
Algebra & Geometry
in Data Science & AI

Kathlén Kohn



data science & AI require a vast math toolbox

statistics

optimization

scientific computing

machine learning

algebra & geometry

analysis

...

1 / 30



The world is non-linear!

Many models in the sciences and engineering are characterized by polynomial
equations. Such a set is an algebraic variety X ⊂ Rn.

Varieties look like
manifolds almost
everywhere, but
typically have
singularities.

2 / 30



Varieties in data science & AI

•

algebraic optimization
given •, find best point on (possibly

unknown) manifold, variety, etc.

manifold hypothesis
variety hypothesis

data comes from low-dimensional
manifold, variety, etc.

want to infer information about
underlying manifold, variety, etc.

algebraic inverse problems

given observations, want
to recover ground truth

3 / 30



Varieties in data science & AI

•

algebraic optimization
given •, find best point on (possibly

unknown) manifold, variety, etc.

manifold hypothesis
variety hypothesis

data comes from low-dimensional
manifold, variety, etc.

want to infer information about
underlying manifold, variety, etc.

algebraic inverse problems

given observations, want
to recover ground truth

3 / 30



Varieties in data science & AI

•

algebraic optimization
given •, find best point on (possibly

unknown) manifold, variety, etc.

manifold hypothesis
variety hypothesis

data comes from low-dimensional
manifold, variety, etc.

want to infer information about
underlying manifold, variety, etc.

algebraic inverse problems

given observations, want
to recover ground truth

3 / 30



Netflix problem

What are the unknown ratings?

4 / 30



Netflix problem

Guess: This matrix should be of low rank!

Underlying variety is
{A ∈ R#users×#movies | rank(A) ≤ r}.

What is r ??

Complete the matrix such that it has rank r ! inverse problem

Complete the matrix such that it is close to a rank-r matrix ! optimization

5 / 30



Netflix problem

Guess: This matrix should be of low rank!

Underlying variety is
{A ∈ R#users×#movies | rank(A) ≤ r}.

What is r ??

Complete the matrix such that it has rank r ! inverse problem

Complete the matrix such that it is close to a rank-r matrix ! optimization

5 / 30



Netflix problem

Guess: This matrix should be of low rank!

Underlying variety is
{A ∈ R#users×#movies | rank(A) ≤ r}.

What is r ??

Complete the matrix such that it has rank r ! inverse problem

Complete the matrix such that it is close to a rank-r matrix ! optimization

5 / 30



Netflix problem

Guess: This matrix should be of low rank!

Underlying variety is
{A ∈ R#users×#movies | rank(A) ≤ r}.

What is r ??

Complete the matrix such that it has rank r ! inverse problem

Complete the matrix such that it is close to a rank-r matrix ! optimization

5 / 30



Big Data & Tensors

Often, data has many dimensions to it!

Big data gives rise to huge, high-dimensional tensors.

 need to understand tensor rank, their eigenvectors, etc.

6 / 30



Big Data & Tensors

Often, data has many dimensions to it!

Big data gives rise to huge, high-dimensional tensors.

 need to understand tensor rank, their eigenvectors, etc.

6 / 30



Maximum Likelihood Estimation
Experiment: Toss a biased coin twice, and record the total number of heads

Task: From many such experiments, recover the bias of the coin

The possible distributions of the experiment outcome are parametrized by

[0, 1] −→ ∆2 := {(P0,P1,P2) ∈ R3
≥0 | P0 + P1 + P2 = 1},

p 7−→ (p2, 2p(1− p), (1− p)2)

head-head head-tail & tail-head tail-tail

After n experiments, the vector of counts
u=(u0, u1, u2) provides an empirical distribution 1

nu.

The likelihood that the bias p gave rise to u is
(p2)u0 · (2p(1− p))u1 · ((1− p)2)u2 .

The p maximizing this most likely gave rise to u. It is
called the maximum likelihood estimate (MLE).

7 / 30



Maximum Likelihood Estimation
Experiment: Toss a biased coin twice, and record the total number of heads

Task: From many such experiments, recover the bias of the coin

The possible distributions of the experiment outcome are parametrized by

[0, 1] −→ ∆2 := {(P0,P1,P2) ∈ R3
≥0 | P0 + P1 + P2 = 1},

p 7−→ (p2, 2p(1− p), (1− p)2)

head-head head-tail & tail-head tail-tail

After n experiments, the vector of counts
u=(u0, u1, u2) provides an empirical distribution 1

nu.

The likelihood that the bias p gave rise to u is
(p2)u0 · (2p(1− p))u1 · ((1− p)2)u2 .

The p maximizing this most likely gave rise to u. It is
called the maximum likelihood estimate (MLE).

