Voronoi Cells of Lattices with Respect to Arbitrary Norms

Kathlén Kohn (TU Berlin)

joint work with Johannes Blömer (Paderborn University)

March 9, 2016

Section 1

Motivation

2 Dimensions

General Dimension

Lattices – 2 equivalent definitions

Definition (I) An *n*-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^n .

Lattices – 2 equivalent definitions

Definition (I)

An *n*-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^n .

Definition (II)

Let $b_1, \ldots, b_m \in \mathbb{R}^n$ be linearly independent. Then

$$\mathcal{L}(b_1,\ldots,b_m) := \left\{ \sum_{i=1}^m z_i b_i \ \middle| \ z_1,\ldots,z_m \in \mathbb{Z} \right\}$$

is a lattice with basis (b_1, \ldots, b_m) of rank m and dimension n.

- XX

Lattices – 2 equivalent definitions

Definition (I)

An *n*-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^n .

Definition (II)

Let $b_1, \ldots, b_m \in \mathbb{R}^n$ be linearly independent. Then

$$\mathcal{L}(b_1,\ldots,b_m) := \left\{ \sum_{i=1}^m z_i b_i \ \middle| \ z_1,\ldots,z_m \in \mathbb{Z} \right\}$$

is a lattice with basis (b_1, \ldots, b_m) of rank m and dimension n.

Assume m = n.

2 Dimensions

General Dimensions

Lattice problems

Shortest Vector Problem (SVP): Given lattice basis (b_1, \ldots, b_n) , find shortest vector in $\mathcal{L}(b_1, \ldots, b_n) \setminus \{0\}.$

II - XX

2 Dimensions

General Dimension

Lattice problems

Shortest Vector Problem (SVP): Given lattice basis (b_1, \ldots, b_n) , find shortest vector in $\mathcal{L}(b_1, \ldots, b_n) \setminus \{0\}.$

Closest Vector Problem (CVP): Given lattice basis (b_1, \ldots, b_n) and $x \in \mathbb{R}^n$, find closest vector to x in $\mathcal{L}(b_1, \ldots, b_n)$.

|| - XX

2 Dimensions

General Dimension

Lattice problems

Shortest Vector Problem (SVP): Given lattice basis (b_1, \ldots, b_n) , find shortest vector in $\mathcal{L}(b_1, \ldots, b_n) \setminus \{0\}.$

Closest Vector Problem (CVP): Given lattice basis (b_1, \ldots, b_n) and $x \in \mathbb{R}^n$, find closest vector to x in $\mathcal{L}(b_1, \ldots, b_n)$.

Decision variant NP-hard (under randomized reductions) (Ajtai)

Decision variant NP-complete (Micciancio, Goldwasser)

I - XX

2 Dimensions

General Dimension

Lattice problems

Algorithm by Micciancio and Voulgaris:

- solves both problems for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi cell

2 Dimensions

General Dimension

Lattice problems

Algorithm by Micciancio and Voulgaris:

- solves both problems for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

 $\mathcal{V}(\Lambda, \|\cdot\|) := \left\{ x \in \mathbb{R}^n \mid \forall v \in \Lambda : \|x\| \le \|x-v\| \right\}.$

||| - XX

2 Dimensions

General Dimension

Lattice problems

Algorithm by Micciancio and Voulgaris:

- solves both problems for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi cell

Definition

The Voronoi cell of a lattice Λ w.r.t. a norm $\|\cdot\|$ is

 $\mathcal{V}(\Lambda, \|\cdot\|) := \left\{ x \in \mathbb{R}^n \mid \forall v \in \Lambda : \|x\| \le \|x-v\| \right\}.$

All $v \in \Lambda$ needed?

2 Dimensions

General Dimension

Voronoi-relevant vectors

IV - XX

2 Dimensions

General Dimension

Voronoi-relevant vectors

Definition

 $v \in \Lambda \setminus \{0\}$ is Voronoi-relevant (VR) w.r.t. $\|\cdot\|$ if $\exists x \in \mathbb{R}^n : \|x\| = \|x - v\|$, $\forall w \in \Lambda \setminus \{0, v\} : \|x\| < \|x - w\|$.

IV - XX

2 Dimensions

General Dimension

Voronoi-relevant vectors

Definition

 $v \in \Lambda \setminus \{0\}$ is Voronoi-relevant (VR) w.r.t. $\| \cdot \|$ if $\exists x \in \mathbb{R}^n : \|x\| = \|x - v\|$, $\forall w \in \Lambda \setminus \{0, v\} : \|x\| < \|x - w\|$.

