Coisotropic Hypersurfaces in Algebraic Vision

Kathlén Kohn

TU Berlin

October 9, 2017

Section 1

Preliminaries

Projective Varieties

Projective space $\mathbb{P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim$, where

$$
x \sim y \Leftrightarrow \exists \lambda \in \mathbb{C} \backslash\{0\}: x=\lambda y
$$

A projective variety $X \subset \mathbb{P}^{n}$ is the 0 -set of homogeneous polynomials in $n+1$ variables

Example: circle in projective plane, defined by $x^{2}+y^{2}-z^{2}$

Grassmannians

$$
\begin{aligned}
\operatorname{Gr}\left(k, \mathbb{C}^{n}\right): & =\left\{L \subset \mathbb{C}^{n} \mid L \text { is a } k \text {-dimensional subspace }\right\} \\
& =\operatorname{Gr}\left(k-1, \mathbb{P}^{n-1}\right)
\end{aligned}
$$

is a projective variety

Example: $\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)=\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)=\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}$

Grassmannians

$$
\begin{aligned}
\operatorname{Gr}\left(k, \mathbb{C}^{n}\right): & :=\left\{L \subset \mathbb{C}^{n} \mid L \text { is a } k \text {-dimensional subspace }\right\} \\
& =\operatorname{Gr}\left(k-1, \mathbb{P}^{n-1}\right)
\end{aligned}
$$

is a projective variety

Example: $\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)=\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)=\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}$ Let $L \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ be spanned by rows of $\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ y_{0} & y_{1} & y_{2} & y_{3}\end{array}\right)$
\Rightarrow For $i<j$, let $p_{i j}$ be minor of $\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ y_{0} & y_{1} & y_{2} & y_{3}\end{array}\right)$ using columns i, j
$\Rightarrow p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$

Grassmannians

$$
\begin{aligned}
\operatorname{Gr}\left(k, \mathbb{C}^{n}\right): & :=\left\{L \subset \mathbb{C}^{n} \mid L \text { is a } k \text {-dimensional subspace }\right\} \\
& =\operatorname{Gr}\left(k-1, \mathbb{P}^{n-1}\right)
\end{aligned}
$$

is a projective variety

Example: $\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)=\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)=\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}$ Let $L \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ be spanned by rows of $\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ y_{0} & y_{1} & y_{2} & y_{3}\end{array}\right)$
\Rightarrow For $i<j$, let $p_{i j}$ be minor of $\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ y_{0} & y_{1} & y_{2} & y_{3}\end{array}\right)$ using columns i, j
$\Rightarrow p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$
This even gives an embedding

$$
\begin{aligned}
\operatorname{Gr}\left(1, \mathbb{P}^{3}\right) & \hookrightarrow \mathbb{P}^{5}, \\
L & \longmapsto\left(p_{01}: p_{02}: p_{03}: p_{12}: p_{13}: p_{23}\right)
\end{aligned}
$$

$\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ is a hypersurface in \mathbb{P}^{5} defined by $p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}$

Section 2

Coisotropic Hypersurfaces

Coisotropic Hypersurfaces

A coisotropic hypersurface in $\operatorname{Gr}\left(k, \mathbb{P}^{n}\right)$ consists of those $L \in \operatorname{Gr}\left(k, \mathbb{P}^{n}\right)$ that intersect a given variety non-transversally

Example: \quad Let $C \subset \mathbb{P}^{3}$ be a curve

all lines intersecting C form a hypersurface in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$

all planes tangent to C form a hypersurface in $\operatorname{Gr}\left(2, \mathbb{P}^{3}\right)$

Coisotropic Hypersurfaces

A coisotropic hypersurface in $\operatorname{Gr}\left(k, \mathbb{P}^{n}\right)$ consists of those $L \in \operatorname{Gr}\left(k, \mathbb{P}^{n}\right)$ that intersect a given variety non-transversally

Example: Let $S \subset \mathbb{P}^{3}$ be a surface

all lines tangent to S form a hypersurface in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$

all planes tangent to S form a hypersurface in $\operatorname{Gr}\left(2, \mathbb{P}^{3}\right)$

Singular Points

A point x on a variety X is singular if X does not look like a manifold locally around x

Example: some singularities on plane curves

node

cusp

Singular Points

A point x on a variety X is singular if X does not look like a manifold locally around x

Example: some singularities on surfaces

Singular Points

A point x on a variety X is singular if X does not look like a manifold locally around x

Example: \quad coisotropic hypersurfaces of a curve $C \subset \mathbb{P}^{3}$

all lines intersecting C
singular points:
lines intersecting C twice

all planes tangent to C singular points:

planes tangent to C twice with contact order 3

Section 3

Algebraic Vision

Algebraic Vision

$=$ Algebraic Geometry + Computer Vision

- object recognition

- image restoration
- 3D scene reconstruction
- event detection
- etc.

Event Detection on Curves

Take pictures of a 3D curve with a moving camera

The 2D pictures from general camera points contain only nodes

If the camera point lies on a tangent line of the curve, the picture has a cusp

Event Detection on Curves

Tangent Developable

X - XI

Event Detection on Surfaces

Take pictures of a surface with a moving camera

All camera lines where the situation in the middle happens:

Thanks for your attention