7 / 30



Maximum Likelihood Estimation
Experiment: Toss a biased coin twice, and record the total number of heads

Task: From many such experiments, recover the bias of the coin

The possible distributions of the experiment outcome are parametrized by

[0, 1] −→ ∆2 := {(P0,P1,P2) ∈ R3
≥0 | P0 + P1 + P2 = 1},

p 7−→ (p2, 2p(1− p), (1− p)2)

head-head head-tail & tail-head tail-tail

After n experiments, the vector of counts
u=(u0, u1, u2) provides an empirical distribution 1

nu.

The likelihood that the bias p gave rise to u is
(p2)u0 · (2p(1− p))u1 · ((1− p)2)u2 .

The p maximizing this most likely gave rise to u. It is
called the maximum likelihood estimate (MLE).

7 / 30



Maximum Likelihood Estimation
Experiment: Toss a biased coin twice, and record the total number of heads

Task: From many such experiments, recover the bias of the coin

The possible distributions of the experiment outcome are parametrized by

[0, 1] −→ ∆2 := {(P0,P1,P2) ∈ R3
≥0 | P0 + P1 + P2 = 1},

p 7−→ (p2, 2p(1− p), (1− p)2)

head-head head-tail & tail-head tail-tail

After n experiments, the vector of counts
u=(u0, u1, u2) provides an empirical distribution 1

nu.

The likelihood that the bias p gave rise to u is
(p2)u0 · (2p(1− p))u1 · ((1− p)2)u2 .

The p maximizing this most likely gave rise to u. It is
called the maximum likelihood estimate (MLE).

7 / 30



Maximum Likelihood Estimation
Experiment: Toss a biased coin twice, and record the total number of heads

Task: From many such experiments, recover the bias of the coin

The possible distributions of the experiment outcome are parametrized by

[0, 1] −→ ∆2 := {(P0,P1,P2) ∈ R3
≥0 | P0 + P1 + P2 = 1},

p 7−→ (p2, 2p(1− p), (1− p)2)

head-head head-tail & tail-head tail-tail

After n experiments, the vector of counts
u=(u0, u1, u2) provides an empirical distribution 1

nu.

The likelihood that the bias p gave rise to u is
(p2)u0 · (2p(1− p))u1 · ((1− p)2)u2 .

The p maximizing this most likely gave rise to u. It is
called the maximum likelihood estimate (MLE).

7 / 30



MLE of matrix normal distributions
Multivariate normal distribution for matrix-valued random variable X of
format m × n has probability density function

exp(−1
2tr[V

−1(X −M)>U−1(X −M)])

(2π)
mn
2 det(V )m2 det(U)n2

,

where M ∈ Rm×n, U ∈ Rm×m, V ∈ Rn×n.

Equivalently, the vectorization vec(X ) is distributed as the standard multi-
variate normal distribution with mean vector vec(M) and covariance matrix

V ⊗ U :=

v11U · · · v1nU
...

...
vn1U · · · vnnU

 ∈ Rmn×mn.

All such covariance matrices are parametrized via the group GLm ×GLn:

g>1 g1 ⊗ g>2 g2 = (g1 ⊗ g2)>(g1 ⊗ g2), for g1 ∈ GLm, g2 ∈ GLn

8 / 30



MLE of matrix normal distributions
Multivariate normal distribution for matrix-valued random variable X of
format m × n has probability density function

exp(−1
2tr[V

−1(X −M)>U−1(X −M)])

(2π)
mn
2 det(V )m2 det(U)n2

,

where M ∈ Rm×n, U ∈ Rm×m, V ∈ Rn×n.

Equivalently, the vectorization vec(X ) is distributed as the standard multi-
variate normal distribution with mean vector vec(M) and covariance matrix

V ⊗ U :=

v11U · · · v1nU
...

...
vn1U · · · vnnU

 ∈ Rmn×mn.

All such covariance matrices are parametrized via the group GLm ×GLn:

g>1 g1 ⊗ g>2 g2 = (g1 ⊗ g2)>(g1 ⊗ g2), for g1 ∈ GLm, g2 ∈ GLn

8 / 30



MLE of matrix normal distributions
Multivariate normal distribution for matrix-valued random variable X of
format m × n has probability density function

exp(−1
2tr[V

−1(X −M)>U−1(X −M)])

(2π)
mn
2 det(V )m2 det(U)n2

,

where M ∈ Rm×n, U ∈ Rm×m, V ∈ Rn×n.

Equivalently, the vectorization vec(X ) is distributed as the standard multi-
variate normal distribution with mean vector vec(M) and covariance matrix

V ⊗ U :=

v11U · · · v1nU
...

...
vn1U · · · vnnU

 ∈ Rmn×mn.

