Voronoi Cells of Lattices with Respect to Arbitrary Norms

Kathlén Kohn (TU Berlin)
joint work with Johannes Blömer (Paderborn University)
March 9, 2016

Section 1

Motivation

Lattices - 2 equivalent definitions

Definition (I)

An n-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^{n}.

$$
I-X X
$$

Lattices - 2 equivalent definitions

Definition (l)

An n-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^{n}.

Definition (II)

Let $b_{1}, \ldots, b_{m} \in \mathbb{R}^{n}$ be linearly independent. Then

$$
\mathcal{L}\left(b_{1}, \ldots, b_{m}\right):=\left\{\sum_{i=1}^{m} z_{i} b_{i} \mid z_{1}, \ldots, z_{m} \in \mathbb{Z}\right\}
$$

is a lattice with basis $\left(b_{1}, \ldots, b_{m}\right)$ of rank m and dimension n.

$$
I-X X
$$

Lattices - 2 equivalent definitions

Definition (l)

An n-dimensional lattice is a discrete, additive subgroup of \mathbb{R}^{n}.

Definition (II)

Let $b_{1}, \ldots, b_{m} \in \mathbb{R}^{n}$ be linearly independent. Then

$$
\mathcal{L}\left(b_{1}, \ldots, b_{m}\right):=\left\{\sum_{i=1}^{m} z_{i} b_{i} \mid z_{1}, \ldots, z_{m} \in \mathbb{Z}\right\}
$$

is a lattice with basis $\left(b_{1}, \ldots, b_{m}\right)$ of rank m and dimension n.
Assume $m=n$.

Lattice problems

Shorłest Vecłor Problem (SVP):

Given lattice basis (b_{1}, \ldots, b_{n}), find shortest vector in
$\mathcal{L}\left(b_{1}, \ldots, b_{n}\right) \backslash\{0\}$.

II - XX

Lattice problems

Shortest Vector Problem (SVP): Given lattice basis (b_{1}, \ldots, b_{n}), find shortest vector in
$\mathcal{L}\left(b_{1}, \ldots, b_{n}\right) \backslash\{0\}$.

Closest Vector Problem (CVP): Given lattice basis (b_{1}, \ldots, b_{n}) and $x \in \mathbb{R}^{n}$, find closest vector to x in $\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)$.

Lattice problems

Shortest Vector Problem (SVP):

 Given lattice basis (b_{1}, \ldots, b_{n}), find shortest vector in$\mathcal{L}\left(b_{1}, \ldots, b_{n}\right) \backslash\{0\}$.

Decision variant NP-hard (under randomized reductions) (Ajtai)

Closest Vector Problem (CVP): Given lattice basis (b_{1}, \ldots, b_{n}) and $x \in \mathbb{R}^{n}$, find closest vector to x in $\mathcal{L}\left(b_{1}, \ldots, b_{n}\right)$.

Decision variant NP-complete (Micciancio, Goldwasser)
II - XX

Lattice problems

Algorithm by Micciancio and
Voulgaris:

- solves both problems for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi cell

Lattice problems

Algorithm by Micciancio and
Voulgaris:

- solves both problems for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi cell

Definition

The Voronoi cell of a lattice \wedge w.r.t. a norm || $\cdot \|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\left\{x \in \mathbb{R}^{n} \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\right\} .
$$

Lattice problems

Algorithm by Micciancio and
Voulgaris:

- solves both problems for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi cell

Definition

The Voronoi cell of a lattice \wedge w.r.t. a norm || $\cdot \|$ is

$$
\mathcal{V}(\Lambda,\|\cdot\|):=\left\{x \in \mathbb{R}^{n} \mid \forall v \in \Lambda:\|x\| \leq\|x-v\|\right\} .
$$

All $v \in \wedge$ needed?

Voronoi-relevant vectors

$$
I V-X X
$$

Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. $\|\cdot\|$ if $\exists x \in \mathbb{R}^{n}:\|x\|=\|x-v\|$,

$$
\forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
$$

$$
I V-X X
$$

Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. $\|\cdot\|$ if $\exists x \in \mathbb{R}^{n}:\|x\|=\|x-v\|$,

$$
\forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
$$

\Rightarrow VR vectors determine Voronoi cell for Euclidean norm $\|\cdot\|_{2}$, i.e., $\mathcal{V}\left(\Lambda,\|\cdot\|_{2}\right)=\left\{x \in \mathbb{R}^{n} \mid \forall v \in \Lambda:\|x\|_{2} \leq\|x-v\|_{2}\right\}$ (Agrell et al.)

Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. $\|\cdot\|$ if $\exists x \in \mathbb{R}^{n}:\|x\|=\|x-v\|$,

$$
\forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
$$

\Rightarrow VR vectors determine Voronoi cell for Euclidean norm $\|\cdot\|_{2}$, i.e., $\mathcal{V}\left(\Lambda,\|\cdot\|_{2}\right)=\left\{x \in \mathbb{R}^{n} \mid \forall v \in \Lambda \operatorname{VR}:\|x\|_{2} \leq\|x-v\|_{2}\right\}$ (Agrell et al.)

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi cell

$$
V-X X
$$

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors

$$
V-X X
$$

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- $2^{0(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors

at most $2\left(2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)
- essential for above algorithm

$$
V-X X
$$

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors
at most $2\left(2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)
- essential for above algorithm
- proof uses parallelogram identity

$$
V-X X
$$

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors
at most $2\left(2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)
- essential for above algorithm
- proof uses parallelogram identity
- open problem by Micciancio and Voulgaris: extend algorithm to p-norms

$$
V-X X
$$

Voronoi-relevant vectors

Algorithm by Micciancio and Voulgaris:

- solves SVP and CVP for Euclidean distance
- $2^{O(n)}$ time and space complexity
- core of algorithm:
- solve CVP with additional input: Voronoi-relevant vectors

- at most $2\left(2^{n}-1\right)$ Voronoi-relevant vectors in n-dimensional lattice w.r.t. Euclidean norm (Agrell et al.)
- essential for above algorithm
- proof uses parallelogram identity
- open problem by Micciancio and Voulgaris: extend algorithm to p-norms
\Longrightarrow Upper bound for number of Voronoi-relevant vectors w.r.t. arbitrary p-norms?

Section 2

2 Dimensions

Geometry Do VR vectors determine Voronoi cell?

Combinatorics

How many $v \in \wedge$ are VR w.r.t. \|• • \|?

Geometry

 Do VR vectors determine Voronoi cell?$n \geq 1$: yes, for Euclidean norm

Combinatorics How many $v \in \Lambda$ are VR w.r.t. \|• • \|?
$\leq 2\left(2^{n}-1\right)$

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm
Our results:
$n=2$: yes, for strictly convex norm 4 or 6

Strict convexity

Definition

A norm is strictly convex if its unit sphere does not contain a line segment.
$\|\cdot\|_{1}$: not strictly convex
$\|\cdot\|_{2}$: strictly convex

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm
Our results:
$n=2$: yes, for strictly convex norm 4 or 6

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm
Our results:
$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm

Our results:

$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm
\Rightarrow Generalized Voronoi-relevant
(GVR) vectors determine
Voronoi cell

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm

Our results:

$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm
\Rightarrow Generalized Voronoi-relevant
(GVR) vectors determine
Voronoi cell

Section 3

General Dimensions

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm
Our results:
$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm
$n \geq 2$: GVR vectors determine Voronoi cell

Combinatorics

How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?
$\leq 2\left(2^{n}-1\right)$
\#GVR vectors: not bounded by $f(n)$

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm
Our results:
$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm
$n \geq 2$: GVR vectors determine Voronoi cell
yes, for strictly convex and smooth norm
\Rightarrow bijection between VR vectors and facets of Voronoi cell

Combinatorics

How many $v \in \Lambda$ are VR w.r.t. \|• \|?
$\leq 2\left(2^{n}-1\right)$
\#GVR vectors: not bounded by $f(n)$

Smooth norms

Definition

Let $S \subseteq \mathbb{R}^{n}$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^{n}$ is a supporting hyperplane of S at s if
$\square s \in H$ and

- S is contained in one of the 2 closed halfspaces bounded by H

$$
X-X X
$$

Smooth norms

Definition

Let $S \subseteq \mathbb{R}^{n}$ and $s \in \partial S$. A hyperplane $H \in \mathbb{R}^{n}$ is a supporting hyperplane of S at s if