 $\Rightarrow \text{VR vectors determine Voronoi cell for Euclidean norm } \|\cdot\|_2, \text{ i.e.,} \\ \mathcal{V}(\Lambda, \|\cdot\|_2) = \{x \in \mathbb{R}^n \mid \forall v \in \Lambda : \|x\|_2 \le \|x - v\|_2\} \text{ (Agrell et al.)} \\ \|V\| \neq V \\ \|V\| = \{x \in \mathbb{R}^n \mid \forall v \in \Lambda : \|x\|_2 \le \|x - v\|_2\} \text{ (Agrell et al.)}$

2 Dimensions

General Dimension

Voronoi-relevant vectors

Definition

 $v \in \Lambda \setminus \{0\}$ is Voronoi-relevant (VR) w.r.t. $\| \cdot \|$ if $\exists x \in \mathbb{R}^n : \|x\| = \|x - v\|$, $\forall w \in \Lambda \setminus \{0, v\} : \|x\| < \|x - w\|$.

 $\Rightarrow VR \text{ vectors determine Voronoi cell for Euclidean norm } \|\cdot\|_2, \text{ i.e.,} \\ \mathcal{V}(\Lambda, \|\cdot\|_2) = \{x \in \mathbb{R}^n \mid \forall v \in \Lambda \text{ VR} : \|x\|_2 \le \|x - v\|_2\} \text{ (Agrell et al.)} \\ \|V - XX \| \le \|V - XX \| \le \|V\|_2 \le \|V\|_2 + \|V\|_2 + \|V\|_2 \le \|V\|_2 + \|V\|_2 + \|V\|_2 \le \|V\|_2 + \|V\|_2 \le \|V\|_2 + \|V\|_2 \le \|V\|_$

2 Dimensions

General Dimension

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- 2^{O(n)} time and space complexity
 core of algorithm:
 - solve CVP with additional input: Voronoi cell

2 Dimensions

General Dimension

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

2 Dimensions

General Dimension

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

 at most 2(2ⁿ – 1) Voronoi-relevant vectors in *n*-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)
 A essential for above algorithm

essential for above algorithm

2 Dimensions

General Dimension

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

at most 2(2ⁿ – 1) Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)

- essential for above algorithm
- proof uses parallelogram identity

2 Dimensions

General Dimension

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

at most 2(2ⁿ – 1) Voronoi-relevant vectors in *n*-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)

- essential for above algorithm
- proof uses parallelogram identity
- open problem by Micciancio and Voulgaris: extend algorithm to p-norms

V - XX

2 Dimensions

General Dimension

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- 2^{O(n)} time and space complexity
- core of algorithm:
 - solve CVP with additional input: Voronoi-relevant vectors

at most 2(2ⁿ – 1) Voronoi-relevant vectors in *n*-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)

- essential for above algorithm
- proof uses parallelogram identity
- open problem by Micciancio and Voulgaris: extend algorithm to p-norms

 \implies Upper bound for number of Voronoi-relevant vectors w.r.t. arbitrary p-norms?

Section 2

2 Dimensions

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell?

Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell? $\begin{array}{l} \text{Combinatorics} \\ \text{How many } \nu \in \Lambda \text{ are VR} \\ \text{w.r.t. } \| \cdot \| ? \end{array}$

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^{n}-1)$

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell?

Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n-1)$

n = 2: yes, for strictly convex norm 4 or 6

2 Dimensions

General Dimensions

Strict convexity

Definition

A norm is strictly convex if its unit sphere does not contain a line segment.

 $\|\cdot\|_1$: not strictly convex

 $\|\cdot\|_2$: strictly convex

VII - XX

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. || · ||?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n - 1)$

4 or 6

Our results: n = 2: yes, for strictly convex norm

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. || · ||?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n - 1)$

4 or 6

Our results: n = 2: yes, for strictly convex norm \Rightarrow bijection between VR vectors and facets of Voronoi cell

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. || · ||?

 $n \geq 1$: yes, for Euclidean norm

 $\leq 2(2^n - 1)$

4 or 6

Our results: n = 2: yes, for strictly convex norm \Rightarrow bijection between VR vectors and facets of Voronoi cell

no, for non-strictly convex norm \Rightarrow Generalized Voronoi-relevant (GVR) vectors determine Voronoi cell

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. || · ||?

