NCP Group Overview and New Results

Table of Contents

1 Node Swap Processes

- Layered Graphs
- Operational Price of Stability

2 Shortcut Process

- Simulations
- Approximation Algorithms for Social Optimum

 Node Swap Processes
 Layered Graphs

 Shortcut Process
 Operational Price of Stability

Node Swap Processes

	SNSP		WPNSP		SPNSP	
	AVE	MAX	AVE	MAX	AVE	MAX
Existence of OE	no		yes	open	yes	
Existence of PE	no		yes	no	yes	
Always convergence	no		yes	no	yes	
Convergence speed	∞		$\Theta(F \operatorname{diam}(G))$	∞	$\Theta(F \operatorname{diam}(G))$	$\Omega(V_F ^2 \operatorname{diam}(G))$
						$O\left(\left(\begin{array}{c} V_F +\operatorname{diam}(G)-1\\ V_F \end{array} ight) ight)$
oPoA						
General graphs	Θ(diam(G))		Θ(diam(G))			$\Theta(\operatorname{diam}(G))$
Layered graphs	$\Theta(\operatorname{diam}(G))$	$\Theta(\sqrt{\operatorname{diam}(G)})$	jj <u> </u>			
oPoS	Θ(di	am(<i>G</i>))	1	$\Theta(\operatorname{diam}(G))$	1	$O(\operatorname{diam}(G))$
OE: operation equilibrium – Nash equilibrium isomorphic to initial graph						
PE: process equilibrium – Nash equilibrium reachable from initial graph via allowed node swaps						
oPoA: operational Price of Anarchy						
oPoS: operational Price of Stability						

Node Swap Processes

Layered Graphs

Node Swap Processes Shortcut Process Operational Price of Stabili

New Results on Path-Layered Graphs

Complete layered graph

Path-layered graph

New Results on Path-Layered Graphs

• Former Result: Reachable SNSP with layered graph and friendship matching \Rightarrow SNSP can reach PE

New Results on Path-Layered Graphs

- Former Result: Reachable SNSP with layered graph and friendship matching \Rightarrow SNSP can reach PE
- This is not true for friendships that are isomorphic to a subgraph of the layered graph

Complete layered graph

Node Swap Processes Shortcut Process Operational Price of Stability

New Results on Path-Layered Graphs

- Former Result: Reachable SNSP with layered graph and friendship matching \Rightarrow SNSP can reach PE
- This is not true for friendships that are isomorphic to a subgraph of the layered graph

Complete layered graph

Node Swap Processes Shortcut Process Operational Price of Stability

New Results on Path-Layered Graphs

Layered graphs with n layers, average cost function:

	Complete layered graph	
Max. distance be-	<i>n</i> – 3	
tween friends in OE:		
oPoA	$\Theta(n)$	
	$ \begin{bmatrix} 0 \\ -3 \end{bmatrix} $ $ \begin{bmatrix} n-3 \\ -3 \end{bmatrix} $	

New Results on Path-Layered Graphs

Layered graphs with n layers, average cost function:

	Complete layered graph	Path-layered graph
Max. distance be-	<i>n</i> – 3	n
tween friends in OE:		
oPoA	$\Theta(n)$	$\Theta(n)$
	$ \begin{bmatrix} 0 \\ -3 \end{bmatrix} $ $ \begin{bmatrix} n-3 \\ -3 \end{bmatrix} $	$v_{0,0}$ $v_{0,1}$ $v_{1,2}$ $v_{1,1}$ $v_{1,2}$ $v_{1,1}$ $v_{1,2}$ $v_{n-1,1}$ $v_{n-1,2}$

Node Swap Processes Shortcut Process Operational Price of Stability

k - 1

New Results on Path-Layered Graphs

 $\dot{k} = 1$

Layered graphs with *n* layers, maximum cost function:

Node Swap Processes Layered Graphs Shortcut Process Operational Price of Stability

New Results on Path-Layered Graphs

Layered graphs with *n* layers, maximum cost function:

• Complete layered graph: $\underbrace{}_{k=1}^{k}$ $\underbrace{}_{k=1}^{k}$ $\underbrace{}_{k=1}^{k}$ $\underbrace{}_{k=1}^{k}$ $\underbrace{}_{k=1}^{k}$

Node Swap Processes Shortcut Process Operational Price of Stability

New Results on Path-Layered Graphs

Layered graphs with n layers, maximum cost function:

	Complete layered graph	Path-layered graph
Max. distance be- tween friends in OE:	$\lfloor \sqrt{n-1} \rfloor$	$\left\lfloor \sqrt{n-\frac{3}{4}}+\frac{1}{2} \right\rfloor$
oPoA	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$

10/44

Node Swap Processes Shortcut Process Operational Price of Stabilit

New Results on Path-Layered Graphs

Layered graphs with *n* layers, maximum cost function:

