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Decision variant NP-hard (under Decision variant NP-complete

randomized reductions) (Ajtai)

(Micciancio, Goldwasser)
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Algorithm by Micciancio and - -
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m solves SVP and CVP for Euclidean i 2 /
distance o C
m 2°(" time and space complexity

m core of algorithm:

+ solve CVP with addifional input:
Voronoi-relevant vectors o > ®

m af most 2(2" — 1) Voronoi-relevant vectors in n-dimensional
lattice w.r.t. Euclidean norm (Agrell et al.)
+ essential for above algorithm
+ proof uses parallelogram identity
¢ open problem by Micciancio and Voulgaris:
extend algorithm fo p-norms
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w.rt. arbitrary p-norms? \MiE (X
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Smooth norms

Definition
Let SCR"and s € 8S. A hyperplane H € R" is a supporting
hyperplane of S at s if

msc Hand
m Sis contained in one of the 2 closed halfspaces bounded by H

N >

Definition
A norm is smooth if each point on its unit sphere has a unique
supporting hyperplane.
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Geometry Combinatorics

Do VR vectors determine Voronoi cell? How many v € A are VR

wirt. | -[|?

n > 1: yes, for Euclidean norm <22"-1)
Our results;

n = 2. yes, for strictly convex norm 4o0rb6

= bijection between VR vectors
and facets of Voronoi cell

no, for non-strictly convex norm
n > 2: GVR vectors determine Voronoi  #GVR vectors:

cell not bounded by f(n)
yes, for strictly convex and not bounded by f(n)

n
smooth norm but by <1 o 451((/\/\7||”-'H”))>

= bijection between VR vectors
and facets of Voronoi cell



General upper bound

Proposition (Blomer, K.)

n
Every lattice N C R" has af most (1 + 4%) generalized
Voronoi-relevant vectors w.r.t. every norm.

Definition
The covering radius of A w.r.t. || - || is

pA |- =Inf{d e Ryg | ¥X e R"IveA: |x—v|| < d}.
The first successive minimum of A w.r.t. || - | is

M- D = inf{fvil | v e A v#0}.
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Taxicab norm || - [|; = Voronoi cell
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Generalized VVoronoi-relevant vectors

Theorem (Blomer, K.)

| For every lattice N C R" and every norm || - ||.
VA1) ={xeR"[VveAGWR: x| < [x—v|}.

L (G) ) < r?;)) has at least 2m GVR vectors w.r.t. Taxicab norm.
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