 $n \geq 1$: yes, for Euclidean norm

 $\leq 2(2^n - 1)$

4 or 6

Our results: n = 2: yes, for strictly convex norm \Rightarrow bijection between VR vectors and facets of Voronoi cell

no, for non-strictly convex norm #GVR vectors: not const. \Rightarrow Generalized Voronoi-relevant (GVR) vectors determine Voronoi cell

Section 3

General Dimensions

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n-1)$

Our results:n = 2: yes, for strictly convex norm4 or 6⇒ bijection between VR vectorsand facets of Voronoi cell

no, for non-strictly convex norm $n \ge 2$: GVR vectors determine Voronoi cell

#GVR vectors: not bounded by f(n)

IX - XX

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n-1)$

Our results:n = 2: yes, for strictly convex norm4 or 6⇒ bijection between VR vectorsand facets of Voronoi cell

no, for non-strictly convex norm $n \ge 2$: GVR vectors determine Voronoi cell

#GVR vectors: not bounded by f(n)

yes, for strictly convex and smooth norm

⇒ bijection between VR vectors and facets of Voronoi cell

2 Dimensions

General Dimensions

Smooth norms

Definition

Let $S \subseteq \mathbb{R}^n$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^n$ is a supporting hyperplane of S at s if

 $s \in H$ and

 \blacksquare S is contained in one of the 2 closed halfspaces bounded by H

2 Dimensions

General Dimensions

Smooth norms

Definition

Let $S \subseteq \mathbb{R}^n$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^n$ is a supporting hyperplane of S at s if

 $s \in H$ and

S is contained in one of the 2 closed halfspaces bounded by H

Definition

A norm is smooth if each point on its unit sphere has a unique supporting hyperplane.

2 Dimensions

General Dimensions

Smooth norms

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n-1)$

Our results: n = 2: yes, for strictly convex norm 4 or 6 ⇒ bijection between VR vectors and facets of Voronoi cell

no, for non-strictly convex norm $n \ge 2$: GVR vectors determine Voronoi cell

#GVR vectors: not bounded by f(n)

yes, for strictly convex and smooth norm

⇒ bijection between VR vectors and facets of Voronoi cell

XII - XX

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n-1)$

Our results: n = 2: yes, for strictly convex norm 4 or 6 ⇒ bijection between VR vectors and facets of Voronoi cell

no, for non-strictly convex norm $n \ge 2$: GVR vectors determine Voronoi cell

#GVR vectors: not bounded by f(n)

yes, for strictly convex and smooth norm

⇒ bijection between VR vectors and facets of Voronoi cell not bounded by f(n)

General Dimensions

#VR vectors not bounded by f(n)

There is no upper bound for the number of Voronoi-relevant vectors

w.r.t. general strictly convex and smooth norms
 that depends only on the lattice dimension!

#VR vectors not bounded by f(n)

There is no upper bound for the number of Voronoi-relevant vectors

w.r.t. general strictly convex and smooth norms
 that depends only on the lattice dimension!

Q: Can a + mb for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

#VR vectors not bounded by f(n)

There is no upper bound for the number of Voronoi-relevant vectors

w.r.t. general strictly convex and smooth norms
 that depends only on the lattice dimension!

Q: Can a + mb for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

2 Dimensions

General Dimensions

2 Dimensions

General Dimensions

2 Dimensions

General Dimensions

2 Dimensions

General Dimensions

Idea

XV - XX

2 Dimensions

General Dimensions

Idea

Rotate lattice s.t.

6

• 0• a•

. 2

ХХ

2 Dimensions

General Dimensions

Rotate lattice s.t.

- XX

2 Dimensions

General Dimensions

Construct lattice family Λ_m Modify standard lattice:

XVII - XX

2 Dimensions

General Dimensions

Construct lattice family Λ_m Modify standard lattice:

XVII - XX

2 Dimensions

General Dimensions

Construct lattice family Λ_m Modify standard lattice:

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Modify standard lattice:

I Stretch in *c*-direction by $5\sqrt{2}m^5$

XVII - XX

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Modify standard lattice:

- I Stretch in *c*-direction by $5\sqrt{2}m^5$
- II Rotate around *c*-axis s.t. *a* + *mb* lies on yellow axis

VII - XX

X

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Modify standard lattice:

- I Stretch in *c*-direction by $5\sqrt{2}m^5$
- II Rotate around *c*-axis s.t. *a* + *mb* lies on yellow axis

VII - XX

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Modify standard lattice:

- I Stretch in *c*-direction by $5\sqrt{2}m^5$
- II Rotate around *c*-axis s.t. *a* + *mb* lies on yellow axis
- III Rotate around yellow axis by 45°

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Modify standard lattice:

- I Stretch in *c*-direction by $5\sqrt{2}m^5$
- II Rotate around *c*-axis s.t. *a* + *mb* lies on yellow axis
- III Rotate around yellow axis by 45°
- \Longrightarrow Lattice Λ_m

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Modify standard lattice:

- I Stretch in *c*-direction by $5\sqrt{2}m^5$
- II Rotate around *c*-axis s.t. *a* + *mb* lies on yellow axis
- III Rotate around yellow axis by 45°
- \Longrightarrow Lattice Λ_m
- Move x along c-direction $\Rightarrow a + mb$ VR w.r.t. 3-norm

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Rotate lattice s.t.