All such covariance matrices are parametrized via the group GLm ×GLn:

g>1 g1 ⊗ g>2 g2 = (g1 ⊗ g2)>(g1 ⊗ g2), for g1 ∈ GLm, g2 ∈ GLn

8 / 30



Gaussian group models

The Gaussian group model of a group G ⊆ GLm is the set of a normal
distributions on Rm with covariance matrices in

MG :=
{
g>g | g ∈ G

}
.

Given data samples (Y1, . . . ,Yn) with Yi ∈ Rm, viewed as the columns of a
matrix Y ∈ Rm×n, the logarithm of the likelihood (up constant scalars) is

`Y (g) = n log det(g>g)− ‖g · Y ‖22.

We want to find an MLE, i.e., a maximizer g ∈ G of `Y !

9 / 30



Gaussian group models

The Gaussian group model of a group G ⊆ GLm is the set of a normal
distributions on Rm with covariance matrices in

MG :=
{
g>g | g ∈ G

}
.

Given data samples (Y1, . . . ,Yn) with Yi ∈ Rm, viewed as the columns of a
matrix Y ∈ Rm×n, the logarithm of the likelihood (up constant scalars) is

`Y (g) = n log det(g>g)− ‖g · Y ‖22.

We want to find an MLE, i.e., a maximizer g ∈ G of `Y !

9 / 30



Gaussian group models

The Gaussian group model of a group G ⊆ GLm is the set of a normal
distributions on Rm with covariance matrices in

MG :=
{
g>g | g ∈ G

}
.

Given data samples (Y1, . . . ,Yn) with Yi ∈ Rm, viewed as the columns of a
matrix Y ∈ Rm×n, the logarithm of the likelihood (up constant scalars) is

`Y (g) = n log det(g>g)− ‖g · Y ‖22.

We want to find an MLE, i.e., a maximizer g ∈ G of `Y !

9 / 30



MLE of Gaussian group models
Proposition
Under mild assumptions (satisfied by e.g. matrix normal distributions),

sup
g∈G

`Y (g) = − inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm

‖h · Y ‖22
)
− nm log τ

)
.

The group H :=G ∩ SLm acts on Rm×n via left multiplication: (h,Y ) 7→h ·Y .
The orbit of the data matrix Y is H · Y = {h · Y | h ∈ H}.
An MLE can be computed in 2 steps:

1) Find a point of minimal norm in the orbit H · Y .
2) Compute the unique value τ minimizing τ ‖h · Y ‖22 − nm log τ .

The MLE is τh>h.

Algorithms from invariant theory that compute the capacity

capH(Y ) := inf
h∈H
‖h · Y ‖22

can be used to compute MLEs ! [algorithmic papers by Bürgisser,
Franks, Garg, Oliveira, Walter, Wigderson, ...]

10 / 30



MLE of Gaussian group models
Proposition
Under mild assumptions (satisfied by e.g. matrix normal distributions),

sup
g∈G

`Y (g) = − inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm

‖h · Y ‖22
)
− nm log τ

)
.

The group H :=G ∩ SLm acts on Rm×n via left multiplication: (h,Y ) 7→h ·Y .

The orbit of the data matrix Y is H · Y = {h · Y | h ∈ H}.
An MLE can be computed in 2 steps:

1) Find a point of minimal norm in the orbit H · Y .
2) Compute the unique value τ minimizing τ ‖h · Y ‖22 − nm log τ .

The MLE is τh>h.

Algorithms from invariant theory that compute the capacity

capH(Y ) := inf
h∈H
‖h · Y ‖22

can be used to compute MLEs ! [algorithmic papers by Bürgisser,
Franks, Garg, Oliveira, Walter, Wigderson, ...]

10 / 30



MLE of Gaussian group models
Proposition
Under mild assumptions (satisfied by e.g. matrix normal distributions),

sup
g∈G

`Y (g) = − inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm

‖h · Y ‖22
)
− nm log τ

)
.

The group H :=G ∩ SLm acts on Rm×n via left multiplication: (h,Y ) 7→h ·Y .
The orbit of the data matrix Y is H · Y = {h · Y | h ∈ H}.

An MLE can be computed in 2 steps:

1) Find a point of minimal norm in the orbit H · Y .
2) Compute the unique value τ minimizing τ ‖h · Y ‖22 − nm log τ .

The MLE is τh>h.

Algorithms from invariant theory that compute the capacity

capH(Y ) := inf
h∈H
‖h · Y ‖22

can be used to compute MLEs ! [algorithmic papers by Bürgisser,
Franks, Garg, Oliveira, Walter, Wigderson, ...]

