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data science & Al require a vast math toolbox

optimization
machine learning

algebra & geometry

analysis



The world is non-linear!

Many models in the sciences and engineering are characterized by polynomial
equations. Such a set is an algebraic variety X C R”".

‘ Varieties look like
. manifolds almost
* everywhere, but

typically have
singularities.
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Varieties in data science & Al

i‘T

algebraic optimization
given e, find best point on (possibly
unknown) manifold, variety, etc.

want to infer information about
underlying manifold, variety, etc.

algebraic inverse problems

given observations, want
to recover ground truth




What are the unknown ratings?
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Netflix problem

Guess: This matrix should be of low rank!

Underlying variety is
{A c R#usersx#movies ‘ rank(A) & I’}.

What is r 77

Complete the matrix such that it has rank r ! inverse problem

Complete the matrix such that it is close to a rank-r matrix | optimization
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Big Data & Tensors

Often, data has many dimensions to it!

A 2 x 2 matrix A and a2 X 2 X 2 tensor B.

Big data gives rise to huge, high-dimensional tensors.

~> need to understand tensor rank, their eigenvectors, etc.
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Maximum Likelihood Estimation
Experiment: Toss a biased coin twice, and record the total number of heads

Task: From many such experiments, recover the bias of the coin

The possible distributions of the experiment outcome are parametrized by
[0, ].] = AQ = {(P()7 Pl, P2) & R%O ’ Po 4k P1 4F P2 = 1},
o (e 2p(1 - p), (t o
head-head head-tail & tail-head tail-tail
After n experiments, the vector of counts
u={(up, u1, uz) provides an empirical distribution %u.

The likelihood that the bias p gave rise to u is
(pP)re (2ol = DIl (L p)B

The p maximizing this most likely gave rise to u. It is
called the maximum likelihood estimate (MLE).
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MLE of matrix normal distributions

Multivariate normal distribution for matrix-valued random variable X of
format m X n has probability density function

exp(—2tr[V (X — M)TUL(X — M)])
(27) % det(V) 2 det(U)2
where M € R™*5 {c RESH S/ EIREEE

)

Equivalently, the vectorization vec(X) is distributed as the standard multi-
variate normal distribution with mean vector vec(M) and covariance matrix

V11U W V1nU
Voetha— o i e RIS
V,,1U o] V,mU

All such covariance matrices are parametrized via the group GL,, x GL,:

e e=(198) (61®g), forg cCGLng cCL,
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Gaussian group models

The Gaussian group model of a group G C GL,, is the set of a normal
distributions on R™ with covariance matrices in

MG::{ng\gEG}.

Given data samples (Yi,...,Y,) with Y; € R™, viewed as the columns of a
matrix Y € R™*" the logarithm of the likelihood (up constant scalars) is

ly(g) = nlogdet(g'g) — [lg - Y3

We want to find an MLE, i.e., a maximizer g € G of £y !
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MLE of Gaussian group models
Proposition
Under mild assumptions (satisfied by e.g. matrix normal distributions),
zggfy(g0:=-—Té%io<7‘<heggng|H7‘Yﬂ%) - nmiog )

The group H:= G N SL,, acts on R™*" via left multiplication: (h,Y)—h-Y.
The orbit of the data matrix Yis H- Y ={h-Y | he€ H}.
An MLE can be computed in 2 steps:

1) Find a point of minimal norm in the orbit H - Y.

2) Compute the unique value 7 minimizing 7 ||h- Y||3 — nmlog 7.
The MLE is 7h' h.

Algorithms from invariant theory that compute the capacity
Y):=inf ||h- Y3
capy(Y) = inf [|h- Y3

can be used to compute MLEs ! [algorithmic papers by Biirgisser,
Franks, Garg, Oliveira, Walter, Wigderson, ...]
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Maximum Likelihood Thresholds

Given a family of distributions, how many data samples are needed for an

MLE to exists almost surely? mlte
How many for the MLE to be unique? mlt,,
How many for the likelihood to be bounded? mlty,

These have been open questions for the family of all matrix normal
distributions on R™*"

Theorem [invariant theorists Harm Derksen & Visu Makam, 2021]
Let d := gcd(m, n) and r := (m? + n?> — d?)/(mn). The ML thresholds of
the matrix normal model satisfy mlt, = mlt,, and

¢ If m=n=1, then mlt, = mlt, = 1.

e If m=n>1, then mlt, =1 and mlt, = 3.

o If m+# nand r € Z, then mlt, = r.

If d =1, then mlt, = r, otherwise mlt, = r + 1.
¢ If m# nand r ¢ Z, then mlt, = mlt, = [(m? + n?)/(mn)].
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Examples:
¢ low-rank matrix approximation
¢ maximum likelihood estimation

& machine learning with neural
networks

algebraic optimization
given e, find best point on (possibly
unknown) manifold, variety, etc.



feedforward neural networks




feedforward neural networks

are parametrized families of functions

T R0
9l—>fL7go...ofl79



feedforward neural networks

are parametrized families of functions

T R0
9l—>fL790...ofl79

L:# Iayers, 1‘,‘79 = (0’,‘, Soch 0',') SECTNN



feedforward neural networks

are parametrized families of functions
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L:# Iayers, 1(,'79 = (0’,‘, Soch 0',') (¢] Oz,'yg,
o; : R — R activation, «; g affine linear



feedforward neural networks

M = im(u) = neuromanifold

it is a manifold with boundary
and singularities

are parametrized families of functions

T R0
9l—>fL790...of179

L=t layers, {0 =0, < o ololn
o; : R — R activation, «; g affine linear
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Given training data D, the goal is to minimize the loss
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training a network