- $s \in H$ and
- S is contained in one of the 2 closed halfspaces bounded by H

Definition

A norm is smooth if each point on its unit sphere has a unique supporting hyperplane.

$$
X-X X
$$

Smooth norms

$$
X I-X X
$$

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm

Our results:

$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm
$n \geq 2$: GVR vectors determine Voronoi cell
\#GVR vectors: not bounded by $f(n)$
yes, for strictly convex and smooth norm
\Rightarrow bijection between VR vectors and facets of Voronoi cell

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm

Our results:

$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm
$n \geq 2$: GVR vectors determine Voronoi cell
yes, for strictly convex and smooth norm
\Rightarrow bijection between VR vectors and facets of Voronoi cell
\#GVR vectors: not bounded by $f(n)$
not bounded by $f(n)$

\#VR vectors not bounded by $f(n)$

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex and smooth norms
- that depends only on the lattice dimension!

\#VR vectors not bounded by $f(n)$

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex and smooth norms
- that depends only on the lattice dimension!
$Q:$ Can $a+m b$ for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

\#VR vectors not bounded by $f(n)$

There is no upper bound for the number of Voronoi-relevant vectors

- w.r.t. general strictly convex and smooth norms
- that depends only on the lattice dimension!

Q: Can $a+m b$ for $a, b \in \Lambda$ and large $m \in \mathbb{N}$ be Voronoi-relevant?

3-norm

XIV - XX

3-norm

XIV - XX

3-norm

XIV - XX

Idea

XV - XX

Idea

Rotate lattice s.t.

> XV - XX

Idea

Rotate lattice s.t.

Construct lattice family Λ_{m}

Modify standard lattice:

XVII - XX

Construct lattice family Λ_{m}

Modify standard lattice:

XVII - XX

Construct lattice family Λ_{m}

Modify standard lattice:

XVII - XX

Construct lattice family Λ_{m}

Modify standard lattice:
I Stretch in c-direction by $5 \sqrt{2} m^{5}$

XVII - XX

Construct lattice family Λ_{m}

Modify standard lattice:
I Stretch in c-direction by $5 \sqrt{2} m^{5}$
II Rotate around
c-axis s.t. a + mb lies on yellow axis

XVII - XX

Construct lattice family Λ_{m}

Modify standard lattice:
I Stretch in c-direction by $5 \sqrt{2} m^{5}$
II Rotate around
c-axis s.t. $a+m b$ lies on yellow axis

XVII - XX

Construct lattice family Λ_{m}

Modify standard lattice:
I Stretch in c-direction by $5 \sqrt{2} m^{5}$
II Rotate around c-axis s.t. a + mb lies on yellow axis
III Rotate around yellow axis by 45°

XVII - XX

Construct lattice family Λ_{m}

Modify standard lattice:
I Stretch in c-direction by $5 \sqrt{2} m^{5}$
II Rotate around c-axis s.t. a + mb lies on yellow axis
III Rotate around yellow axis by 45°
\Longrightarrow Lattice \wedge_{m}

Construct lattice family Λ_{m}

Modify standard lattice:
I Stretch in c-direction by $5 \sqrt{2} m^{5}$
II Rotate around c-axis s.t. a + mb lies on yellow axis
III Rotate around yellow axis by 45°
\Longrightarrow Lattice \wedge_{m}

- Move x along c-direction
$\Longrightarrow a+m b \vee R$ w.r.t. 3-norm

Construct lattice family Λ_{m}

Rotate lattice s.t.

Construct lattice family Λ_{m}

XIX - XX

Construct lattice family Λ_{m}

Analogous: Theorem (Blömer, K.)
For $2 \leq k \leq \sqrt{m}, a+k b$ is Voronoi-relevant in \wedge_{m} w.r.t. 3-norm.

XIX - XX

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm

Our results:

$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm $n \geq 2$: GVR vectors determine Voronoi cell
yes, for strictly convex and smooth norm
\Rightarrow bijection between VR vectors and facets of Voronoi cell

Combinatorics
How many $v \in \Lambda$ are VR w.r.t. $\|\cdot\|$?
$\leq 2\left(2^{n}-1\right)$
\#GVR vectors: not bounded by $f(n)$
not bounded by $f(n)$

Thank you!