10 / 30



MLE of Gaussian group models
Proposition
Under mild assumptions (satisfied by e.g. matrix normal distributions),

sup
g∈G

`Y (g) = − inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm

‖h · Y ‖22
)
− nm log τ

)
.

The group H :=G ∩ SLm acts on Rm×n via left multiplication: (h,Y ) 7→h ·Y .
The orbit of the data matrix Y is H · Y = {h · Y | h ∈ H}.
An MLE can be computed in 2 steps:

1) Find a point of minimal norm in the orbit H · Y .
2) Compute the unique value τ minimizing τ ‖h · Y ‖22 − nm log τ .

The MLE is τh>h.

Algorithms from invariant theory that compute the capacity

capH(Y ) := inf
h∈H
‖h · Y ‖22

can be used to compute MLEs ! [algorithmic papers by Bürgisser,
Franks, Garg, Oliveira, Walter, Wigderson, ...]

10 / 30



MLE of Gaussian group models
Proposition
Under mild assumptions (satisfied by e.g. matrix normal distributions),

sup
g∈G

`Y (g) = − inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm

‖h · Y ‖22
)
− nm log τ

)
.

The group H :=G ∩ SLm acts on Rm×n via left multiplication: (h,Y ) 7→h ·Y .
The orbit of the data matrix Y is H · Y = {h · Y | h ∈ H}.
An MLE can be computed in 2 steps:

1) Find a point of minimal norm in the orbit H · Y .
2) Compute the unique value τ minimizing τ ‖h · Y ‖22 − nm log τ .

The MLE is τh>h.

Algorithms from invariant theory that compute the capacity

capH(Y ) := inf
h∈H
‖h · Y ‖22

can be used to compute MLEs ! [algorithmic papers by Bürgisser,
Franks, Garg, Oliveira, Walter, Wigderson, ...]

10 / 30



Maximum Likelihood Thresholds
Given a family of distributions, how many data samples are needed for an
MLE to exists almost surely?

mlte
How many for the MLE to be unique?

mltu

How many for the likelihood to be bounded?

mltb

These have been open questions for the family of all matrix normal
distributions on Rm×n (Dutilleul 1999; Lu, Zimmerman 2004; Srivastav, von

Rosen, von Rosen 2008; Werner, Jansson, Stoica 2008; Rós, Bijma, de Munck, de

Gunst 2016; Soloveychik, Trushin 2016; Drton, Kuriki, Hoff 2021)

Theorem [invariant theorists Harm Derksen & Visu Makam, 2021]
Let d := gcd(m, n) and r := (m2 + n2 − d2)/(mn). The ML thresholds of
the matrix normal model satisfy mltb = mlte , and

If m = n = 1, then mlte = mltu = 1.
If m = n > 1, then mlte = 1 and mltu = 3.
If m 6= n and r ∈ Z, then mlte = r .
If d = 1, then mltu = r , otherwise mltu = r + 1.
If m 6= n and r /∈ Z, then mlte = mltu = d(m2 + n2)/(mn)e.

11 / 30



Maximum Likelihood Thresholds
Given a family of distributions, how many data samples are needed for an
MLE to exists almost surely?

mlte

How many for the MLE to be unique?

mltu

How many for the likelihood to be bounded?

mltb

These have been open questions for the family of all matrix normal
distributions on Rm×n (Dutilleul 1999; Lu, Zimmerman 2004; Srivastav, von

Rosen, von Rosen 2008; Werner, Jansson, Stoica 2008; Rós, Bijma, de Munck, de

Gunst 2016; Soloveychik, Trushin 2016; Drton, Kuriki, Hoff 2021)

Theorem [invariant theorists Harm Derksen & Visu Makam, 2021]
Let d := gcd(m, n) and r := (m2 + n2 − d2)/(mn). The ML thresholds of
the matrix normal model satisfy mltb = mlte , and

If m = n = 1, then mlte = mltu = 1.
If m = n > 1, then mlte = 1 and mltu = 3.
If m 6= n and r ∈ Z, then mlte = r .
If d = 1, then mltu = r , otherwise mltu = r + 1.
If m 6= n and r /∈ Z, then mlte = mltu = d(m2 + n2)/(mn)e.

11 / 30



Maximum Likelihood Thresholds
Given a family of distributions, how many data samples are needed for an
MLE to exists almost surely?

mlte

How many for the MLE to be unique?

mltu

How many for the likelihood to be bounded?

mltb

These have been open questions for the family of all matrix normal
distributions on Rm×n (Dutilleul 1999; Lu, Zimmerman 2004; Srivastav, von

Rosen, von Rosen 2008; Werner, Jansson, Stoica 2008; Rós, Bijma, de Munck, de

Gunst 2016; Soloveychik, Trushin 2016; Drton, Kuriki, Hoff 2021)

Theorem [invariant theorists Harm Derksen & Visu Makam, 2021]
Let d := gcd(m, n) and r := (m2 + n2 − d2)/(mn). The ML thresholds of
the matrix normal model satisfy mltb = mlte , and

If m = n = 1, then mlte = mltu = 1.
If m = n > 1, then mlte = 1 and mltu = 3.
If m 6= n and r ∈ Z, then mlte = r .
If d = 1, then mltu = r , otherwise mltu = r + 1.
If m 6= n and r /∈ Z, then mlte = mltu = d(m2 + n2)/(mn)e.