2 Dimensions

General Dimensions

Construct lattice family Λ_m

2 Dimensions

General Dimensions

Construct lattice family Λ_m

Analogous:

Theorem (Blömer, K.) For $2 \le k \le \sqrt{m}$, a + kbis Voronoi-relevant in Λ_m w.r.t. 3-norm.

XIX - XX

2 Dimensions

General Dimensions

Geometry Do VR vectors determine Voronoi cell? Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n-1)$

Our results: n = 2: yes, for strictly convex norm 4 or 6 ⇒ bijection between VR vectors and facets of Voronoi cell

no, for non-strictly convex norm $n \ge 2$: GVR vectors determine Voronoi cell

#GVR vectors: not bounded by f(n)

yes, for strictly convex and smooth norm

⇒ bijection between VR vectors and facets of Voronoi cell not bounded by f(n)

XX - XX

Thank you!

Geometry Do VR vectors determine Voronoi cell?

Combinatorics How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?

 $n \ge 1$: yes, for Euclidean norm

 $\leq 2(2^n-1)$

 $\begin{array}{l} & \text{Our results:} \\ n = 2: \text{ yes, for strictly convex norm} & 4 \text{ or } 6 \\ \Rightarrow \text{ bijection between VR vectors} \\ \text{ and facets of Voronoi cell} \end{array}$

no, for non-strictly convex norm $n \ge 2$: GVR vectors determine Voronoi cell

yes, for strictly convex and smooth norm

⇒ bijection between VR vectors and facets of Voronoi cell #GVR vectors: not bounded by f(n)

not bounded by f(n)but by $\left(1 + 4\frac{\mu(\Lambda, \|\cdot\|)}{\lambda_1(\Lambda, \|\cdot\|)}\right)^n$

General upper bound

Proposition (Blömer, K.)

Every lattice $\Lambda \subseteq \mathbb{R}^n$ has at most $\left(1 + 4\frac{\mu(\Lambda, \|\cdot\|)}{\lambda_1(\Lambda, \|\cdot\|)}\right)^n$ generalized Voronoi-relevant vectors w.r.t. every norm.

Definition The covering radius of Λ w.r.t. $\|\cdot\|$ is

 $\mu(\Lambda, \|\cdot\|) := \inf\{d \in \mathbb{R}_{>0} \mid \forall x \in \mathbb{R}^n \exists v \in \Lambda : \|x - v\| \le d\}.$

The first successive minimum of Λ w.r.t. $\|\cdot\|$ is

 $\lambda_1(\Lambda, \|\cdot\|) := \inf \left\{ \|v\| \mid v \in \Lambda, v \neq 0 \right\}.$

2 Voronoi-relevant vectors

2 Voronoi-relevant vectorsx not in Voronoi-cell

 2 Voronoi-relevant vectors
 x not in Voronoi-cell, BUT:
 x closer to 0 than to Voronoi-relevant vectors

Definition $v \in \Lambda \setminus \{0\}$ is Voronoi-relevant (VR) w.r.t. $\| \cdot \|$ if

> $\exists x \in \mathbb{R}^n : ||x|| = ||x - v||,$ $\forall w \in \Lambda \setminus \{0, v\} : ||x|| < ||x - w||.$

Definition $v \in \Lambda \setminus \{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. $\| \cdot \|$ if

> $\exists x \in \mathbb{R}^{n} : ||x|| = ||x - v||,$ $\forall w \in \Lambda : ||x|| \le ||x - w||.$

Definition $v \in \Lambda \setminus \{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. $\| \cdot \|$ if

> $\exists x \in \mathbb{R}^{n} : ||x|| = ||x - v||,$ $\forall w \in \Lambda : ||x|| \le ||x - w||.$

Theorem (Blömer, K.)

| For every lattice $\Lambda \subseteq \mathbb{R}^n$ and every norm $\|\cdot\|$, $\mathcal{V}(\Lambda, \|\cdot\|) = \{x \in \mathbb{R}^n \mid \forall v \in \Lambda \; \mathsf{GVR} : \|x\| \le \|x - v\|\}.$

Theorem (Blömer, K.)

I For every lattice $\Lambda \subseteq \mathbb{R}^n$ and every norm $\|\cdot\|$, $\mathcal{V}(\Lambda, \|\cdot\|) = \{x \in \mathbb{R}^n \mid \forall v \in \Lambda \; \mathbf{GVR} : \|x\| \le \|x - v\|\}$. $\| \mathcal{L}\left(\begin{pmatrix}1\\1\end{pmatrix}, \begin{pmatrix}0\\m\end{pmatrix}\right)$ has at least 2m GVR vectors w.r.t. Taxicab norm.