NCG Group New Results and Open Problems

Table of Contents

- ③ NP-completeness of SC
- 4 Convergence speed of strong-PNSP

5 Open Problems

Simulator NP-completeness of SC Convergence speed of strong-PNSP Open Problems

PoA for NSP

Simulator NP-completeness of SC Convergence speed of strong-PNSP Open Problems

Lemma

The PoA for the NSP is in $\Theta(\text{diam}(G))$, even when only reachable friendship situations are considered.

Average cost function

• Upper bound:

$$2|F| \le \sum_{v \in V} \sum_{u \in F(v)} d_G(u, v) = 2 \sum_{\{u, v\} \in F} d_G(u, v) \le 2|F| \operatorname{diam}(G)$$

 \Rightarrow worst-case PoA \leq diam(G)

Average cost function

• Upper bound:

$$2|F| \le \sum_{v \in V} \sum_{u \in F(v)} d_G(u, v) = 2 \sum_{\{u, v\} \in F} d_G(u, v) \le 2|F| \operatorname{diam}(G)$$

 \Rightarrow worst-case PoA \leq diam(G)

Lower bound:

Maximum cost function

• Upper bound:

$$|V_F| \leq \sum_{v \in V} \max_{u \in F(v)} d_G(u, v) \leq |V_F| \operatorname{diam}(G)$$

with
$$V_F := \{v \in V \mid F(v) \neq \emptyset\}$$

 \Rightarrow worst-case PoA \leq diam(G)

• Lower bound:

non-reachable friendship example \Rightarrow PoA = $\Theta(\text{diam}(G))$

Maximum cost function

• Upper bound:

$$|V_{\mathcal{F}}| \leq \sum_{v \in V} \max_{u \in \mathcal{F}(v)} d_{\mathcal{G}}(u,v) \leq |V_{\mathcal{F}}|\operatorname{diam}(\mathcal{G})$$

with
$$V_F := \{v \in V \mid F(v) \neq \emptyset\}$$

 \Rightarrow worst-case PoA \leq diam(G)

• Lower bound:

non-reachable friendship example \Rightarrow PoA = $\Theta(\text{diam}(G))$

PoA for NSP Simulator NP-completeness of SC ergence speed of strong-PNSP

Maximum cost function

Reachable friendship example?

Maximum cost function

Simulator NP-completeness of SC Convergence speed of strong-PNSP Open Problems

Maximum cost function

Case 2:

Simulator NP-completeness of SC Convergence speed of strong-PNSP Open Problems

Maximum cost function

Friendships:

Simulator NP-completeness of SC Convergence speed of strong-PNSP Open Problems

Maximum cost function

Simulator

NP-completeness of SC

Find best NE

Shortcut fixation:

Find social optimum

• 3-CNF-SAT reduction does not work

- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...
 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...
- Is it really NP-hard?
 - Seems related to Minimum Spanning Tree ~> solvable with greedy strategy?
 - No obvious formulation as matroid
 - Counterexample for greedy strategy!

- 3-CNF-SAT reduction does not work
- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...
 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...
- Is it really NP-hard?
 - Seems related to Minimum Spanning Tree ~ solvable with greedy strategy?
 - No obvious formulation as matroid
 - Counterexample for greedy strategy!

Find social optimum

- 3-CNF-SAT reduction does not work
- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...

 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...

Is it really NP-hard?

- Seems related to Minimum Spanning Tree ~> solvable with greedy strategy?
- No obvious formulation as matroid
- Counterexample for greedy strategy!

Find social optimum

- 3-CNF-SAT reduction does not work
- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...
 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...

Is it really NP-hard?

- Seems related to Minimum Spanning Tree ~> solvable with greedy strategy?
- No obvious formulation as matroid
- Counterexample for greedy strategy!

Find social optimum

- 3-CNF-SAT reduction does not work
- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...
 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...

Is it really NP-hard?

- Seems related to Minimum Spanning Tree
 ~> solvable with greedy strategy?
- No obvious formulation as matroid
- Counterexample for greedy strategy!

- 3-CNF-SAT reduction does not work
- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...
 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...
- Is it really NP-hard?
 - Seems related to Minimum Spanning Tree
 → solvable with greedy strategy?
 - No obvious formulation as matroid
 - Counterexample for greedy strategy!

- 3-CNF-SAT reduction does not work
- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...
 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...
- Is it really NP-hard?
 - Seems related to Minimum Spanning Tree
 → solvable with greedy strategy?
 - No obvious formulation as matroid
 - Counterexample for greedy strategy!

- 3-CNF-SAT reduction does not work
- Graph problems: Vertex Cover, Dominating Set, ... ~> dynamic edges?
- Knapsack Problem, Bin Packing, ...
 → code value v in a graph with size log(v)?
- Set Cover: same as 3-CNF-SAT (with few nodes)...
- Is it really NP-hard?
 - Seems related to Minimum Spanning Tree
 → solvable with greedy strategy?
 - No obvious formulation as matroid
 - Counterexample for greedy strategy!

Convergence speed of strong-PNSP

Known bounds

Reminder: weak-PNSP with average cost function:

- At most $|F|(\operatorname{diam}(G) 1)$ improving moves until next NE
- Reachable friendship example for tightness in O-Notation

Strong-PNSP (with maximum cost function): Example with $\Theta(|V_F|^2 \operatorname{diam}(G))$

 \Rightarrow Convergence speed somewhere in between!

Known bounds

Reminder: weak-PNSP with average cost function:

- At most $|F|(\operatorname{diam}(G) 1)$ improving moves until next NE
- Reachable friendship example for tightness in $\ensuremath{\mathcal{O}}\xspace$ -Notation

Strong-PNSP (with maximum cost function): Example with $\Theta(|V_F|^2 \operatorname{diam}(G))$

 \Rightarrow Convergence speed somewhere in between!

Known bounds

Reminder: weak-PNSP with average cost function:

- At most $|F|(\operatorname{diam}(G) 1)$ improving moves until next NE
- Reachable friendship example for tightness in $\ensuremath{\mathcal{O}}\xspace$ -Notation

Strong-PNSP (with maximum cost function): Example with $\Theta(|V_F|^2 \operatorname{diam}(G))$

 \Rightarrow Convergence speed somewhere in between!

Known bounds

Reminder: weak-PNSP with average cost function:

- At most $|F|(\operatorname{diam}(G) 1)$ improving moves until next NE
- Reachable friendship example for tightness in $\ensuremath{\mathcal{O}}\xspace$ -Notation

Strong-PNSP (with maximum cost function): Example with $\Theta(|V_F|^2 \operatorname{diam}(G))$

- **Q** Reminder: sorted cost vector as potential function \rightsquigarrow At most $\begin{pmatrix} |V_F| + \operatorname{diam}(G) - 1 \\ |V_F| \end{pmatrix}$ improving moves until next NE
- \Rightarrow Convergence speed somewhere in between!

Start with easy graph (path) and easy friendships (path)

 \rightsquigarrow could give graph and friendship characterizations for convergence speed

Open Problems

Open Problems

- NP-completeness of SC_{OPT,dec}
- Convergence speed of strong-PNSP
- PoS
- Characterization of graphs/friendships for convergence/good NE
- Shortcut problem anyone?