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feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

1 / 20



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,

σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

1 / 20



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

1 / 20



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

1 / 20



training a network

Given training data D, the goal is to minimize the loss

RN µ−→M `D−→ R.

D •

M

Geometric questions:

How does the network
architecture affect the geometry
of the function space?

How does the geometry of the
function space impact the
training of the network?
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understanding networks via algebraic optimization

For piecewise algebraic activation, the neuromanifold is a semi-algebraic set
(defined by polynomial equalities and inequalities).

Examples:

activation loss

identity squared-error loss = Euclidean dist

ReLU Wasserstein distance = polyhedral dist.

polynomial cross-entropy ∼= KL divergence

If the loss is also algebraic (or has at least algebraic derivatives), network
training is an algebraic optimization problem.
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baby example: linear dense networks

In this example:

µ : R2×4 × R3×2 −→ R3×4,

(W1,W2) 7−→W2W1.

M = {W ∈ R3×4 | rank(W ) ≤ 2}

In general:

µ : Rk1×k0 × Rk2×k1 × . . .× RkL×kL−1 −→ RkL×k0 ,

(W1,W2, . . . ,WL) 7−→WL · · ·W2W1.

M = {W ∈ RkL×k0 | rank(W ) ≤ min(k0, . . . , kL)} is an algebraic variety and
we know its singularities etc.
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example: attention networks
A single-layer lightning self-attention network with weights Q,K ∈ Ra×d and
V ∈ Rd ′×d is

Rd×t −→ Rd ′×t ,

X 7−→ VX X>K>QX .

A slice of the 5-dimensional
neuromanifold M for
a = d = t = 2, d ′ = 1.

It is singular along the orange
curve, and has boundary
points where the curve
leaves/enters M.

It is not a variety, but a
semialgebraic set.
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a dictionary

machine learning algebraic geometry

sample complexity dimension

identifiability fibers

expressivity degree

subnetworks & hidden bias singularities

learning dynamics algebraic critical point theory
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dimension and fibers

fundamental theorem:
The dimension of the neuromanifold M scales linearly with the sample
complexity of learnability (in the PAC sense).

Identifiability / hidden symmetries:
Which network parameters give rise to the same function?

In algebraic geometry terms:
Given f ∈M, which parameters θ are in the fiber µ−1(f )?

fiber/image theorem:
The dimension of the image of an algebraic map equals the co-dimension of
its generic fiber.
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degree

The degree of an affine/projective algebraic variety is the number of
intersections with a linear space (of the correct dimension).

It measures how twisted the variety is,

and its approximation capabilities:

Weyl Tube Formula:
The volume of the ε-tube around an algebraic variety of dimension n,
co-dimension m, and degree d increases as O(ndε)m.
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singularities

Singularities of a variety are points where the variety
does not look locally like a smooth manifold.

Conjecture: The singularities of neuromanifolds correspond to subnetworks.
(known for convolutional & fully-connected networks with polynomial activation)

Potential explanation for lottery ticket hypothesis: the tendency of deep
networks to discard weights during learning.
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singularities

A singularity might, depending on its type, attract a large portion of the
ambient space during training – explaining implicit bias.

This is captured by the Voronoi cell of the singularity:
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voronoi cells

Given a set M⊆ Rn, the Voronoi cell of x ∈M consists of all u ∈ Rn such
that x is “closest” among all points in M.

M might be finite

or a manifold, variety, semi-algebraic set, etc.
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singularities

A singularity might, depending on its type, attract a large portion of the
ambient space during training – explaining implicit bias.

This is captured by the Voronoi cell of the singularity:

M ⊆ R2 is the purple curve

loss = Euclidean distance

at all smooth points x ∈M, the Voronoi cell is a
line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the closest with
positive probability
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algebraic critical point theory can . . .

� distinguish pure from spurious critical points that only come from the
network parametrization µ

(recall: RN µ−→M `D−→ R.)

� count critical points

� determine the critical points’ type (local / global minimal, strict /
non-strict saddle points, etc.) and location (e.g., on singular locus)

� identify particularly areas on the neuromanifold that are particularly
exposed (implicit bias) or have many critical points
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example: polynomial convolutional networks
We now consider convolutional networks

where the activation function is a monomial: σ(x) = x r .

Weierstrass Approximation Theorem:
Any activation function can be approximated by polynomial ones.
Any CNN neuromanifold can be approximated by polynomial ones.
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example: polynomial convolutional networks
σ(x) = x r

Theorem: Let r > 1.
The neuromanifold is an algebraic variety (i.e., described by polynomial
equations) and closed in Euclidean topology.

Its dimension (∼ sample complexity) is linear in the depth.

dim(M) = L(k − 1) + 1 for L = #layers, k = filter size

Its degree (∼ expressivity) is super exponential in the depth.

degree(M) = (L(k − 1))! rL(L−1)(k−1)/2

(k−1)!L

} explains why
depth is
important!

The singularities correspond to subnetworks and are nodal.

These are typically not more exposed
during training.
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example: polynomial convolutional networks
σ(x) = x r

Theorem: Let r > 1.
For a generic function f ∈M, the only symmetries in the fiber µ−1(f ) are
rescalings of the layers.

After modding out the layer scaling, the network parametrization map
becomes

an isomorphism almost everywhere
that has finite fibers (⇔ singularities)

and is regular (constant-rank Jacobian) ⇒ no spurious critical points
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comparison: lightning self-attention
A single-layer lightning self-attention network with weights Q,K ∈ Ra×d and
V ∈ Rd ′×d is

Rd×t −→ Rd ′×t ,

X 7−→ VX X>K>QX .

The neuromanifold is
semialgebraic but not a variety
(polynomial inequalities
needed!)

It has both nodal and cuspidal
singularities.
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comparison: lightning self-attention

VXX>K>QX

cusps
⇔ boundary points
⇔ Jacobian rank drops

Theorem: For generic f ∈M,
the only symmetries in the fiber
µ−1(f ) are the “obvious” ones:

layer rescalings

GL(a)-symmetries of K and
Q in each layer

GL(d)-symmetries of V and
K>Q of neighboring layers
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many future questions
Describe all singularities of attention neuromanifolds explicitly, and
compute their Voronoi cells. ( implicit bias?)

Compare the type of critical points and more generally the loss
landscape of

attention networks
polynomial convolutional networks
polynomial dense networks

Which properties carry over to the limit from polynomial networks
to arbitrary networks?

What happens to the neuromanifold when imposing group
equivariance?

What about ReLU networks, or more generally piecewise rational
activation?
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thanks for your attention!

machine learning algebraic geometry

sample complexity dimension

identifiability fibers

expressivity degree

subnetworks & hidden bias singularities

learning dynamics algebraic critical point theory
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