Geometry

Do VR vectors determine Voronoi cell?
$n \geq 1$: yes, for Euclidean norm

Our results:

$n=2$: yes, for strictly convex norm 4 or 6
\Rightarrow bijection between VR vectors and facets of Voronoi cell
no, for non-strictly convex norm $n \geq 2$: GVR vectors determine Voronoi cell
yes, for strictly convex and smooth norm
\Rightarrow bijection between VR vectors and facets of Voronoi cell

Combinatorics

 How many $\vee \in \Lambda$ are VR w.r.t. $\|\cdot\|$?$\leq 2\left(2^{n}-1\right)$

General upper bound

Proposition (Blömer, K.)

Every lattice $\Lambda \subseteq \mathbb{R}^{n}$ has at most $\left(1+4 \frac{\mu(\Lambda,\| \| \cdot \|)}{\lambda_{1}(\lambda,|\cdot| l \mid)}\right)^{n}$ generalized Voronoi-relevant vectors w.r.t. every norm.

Definition

The covering radius of \wedge w.r.t. $\|\cdot\|$ is

$$
\mu(\Lambda,\|\cdot\|):=\inf \left\{d \in \mathbb{R}_{\geq 0} \mid \forall x \in \mathbb{R}^{n} \exists v \in \Lambda:\|x-v\| \leq d\right\} .
$$

The first successive minimum of \wedge w.r.t. || $\cdot \|$ is

$$
\lambda_{1}(\Lambda,\|\cdot\|):=\inf \{\|v\| \mid v \in \Lambda, v \neq 0\} .
$$

Taxicab norm $\left|\mid \cdot \|_{1}\right.$ - Voronoi cell

Taxicab norm || • \| $\|_{1}$ - Voronoi cell

- 2 Voronoi-relevant vectors

Taxicab norm || • $\|_{1}$ - Voronoi cell

- 2 Voronoi-relevant vectors
- x not in Voronoi-cell

Taxicab norm $\left|\mid \cdot \|_{1}\right.$ - Voronoi cell

- 2 Voronoi-relevant vectors
- x not in Voronoi-cell, BUT:
- x closer to 0 than to

Voronoi-relevant vectors

Generalized Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is Voronoi-relevant (VR) w.r.t. \|| \|\| if

$$
\begin{array}{r}
\exists x \in \mathbb{R}^{n}:\|x\|=\|x-v\|, \\
\forall w \in \Lambda \backslash\{0, v\}:\|x\|<\|x-w\| .
\end{array}
$$

Generalized Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. \|| \| if

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n}:\|x\|=\|x-v\|, \\
& \forall w \in \Lambda:\|x\| \leq\|x-w\| .
\end{aligned}
$$

Generalized Voronoi-relevant vectors

Definition

$v \in \Lambda \backslash\{0\}$ is generalized Voronoi-relevant (GVR) w.r.t. || || if

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n}:\|x\|=\|x-v\|, \\
& \forall w \in \Lambda:\|x\| \leq\|x-w\| .
\end{aligned}
$$

Generalized Voronoi-relevant vectors

Theorem (Blömer, K.)

| For every lattice $\Lambda \subseteq \mathbb{R}^{n}$ and every norm $\|\cdot\|$,

$$
\mathcal{V}(\Lambda,\|\cdot\|)=\left\{x \in \mathbb{R}^{n} \mid \forall v \in \Lambda G V R:\|x\| \leq\|x-v\|\right\}
$$

Generalized Voronoi-relevant vectors

Theorem (Blömer, K.)

| For every lattice $\Lambda \subseteq \mathbb{R}^{n}$ and every norm $\|\cdot\|$,

$$
\mathcal{V}(\Lambda,\|\cdot\|)=\left\{x \in \mathbb{R}^{n} \mid \forall v \in \Lambda G V R:\|x\| \leq\|x-v\|\right\}
$$

\| $\mathcal{L}\left(\binom{1}{1},\binom{0}{m}\right)$ has at least $2 m$ GVR vectors w.r.t. Taxicab norm.