Given training data D, the goal is to minimize the loss

RN 45 M 2R,

Geometric questions:

¢ How does the network
architecture affect the geometry
— * , of the function space?
¢ How does the geometry of the
function space impact the
training of the network?
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understanding networks via algebraic optimization

Algebraic settings:

network architecture
activation | network structure loss
identity fully-connected squared-error loss
RelLU convolutional Wasserstein distance
polynomial attention cross-entropy

neuromanifold = semi-algebraic set defined by polynomial equalities
and inequalities
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example: linear fully-connected networks
In this example:

i R2><4 % ]R3><2 S ]R3><4
(Wl, W2) Fe W2W1.

M = {W € R¥* | rank(W) < 2}

In general:
/,L:RlekO XszXkl S XRkLXkL_l RkLXkO’

(Wl,WQ,...,WL)i—> WL'~~W2W1.

M = {W € Rkxko | rank(W) < min(ko, ...,k )} is an algebraic variety and
we know its singularities etc.



example: attention networks

A single-layer lightning self-attention network with weights @, K € R?*9 and
V. e R¥*diis

dxt d'xt
R — R 7F

e VX X TKTOX

A slice of the 5-dimensional
neuromanifold M for
Stk it Bhvo il

It is singular along the orange
curve, and has boundary
points where the curve
leaves/enters M.

B2 30



understanding networks via algebraic optimization

Algebraic settings:

network architecture
activation | network structure loss
identity fully-connected squared-error loss
RelLU convolutional Wasserstein distance
polynomial attention cross-entropy

neuromanifold = semi-algebraic set

its boundaries and singularities can be especially
exposed during training
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that x is “closest” among all points in M.
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Voronoi cells

Given a set M C R", the Voronoi cell of x € M consists of all u € R" such
that x is “closest” among all points in M.

M might be finite

or a manifold, variety, semi-algebraic set, etc.
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Voronoi cells with respect to Euclidean distance

C R? is the purple curve

at all smooth points x € M, the
Voronoi cell is a line segment C R3 is the red curve

the Voronoi cell at the singularity is  at smooth points, the Voronoi cell is a
2-dimensional, i.e., that point is the  convex, semi-algebraic, 2-dimensional
closest with positive probability subset of the normal plane
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¢ maximum likelihood estimation
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Examples:
o low-rank matrix approximation

¢ maximum likelihood estimation

S

algebraic optimization
given e, find best point on (possibly
unknown) manifold, variety, etc.

& machine learning with neural
networks

Often, the manifold / semialgebraic set is unknown or hard to
understand!

Can we learn something from samples?
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medial axis & reach
M CR”

The union of the boundaries of all Voronoi cells is the
medial axis of M.

It consists of all points in R" that have two “closest”
points on M.

If M is a smooth variety, its medial axis with respect
to Euclidean distance has positive distance from M.

This distance is the reach of M.
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M C R"” smooth variety

= reach(M) = min {smallest bottleneck width,

bottleneck

aximal curvature

1

maximal curvature

{x,y} C M is a bottleneck
if x — y is normal to both tangent
spaces T,M and T,M

its width is {|x — y/|2

}
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reach & sampling
M C R” smooth variety, S C M finite sample, 0 < e < 4/ % reach(M)

For all x € M, there is s € S with || x —s|2 < e

U = union of all e-balls around all points in' S

Theorem [Niyogi, Smale, Weinberger]
M is a deformation retract of U. They have the same homology!

Homology of U is computable from the associated Cech complex



How to actually solve

algebraic inverse problems
?

given observations, want
to recover ground truth

2d pictures , 3d modell
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1) Randomly select a subset of the data
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system of polynomial equations!



Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset
3) Determine the number of outliers
4) Repeat steps 1-3 to find a consensus (& outliers)

vvvvvvvvv

2d pictures 3d modell

for general algebraic inverse problems, step 2) means to solve a
system of polynomial equations!

need to do this very fast! (due to step 4))
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can solve polynomial systems via Grobner bases or homotopy continuation

go? : B o

A

g(z)

(CJ

nonsingular | 8| ... L Limite
endpoint Y= start
points
&
- .-d‘
e S W e
endpoint Treiaaa,
o brake
I endgame

t =0 boundary
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example: 3d reconstruction from unknown cameras
Given: point, point on line & point on line on each 2d-image
Goal: compute point, point on line & point on line in 3-space, and
positions ¢y, ¢o, c3 € R3 & orientations Ry, Ry, R3 € SO(3) of cameras

Generally has 312 complex solutions (modulo the appropriate group action).

Grobner basis methods won’t terminate ...
Homotopy continuation can solve in 660ms on average on Intel core
i7-7920HQ processor with 4 threads



Data science requires us to
rethink the Schism between Bernd Sturmfels Kathlén Kohn

mathematical disciplines! Metl‘ic .
Algebraic
Geometry

differential geometry =

| Curvature

Plane Curve:
A

Tubular Neighbort

algebraic geometry =

data science =

Oberwolfach Seminars ISBN 978-3-031-51461-6

open access :)

Birkhéuser
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