Coisotropic Hypersurfaces in Algebraic Vision

Kathlén Kohn

TU Berlin

October 9, 2017

Section 1

Preliminaries

isotropic Hypersurfaces

Algebraic Vision

Projective Varieties Projective space $\mathbb{P}^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$, where

 $x \sim y \Leftrightarrow \exists \lambda \in \mathbb{C} \setminus \{0\}: x = \lambda y$

A projective variety $X \subset \mathbb{P}^n$ is the 0-set of homogeneous polynomials in n+1 variables

Example: circle in projective plane, defined by $x^2 + y^2 - z^2$

Coisotropic Hypersurfaces

Algebraic Vision

Grassmannians

 $Gr(k, \mathbb{C}^n) := \{L \subset \mathbb{C}^n \mid L \text{ is a } k \text{-dimensional subspace}\}\$ $= Gr(k - 1, \mathbb{P}^{n-1})$

is a projective variety

Example: $\operatorname{Gr}(2, \mathbb{C}^4) = \operatorname{Gr}(1, \mathbb{P}^3) = \{ \text{lines in } \mathbb{P}^3 \}$

Coisotropic Hypersurfaces

Algebraic Vision

Grassmannians

 $Gr(k, \mathbb{C}^n) := \{ L \subset \mathbb{C}^n \mid L \text{ is a } k \text{-dimensional subspace} \}$ $= Gr(k - 1, \mathbb{P}^{n-1})$

is a projective variety

Example: $\operatorname{Gr}(2, \mathbb{C}^4) = \operatorname{Gr}(1, \mathbb{P}^3) = \{ \text{lines in } \mathbb{P}^3 \}$ Let $L \in \operatorname{Gr}(1, \mathbb{P}^3)$ be spanned by rows of $\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix}$ \Rightarrow For i < j, let p_{ij} be minor of $\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix}$ using columns i, j $\Rightarrow p_{01}p_{23} + p_{02}p_{13} + p_{03}p_{12} = 0$ Coisotropic Hypersurfaces

Algebraic Vision

Grassmannians

 $Gr(k, \mathbb{C}^n) := \{ L \subset \mathbb{C}^n \mid L \text{ is a } k \text{-dimensional subspace} \}$ $= Gr(k - 1, \mathbb{P}^{n-1})$

is a projective variety

Example: $\operatorname{Gr}(2, \mathbb{C}^4) = \operatorname{Gr}(1, \mathbb{P}^3) = \{ \text{lines in } \mathbb{P}^3 \}$ Let $L \in \operatorname{Gr}(1, \mathbb{P}^3)$ be spanned by rows of $\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix}$ \Rightarrow For i < j, let p_{ij} be minor of $\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix}$ using columns i, j $\Rightarrow p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$ This even gives an embedding

$$\mathrm{Gr}(1,\mathbb{P}^3) \hookrightarrow \mathbb{P}^5,$$

 $\mathcal{L} \longmapsto (p_{01}:p_{02}:p_{03}:p_{12}:p_{13}:p_{23})$

 $Gr(1, \mathbb{P}^3)$ is a hypersurface in \mathbb{P}^5 defined by $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12}$

Section 2

Coisotropic Hypersurfaces

Coisotropic Hypersurfaces

Algebraic Vision

Coisotropic Hypersurfaces

A coisotropic hypersurface in $Gr(k, \mathbb{P}^n)$ consists of those $L \in Gr(k, \mathbb{P}^n)$ that intersect a given variety non-transversally

Example:

Let $\mathcal{C} \subset \mathbb{P}^3$ be a curve

all lines intersecting C form a hypersurface in $\mathrm{Gr}(1,\mathbb{P}^3)$

all planes tangent to Cform a hypersurface in $Gr(2, \mathbb{P}^3)$

Coisotropic Hypersurfaces

Algebraic Vision

Coisotropic Hypersurfaces

A coisotropic hypersurface in $Gr(k, \mathbb{P}^n)$ consists of those $L \in Gr(k, \mathbb{P}^n)$ that intersect a given variety non-transversally

Example:

Let $S \subset \mathbb{P}^3$ be a surface

all lines tangent to S form a hypersurface in $\mathrm{Gr}(1,\mathbb{P}^3)$

all planes tangent to Sform a hypersurface in $Gr(2, \mathbb{P}^3)$

Coisotropic Hypersurfaces

Algebraic Visior

cusp

Singular Points

A point x on a variety X is singular if X does not look like a manifold locally around x

Example: some singularities on plane curves

node

Coisotropic Hypersurfaces

Algebraic Visior

Singular Points

A point x on a variety X is singular if X does not look like a manifold locally around x

Example: some singularities on surfaces

Coisotropic Hypersurfaces

Algebraic Visior

Singular Points

A point x on a variety X is singular if X does not look like a manifold locally around x

Example:

coisotropic hypersurfaces of a curve $\mathcal{C} \subset \mathbb{P}^3$

all lines intersecting C

singular points: lines intersecting C twice

all planes tangent to C

singular points:

planes tangent to *C* twice planes intersecting Cwith contact order 3

Section 3

Algebraic Vision

Coisotropic Hypersurfaces

Algebraic Vision

Algebraic Vision

= Algebraic Geometry + Computer Vision

object recognition

image restoration

◆ 3D scene reconstruction

event detection

etc.

VIII - XI

Coisotropic Hypersurfaces

Algebraic Vision

Event Detection on Curves

Take pictures of a 3D curve with a moving camera

The 2D pictures from general camera points contain only nodes

If the camera point lies on a tangent line of the curve, the picture has a cusp

Coisotropic Hypersurfaces

Algebraic Vision

Event Detection on Curves

Tangent Developable

Coisotropic Hypersurfaces

Algebraic Vision

Event Detection on Surfaces

Take pictures of a surface with a moving camera

All camera lines where the situation in the middle happens:

Thanks for your attention