11 / 30



Maximum Likelihood Thresholds
Given a family of distributions, how many data samples are needed for an
MLE to exists almost surely? mlte
How many for the MLE to be unique? mltu
How many for the likelihood to be bounded? mltb

These have been open questions for the family of all matrix normal
distributions on Rm×n (Dutilleul 1999; Lu, Zimmerman 2004; Srivastav, von

Rosen, von Rosen 2008; Werner, Jansson, Stoica 2008; Rós, Bijma, de Munck, de

Gunst 2016; Soloveychik, Trushin 2016; Drton, Kuriki, Hoff 2021)

Theorem [invariant theorists Harm Derksen & Visu Makam, 2021]
Let d := gcd(m, n) and r := (m2 + n2 − d2)/(mn). The ML thresholds of
the matrix normal model satisfy mltb = mlte , and

If m = n = 1, then mlte = mltu = 1.
If m = n > 1, then mlte = 1 and mltu = 3.
If m 6= n and r ∈ Z, then mlte = r .
If d = 1, then mltu = r , otherwise mltu = r + 1.
If m 6= n and r /∈ Z, then mlte = mltu = d(m2 + n2)/(mn)e. 11 / 30



•

algebraic optimization
given •, find best point on (possibly

unknown) manifold, variety, etc.

Examples:

low-rank matrix approximation

maximum likelihood estimation

machine learning with neural
networks

12 / 30



•

algebraic optimization
given •, find best point on (possibly

unknown) manifold, variety, etc.

Examples:

low-rank matrix approximation

maximum likelihood estimation

machine learning with neural
networks

12 / 30



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

13 / 30



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

13 / 30



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,

σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

13 / 30



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

13 / 30



feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ

L=# layers, fi ,θ = (σi , . . . , σi ) ◦ αi ,θ,
σi : R→ R activation, αi ,θ affine linear

M = im(µ) = neuromanifold

it is a manifold with boundary
and singularities

13 / 30



training a network

Given training data D, the goal is to minimize the loss

RN µ−→M `D−→ R.

D •

M

Geometric questions:

How does the network
architecture affect the geometry
of the function space?

How does the geometry of the
function space impact the
training of the network?

14 / 30



training a network

Given training data D, the goal is to minimize the loss

RN µ−→M `D−→ R.

D •

M

Geometric questions:

How does the network
architecture affect the geometry
of the function space?

How does the geometry of the
function space impact the
training of the network?

14 / 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture

activation network structure loss

identity fully-connected squared-error loss = Euclidean dist

ReLU convolutional Wasserstein distance = polyhedral dist.

polynomial attention cross-entropy ∼= KL divergence

neuromanifold = semi-algebraic set defined by polynomial equalities
and inequalities

15 / 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture

activation network structure loss

identity fully-connected squared-error loss = Euclidean dist

ReLU convolutional Wasserstein distance = polyhedral dist.

polynomial attention cross-entropy ∼= KL divergence

neuromanifold = semi-algebraic set defined by polynomial equalities
and inequalities

15 / 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture

activation network structure loss

identity

fully-connected squared-error loss = Euclidean dist

ReLU

convolutional Wasserstein distance = polyhedral dist.

polynomial

attention cross-entropy ∼= KL divergence

neuromanifold = semi-algebraic set defined by polynomial equalities
and inequalities

15 / 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture

activation network structure loss

identity fully-connected

squared-error loss = Euclidean dist

ReLU convolutional

Wasserstein distance = polyhedral dist.

polynomial attention

cross-entropy ∼= KL divergence

neuromanifold = semi-algebraic set defined by polynomial equalities
and inequalities

15 / 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture

activation network structure loss

identity fully-connected squared-error loss = Euclidean dist

ReLU convolutional Wasserstein distance = polyhedral dist.

polynomial attention cross-entropy ∼= KL divergence

neuromanifold = semi-algebraic set defined by polynomial equalities
and inequalities

15 / 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture

activation network structure loss

identity fully-connected squared-error loss = Euclidean dist

ReLU convolutional Wasserstein distance = polyhedral dist.

polynomial attention cross-entropy ∼= KL divergence

neuromanifold = semi-algebraic set defined by polynomial equalities
and inequalities

15 / 30



example: linear fully-connected networks

In this example:

µ : R2×4 × R3×2 −→ R3×4,

(W1,W2) 7−→W2W1.

