooth manifold.
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singularities

Singularities of a variety are points where the variety
does not look locally like a smooth manifold.

Conjecture: The singularities of neuromanifolds correspond to subnetworks.
(known for convolutional & fully-connected networks with polynomial activation)

Potential explanation for lottery ticket hypothesis: the tendency of deep
networks to discard weights during learning.
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voronoi cells

Given a set M C R", the Voronoi cell of x € M consists of all u € R" such
that x is “closest” among all points in M.
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that x is “closest” among all points in M.

M might be finite

or a manifold, variety, semi-algebraic set, etc.
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singularities

A singularity might, depending on its type, attract a large portion of the
ambient space during training — explaining implicit bias.

This is captured by the Voronoi cell of the singularity:

C R? is the purple curve
loss = Euclidean distance

at all smooth points x € M, the Voronoi cell is a
line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the closest with
positive probability
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algebraic critical point theory can ...

o distinguish pure from spurious critical points that only come from the
network parametrization p

(recall: RN £ M oo R.)

© count critical points

© determine the critical points’ type (local / global minimal, strict /
non-strict saddle points, etc.) and location (e.g., on singular locus)

¢ identify particularly areas on the neuromanifold that are particularly
exposed (implicit bias) or have many critical points
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example: polynomial convolutional networks
We now consider convolutional networks

NN S N

S

where the activation function is a monomial: o(x) = x".

Weierstrass Approximation Theorem:
Any activation function can be approximated by polynomial ones.
Any CNN neuromanifold can be approximated by polynomial ones.
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example: polynomial convolutional networks
a(x) = x"
Theorem: Let r > 1.
The neuromanifold is an algebraic variety (i.e., described by polynomial
equations) and closed in Euclidean topology.

Its dimension (~ sample complexity) is linear in the depth.
dim(M) = L(k — 1) + 1 for L = #layers, k = filter size
Its degree (~ expressivity) is super exponential in the depth.

AL(L=1)(k=1)/2

degree(M) = (L(k — 1))! S

depth is

} explains why
important!

The singularities correspond to subnetworks and are nodal.

These are typically not more exposed

‘\%% during training.
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example: polynomial convolutional networks
a(x) = x"
Theorem: Let r > 1.

For a generic function f € M, the only symmetries in the fiber ©=1(f) are
rescalings of the layers.

After modding out the layer scaling, the network parametrization map
becomes
& an isomorphism almost everywhere
# that has finite fibers (& singularities)
# and is regular (constant-rank Jacobian) = no spurious critical points



comparison: lightning self-attention

A single-layer lightning self-attention network with weights @, K € R?*? and
VeRI*is

dxt d'xt
R — R :

X U X TKTOX.

The neuromanifold is
semialgebraic but not a variety
(polynomial inequalities

/ ‘ needed!)
It has both nodal and cuspidal

singularities.
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comparison: lightning self-attention

VXXTKTQX

cusps -

< boundary points
< Jacobian rank drops

Theorem: For generic f € M,
the only symmetries in the fiber
p~L(f) are the “obvious” ones:

o layer rescalings

¢ GL(a)-symmetries of K and
Q in each layer

¢ GL(d)-symmetries of V and
KT Q of neighboring layers



many future questions

+ Describe all singularities of attention neuromanifolds explicitly, and
compute their Voronoi cells. (~ implicit bias?)

+ Compare the type of critical points and more generally the loss
landscape of

¢ attention networks
¢ polynomial convolutional networks
¢ polynomial dense networks

+ Which properties carry over to the limit from polynomial networks
to arbitrary networks?

+ What happens to the neuromanifold when imposing group
equivariance?

+ What about ReLU networks, or more generally piecewise rational
activation?



thanks for your attention!
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