	Complete layered graph	Path-layered graph
Max. distance be- tween friends in OE:	$\lfloor \sqrt{n-1} \rfloor$	$\left\lfloor \sqrt{n-\frac{3}{4}}+\frac{1}{2} \right\rfloor$
oPoA	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
		layer 0

10/44

Node Swap Processes

Operational Price of Stability

Layered Graphs Operational Price of Stability

Operational Price of Stability SNSP-AVE

$oPoS = \Theta(diam(G))$:

constant social costs

- reachable PE
- \Rightarrow any social optimum has constant social costs, any OE has social costs of $\Theta(d)$

Layered Graphs Operational Price of Stability

Operational Price of Stability SNSP-MAX

 $oPoS = \Theta(diam(G))$:

non-reachable PE

 \Rightarrow any social optimum has constant social costs, any OE has social costs of $\Theta(d)$

Layered Graphs Operational Price of Stability

Operational Price of Stability WPNSP

• AVE: oPoS = 1:

every social optimum is OE

Layered Graphs Operational Price of Stability

Operational Price of Stability WPNSP

• AVE: oPoS = 1:

every social optimum is OE

MAX: oPoS = Θ(diam(G)):

reachable example that has PE

⇒ any social optimum has social costs of $\Theta(d)$, any OE has social costs of $\Theta(d^2)$

Layered Graphs Operational Price of Stability

Operational Price of Stability SPNSP

• AVE: oPoS = 1:

every social optimum is OE

• MAX: oPoS between 1 and Θ(diam(G)) ...:

construction not working here

Shortcut Process

Shortcut Process

Simulations

Social Costs 150 nodes, 1 instance

Social Costs 50 nodes, 1 instance

Social Costs 150 nodes, average

Simulations Approximation Algorithms for Social Optimum

Price of Anarchy 150 nodes, 1 instance

Node Swap Processes Shortcut Process Approximations

Simulations Approximation Algorithms for Social Optimum

Price of Anarchy 150 nodes, average

Node Degree 150 nodes, 1 instance

Node Degree 150 nodes, 1 instance

Node Degree 150 nodes, average

Shortcut Process

- Trivial algorithm with factor 2: Build a star
- Better idea: Treat friendship components independently Easy cases:

Node Swap Processes Simulation Shortcut Process Approxim

Simulations Approximation Algorithms for Social Optimum

Node Swap Processes Simulations Shortcut Process Approximation Alg

Approximation Algorithms for Social Optimum

Approximation Algorithms for Social Optimum

Choose star center c with highest number of friends plus static edges in component

Approximation Algorithms for Social Optimum

Black nodes have shortcut to c

Approximation Algorithms for Social Optimum

Treat new friendship components:

• Trees: As before

Approximation Algorithms for Social Optimum

Treat new friendship components:

- Trees: As before
- Other components: Find spanning one-cycle-graph

Approximation Algorithms for Social Optimum

Treat new friendship components:

- Trees: As before
- Other components: Find spanning one-cycle-graph

Approximation Algorithms for Social Optimum

Use shortcut of c

Node Swap Processes Simulations Shortcut Process Approximat

Simulations Approximation Algorithms for Social Optimum

Node Swap Processes Simulations Shortcut Process Approximation Al

Approximation Algorithms for Social Optimum

Approximation Algorithms for Social Optimum

Choose star center c with highest number of static edges in component

Node Swap Processes Sim Shortcut Process App

Simulations Approximation Algorithms for Social Optimum

Approximation Algorithms for Social Optimum

Black nodes have shortcut to c

Approximation Algorithms for Social Optimum

Sort nodes with friends by non-decreasing number of friends: *c* puts shortcut to first node

Approximation Algorithms for Social Optimum

Sort nodes with friends by non-decreasing number of friends: first node uses own and neighboring shortcuts to satisfy itself

Approximation Algorithms for Social Optimum

Sort nodes with friends by non-decreasing number of friends: next node uses own and neighboring shortcuts to satisfy itself

Approximation Algorithms for Social Optimum

Sort nodes with friends by non-decreasing number of friends: next node uses own and neighboring shortcuts to satisfy itself

Approximation Algorithms for Social Optimum

Sort nodes with friends by non-decreasing number of friends: next node uses own and neighboring shortcuts to satisfy itself

Approximation Algorithms for Social Optimum

Sort nodes with friends by non-decreasing number of friends: next node uses own and neighboring shortcuts to satisfy itself

Approximation Algorithms for Social Optimum Approximation Factors

- Observation: There is a solution that covers all friendships ⇒ algorithms find one
- AVE: $\frac{2|F|-4}{|F|+1}$ (algorithm covers at least 4 friendship if $|F| \ge 4$)
- MAX: 2|V_F|-1/|V_F|+2 with V_F := |{v ∈ V | v has friends}| (algorithm satisfies at least 1 center node)