M = {W ∈ R3×4 | rank(W ) ≤ 2}

In general:

µ : Rk1×k0 × Rk2×k1 × . . .× RkL×kL−1 −→ RkL×k0 ,

(W1,W2, . . . ,WL) 7−→WL · · ·W2W1.

M = {W ∈ RkL×k0 | rank(W ) ≤ min(k0, . . . , kL)} is an algebraic variety and
we know its singularities etc.

16 / 30



example: linear fully-connected networks

In this example:

µ : R2×4 × R3×2 −→ R3×4,

(W1,W2) 7−→W2W1.

M = {W ∈ R3×4 | rank(W ) ≤ 2}

In general:

µ : Rk1×k0 × Rk2×k1 × . . .× RkL×kL−1 −→ RkL×k0 ,

(W1,W2, . . . ,WL) 7−→WL · · ·W2W1.

M = {W ∈ RkL×k0 | rank(W ) ≤ min(k0, . . . , kL)} is an algebraic variety and
we know its singularities etc.

16 / 30



example: linear fully-connected networks

In this example:

µ : R2×4 × R3×2 −→ R3×4,

(W1,W2) 7−→W2W1.

M = {W ∈ R3×4 | rank(W ) ≤ 2}

In general:

µ : Rk1×k0 × Rk2×k1 × . . .× RkL×kL−1 −→ RkL×k0 ,

(W1,W2, . . . ,WL) 7−→WL · · ·W2W1.

M = {W ∈ RkL×k0 | rank(W ) ≤ min(k0, . . . , kL)} is an algebraic variety and
we know its singularities etc.

16 / 30



example: attention networks
A single-layer lightning self-attention network with weights Q,K ∈ Ra×d and
V ∈ Rd ′×d is

Rd×t −→ Rd ′×t ,

X 7−→ VX X>K>QX .

A slice of the 5-dimensional
neuromanifold M for
a = d = t = 2, d ′ = 1.

It is singular along the orange
curve, and has boundary
points where the curve
leaves/enters M.

17 / 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture

activation network structure loss

identity fully-connected squared-error loss = Euclidean dist

ReLU convolutional Wasserstein distance = polyhedral dist.

polynomial attention cross-entropy ∼= KL divergence

neuromanifold = semi-algebraic set

its boundaries and singularities can be especially
exposed during training

18 / 30



Voronoi cells

Given a set M⊆ Rn, the Voronoi cell of x ∈M consists of all u ∈ Rn such
that x is “closest” among all points in M.

M might be finite

or a manifold, variety, semi-algebraic set, etc.

19 / 30



Voronoi cells

Given a set M⊆ Rn, the Voronoi cell of x ∈M consists of all u ∈ Rn such
that x is “closest” among all points in M.

M might be finite

or a manifold, variety, semi-algebraic set, etc.

19 / 30



Voronoi cells with respect to Euclidean distance

M ⊆ R2 is the purple curve

at all smooth points x ∈M, the
Voronoi cell is a line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the
closest with positive probability

M ⊆ R3 is the red curve

at smooth points, the Voronoi cell is a
convex, semi-algebraic, 2-dimensional
subset of the normal plane

20 / 30



Voronoi cells with respect to Euclidean distance

M ⊆ R2 is the purple curve

at all smooth points x ∈M, the
Voronoi cell is a line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the
closest with positive probability

M ⊆ R3 is the red curve

at smooth points, the Voronoi cell is a
convex, semi-algebraic, 2-dimensional
subset of the normal plane

20 / 30



Voronoi cells with respect to Euclidean distance

M ⊆ R2 is the purple curve

at all smooth points x ∈M, the
Voronoi cell is a line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the
closest with positive probability

M ⊆ R3 is the red curve

at smooth points, the Voronoi cell is a
convex, semi-algebraic, 2-dimensional
subset of the normal plane

20 / 30



Voronoi cells with respect to Euclidean distance

M ⊆ R2 is the purple curve

at all smooth points x ∈M, the
Voronoi cell is a line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the
closest with positive probability

M ⊆ R3 is the red curve

at smooth points, the Voronoi cell is a
convex, semi-algebraic, 2-dimensional
subset of the normal plane

20 / 30



Voronoi cells with respect to Euclidean distance

M ⊆ R2 is the purple curve

at all smooth points x ∈M, the
Voronoi cell is a line segment

the Voronoi cell at the singularity is
2-dimensional, i.e., that point is the
closest with positive probability

M ⊆ R3 is the red curve

at smooth points, the Voronoi cell is a
convex, semi-algebraic, 2-dimensional
subset of the normal plane

20 / 30



•

algebraic optimization
given •, find best point on (possibly

unknown) manifold, variety, etc.

Examples:

low-rank matrix approximation

maximum likelihood estimation

machine learning with neural
networks

Often, the manifold / semialgebraic set is unknown or hard to
understand!

Can we learn something from samples?

21 / 30



•

algebraic optimization
given •, find best point on (possibly

unknown) manifold, variety, etc.

Examples:

low-rank matrix approximation

maximum likelihood estimation

machine learning with neural
networks

Often, the manifold / semialgebraic set is unknown or hard to
understand!

Can we learn something from samples? 21 / 30



medial axis & reach
M⊆ Rn

The union of the boundaries of all Voronoi cells is the
medial axis of M.

It consists of all points in Rn that have two “closest”
points on M.

If M is a smooth variety, its medial axis with respect
to Euclidean distance has positive distance from M.

This distance is the reach of M.

22 / 30



medial axis & reach
M⊆ Rn

The union of the boundaries of all Voronoi cells is the
medial axis of M.

It consists of all points in Rn that have two “closest”
points on M.

If M is a smooth variety, its medial axis with respect
to Euclidean distance has positive distance from M.

This distance is the reach of M.

22 / 30



medial axis & reach
M⊆ Rn

The union of the boundaries of all Voronoi cells is the
medial axis of M.

It consists of all points in Rn that have two “closest”
points on M.

If M is a smooth variety, its medial axis with respect
to Euclidean distance has positive distance from M.

This distance is the reach of M.

22 / 30



medial axis & reach
M⊆ Rn

The union of the boundaries of all Voronoi cells is the
medial axis of M.

It consists of all points in Rn that have two “closest”
points on M.

If M is a smooth variety, its medial axis with respect
to Euclidean distance has positive distance from M.

This distance is the reach of M.

22 / 30



M⊆ Rn smooth variety

⇒ reach(M) = min

{
smallest bottleneck width,

1

maximal curvature

}

bottleneck

maximal curvature

{x , y} ⊂ M is a bottleneck
if x − y is normal to both tangent
spaces TxM and TyM

its width is 1
2‖x − y‖2

23 / 30



M⊆ Rn smooth variety

⇒ reach(M) = min

{
smallest bottleneck width,

1

maximal curvature

}

bottleneck

maximal curvature

{x , y} ⊂ M is a bottleneck
if x − y is normal to both tangent
spaces TxM and TyM

its width is 1
2‖x − y‖2

23 / 30



M⊆ Rn smooth variety

⇒ reach(M) = min

{
smallest bottleneck width,

1

maximal curvature

}

bottleneck

maximal curvature

{x , y} ⊂ M is a bottleneck
if x − y is normal to both tangent
spaces TxM and TyM

its width is 1
2‖x − y‖2

23 / 30



reach & sampling
M⊆ Rn smooth variety, S ⊆M finite sample, 0 < ε <

√
3
20 reach(M)

For all x ∈M, there is s ∈ S with ‖x − s‖2 < ε

U = union of all ε-balls around all points in S

Theorem [Niyogi, Smale, Weinberger]
M is a deformation retract of U. They have the same homology!

Homology of U is computable from the associated Čech complex

24 / 30



reach & sampling
M⊆ Rn smooth variety, S ⊆M finite sample, 0 < ε <

√
3
20 reach(M)

For all x ∈M, there is s ∈ S with ‖x − s‖2 < ε

U = union of all ε-balls around all points in S

Theorem [Niyogi, Smale, Weinberger]
M is a deformation retract of U. They have the same homology!

Homology of U is computable from the associated Čech complex

24 / 30



reach & sampling
M⊆ Rn smooth variety, S ⊆M finite sample, 0 < ε <

√
3
20 reach(M)

For all x ∈M, there is s ∈ S with ‖x − s‖2 < ε

U = union of all ε-balls around all points in S

Theorem [Niyogi, Smale, Weinberger]
M is a deformation retract of U. They have the same homology!

Homology of U is computable from the associated Čech complex

24 / 30



How to actually solve
algebraic inverse problems

?

2d pictures

given observations, want
to recover ground truth

3d modell

25 / 30



Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

Example: fitting a line to points

few outliers!

26 / 30



Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

Example: fitting a line to points

few outliers!

26 / 30



Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

Example: fitting a line to points

few outliers!

26 / 30



Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

2d pictures

−→

3d modell

for general algebraic inverse problems, step 2) means to solve a
system of polynomial equations!

need to do this very fast! (due to step 4))

27 / 30



Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

2d pictures

−→

3d modell

for general algebraic inverse problems, step 2) means to solve a
system of polynomial equations!

need to do this very fast! (due to step 4)) 27 / 30



can solve polynomial systems via Gröbner bases

or homotopy continuation

28 / 30



can solve polynomial systems via Gröbner bases or homotopy continuation

28 / 30



example: 3d reconstruction from unknown cameras

Given: point, point on line & point on line on each 2d-image
Goal: compute point, point on line & point on line in 3-space, and

positions c1, c2, c3 ∈ R3 & orientations R1,R2,R3 ∈ SO(3) of cameras

Generally has 312 complex solutions (modulo the appropriate group action).

Gröbner basis methods won’t terminate . . .
Homotopy continuation can solve in 660ms on average on Intel core
i7-7920HQ processor with 4 threads Fabbri et. al.: TRPLP – Trifocal
Relative Pose from Lines at Points, CVPR 2020

29 / 30



example: 3d reconstruction from unknown cameras
Given: point, point on line & point on line on each 2d-image
Goal: compute point, point on line & point on line in 3-space, and

positions c1, c2, c3 ∈ R3 & orientations R1,R2,R3 ∈ SO(3) of cameras

Generally has 312 complex solutions (modulo the appropriate group action).

Gröbner basis methods won’t terminate . . .
Homotopy continuation can solve in 660ms on average on Intel core
i7-7920HQ processor with 4 threads Fabbri et. al.: TRPLP – Trifocal
Relative Pose from Lines at Points, CVPR 2020

29 / 30



example: 3d reconstruction from unknown cameras
Given: point, point on line & point on line on each 2d-image
Goal: compute point, point on line & point on line in 3-space, and

positions c1, c2, c3 ∈ R3 & orientations R1,R2,R3 ∈ SO(3) of cameras

Generally has 312 complex solutions (modulo the appropriate group action).

Gröbner basis methods won’t terminate . . .
Homotopy continuation can solve in 660ms on average on Intel core
i7-7920HQ processor with 4 threads Fabbri et. al.: TRPLP – Trifocal
Relative Pose from Lines at Points, CVPR 2020

29 / 30



example: 3d reconstruction from unknown cameras
Given: point, point on line & point on line on each 2d-image
Goal: compute point, point on line & point on line in 3-space, and

positions c1, c2, c3 ∈ R3 & orientations R1,R2,R3 ∈ SO(3) of cameras

Generally has 312 complex solutions (modulo the appropriate group action).

Gröbner basis methods won’t terminate . . .
Homotopy continuation can solve in 660ms on average on Intel core
i7-7920HQ processor with 4 threads Fabbri et. al.: TRPLP – Trifocal
Relative Pose from Lines at Points, CVPR 2020

29 / 30



Data science requires us to
rethink the schism between
mathematical disciplines!

differential geometry ⇒

algebraic geometry ⇒

data science ⇒

open access :)

Historical Snapshot
Polars
Foci
Envelopes

Critical Equations
Euclidean Distance Degree
Low-Rank Matrix Approximation
Invitation to Polar Degrees

Computations
Gröbner Bases
Parameter Continuation Theorem
Polynomial Homotopy Continuation

Polar Degrees
Polar Varieties
Projective Duality
Chern Classes

Wasserstein Distance
Polyhedral Norms
Optimal Transport &
Independence Models
Wasserstein meets Segre–Veronese

Curvature
Plane Curves
Algebraic Varieties
Volumes of Tubular Neighborhoods

Reach andOffset
Medial Axis and Bottlenecks
Offset Hypersurfaces
Offset Discriminant

Voronoi Cells
Voronoi Basics
Algebraic Boundaries
Degree Formulas
Voronoi meets Eckart-Young

Condition Numbers
Errors in Numerical Computations
Matrix Inversion and Eckart-Young
Condition Number Theorems
Distance to the Discriminant

Machine Learning
Neural Networks
Convolutional Networks
Learning Varieties

Maximum Likelihood
Kullback-Leibler Divergence
Maximum Likelihood Degree
Scattering Equations
Gaussian Models

Tensors
Tensors and their Rank
Eigenvectors and Singular Vectors
Volumes of Rank-One Varieties

Computer Vision
Multiview Varieties
Grassmann Tensors
3D Reconstruction from
Unknown Cameras

Volumes of
Semialgebraic Sets
Calculus and Beyond
D-Modules
SDP Hierarchies

Sampling
Homology from Finite Samples
Sampling with Density Guarantees
Markov Chains on Varieties
Chow goes to Monte Carlo

Bernd Sturmfels

Oberwolfach Seminars ISBN 978-3-031-51461-6

Paul BreidingKathlén Kohn

30 / 30


