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Motivation



Motivation 2 Dimensions General Dimensions

Lattices – 2 equivalent definitions

Definition (I)
An n-dimensional lattice is a
discrete, additive subgroup of
Rn.

Definition (II)
Let b1, . . . ,bm ∈ Rn be linearly independent. Then

L(b1, . . . ,bm) :=

{
m∑

i=1

zibi

∣∣∣∣∣ z1, . . . , zm ∈ Z

}

is a lattice with basis (b1, . . . ,bm) of rank m and dimension n.

Assume m = n.
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Motivation 2 Dimensions General Dimensions

Lattice problems
Shortest Vector Problem (SVP):
Given lattice basis (b1, . . . ,bn),
find shortest vector in
L(b1, . . . ,bn)\{0}.

Decision variant NP-hard (under
randomized reductions) [Ajtai]

Closest Vector Problem (CVP):
Given lattice basis (b1, . . . ,bn)
and x ∈ Rn, find closest vector
to x in L(b1, . . . ,bn).

Decision variant NP-complete
[Micciancio, Goldwasser]
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Motivation 2 Dimensions General Dimensions

Lattice problems
Algorithm by Micciancio and
Voulgaris:

solves both problems for
Euclidean distance
2O(n) time and space
complexity
core of algorithm:

solve CVP with additional
input: Voronoi cell

Definition
The Voronoi cell of a lattice Λ w.r.t. a norm ‖ · ‖ is

V(Λ, ‖ · ‖) :=
{

x ∈ Rn | ∀v ∈ Λ : ‖x‖ ≤ ‖x − v‖
}
.

All v ∈ Λ needed?
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Motivation 2 Dimensions General Dimensions

Voronoi-relevant vectors

Definition
v ∈ Λ\{0} is Voronoi-relevant (VR) w.r.t. ‖ · ‖ if ∃x ∈ Rn : ‖x‖ = ‖x − v‖,

∀w ∈ Λ\{0, v} : ‖x‖ < ‖x −w‖.

⇒ VR vectors determine Voronoi cell for Euclidean norm ‖ · ‖2, i.e.,
V(Λ, ‖ · ‖2) = {x ∈ Rn | ∀v ∈ Λ : ‖x‖2 ≤ ‖x − v‖2} [Agrell et al.]
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Motivation 2 Dimensions General Dimensions

Voronoi-relevant vectors
Algorithm by Micciancio and
Voulgaris:

solves SVP and CVP for Euclidean
distance
2O(n) time and space complexity
core of algorithm:

solve CVP with additional input:
Voronoi cell

at most 2(2n − 1) Voronoi-relevant vectors in n-dimensional
lattice w.r.t. Euclidean norm [Agrell et al.]

essential for above algorithm
proof uses parallelogram identity
open problem by Micciancio and Voulgaris:
extend algorithm to p-norms

=⇒ Upper bound for number of Voronoi-relevant vectors
w.r.t. arbitrary p-norms?
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Motivation 2 Dimensions General Dimensions

Geometry Combinatorics
Do VR vectors determine Voronoi cell? How many v ∈ Λ are VR

w.r.t. ‖ · ‖?

n ≥ 1: yes, for Euclidean norm ≤ 2(2n − 1)

Our results:
n = 2: yes, for strictly convex norm 4 or 6
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Motivation 2 Dimensions General Dimensions

Strict convexity

Definition
A norm is strictly convex if its unit sphere does not contain a line
segment.

‖ · ‖1 : not strictly convex ‖ · ‖2 : strictly convex
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Geometry Combinatorics
Do VR vectors determine Voronoi cell? How many v ∈ Λ are VR
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n ≥ 1: yes, for Euclidean norm ≤ 2(2n − 1)

Our results:
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⇒ bijection between VR vectors

and facets of Voronoi cell

no, for non-strictly convex norm
n ≥ 2: GVR vectors determine Voronoi #GVR vectors:

cell not bounded by f (n)

yes, for strictly convex and
smooth norm

⇒ bijection between VR vectors
and facets of Voronoi cell
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Smooth norms

Definition
Let S ⊆ Rn and s ∈ ∂S. A hyperplane H ∈ Rn is a supporting
hyperplane of S at s if

s ∈ H and
S is contained in one of the 2 closed halfspaces bounded by H

Definition
A norm is smooth if each point on its unit sphere has a unique
supporting hyperplane.
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Smooth norms

smooth not smooth

strictly convex

not strictly convex
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#VR vectors not bounded by f (n)

There is no upper bound for the number of Voronoi-relevant vectors

w.r.t. general strictly convex and smooth norms
that depends only on the lattice dimension!

Q: Can a + mb for a,b ∈ Λ and large m ∈ N be Voronoi-relevant?

m = 3
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Rotate lattice s.t.

b    

0    a    
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Construct lattice family Λm
Modify standard lattice:

I Stretch in c-direction
by 5

√
2m5

II Rotate around
c-axis s.t. a + mb lies
on yellow axis

III Rotate around
yellow axis by 45◦

=⇒ Lattice Λm

Move x along
c-direction

=⇒ a + mb VR w.r.t.
3-norm
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Construct lattice family Λm

Analogous:

Theorem (Blömer, K.)
For 2 ≤ k ≤

√
m, a + kb

is Voronoi-relevant in Λm
w.r.t. 3-norm.
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Geometry Combinatorics
Do VR vectors determine Voronoi cell? How many v ∈ Λ are VR

w.r.t. ‖ · ‖?

n ≥ 1: yes, for Euclidean norm ≤ 2(2n − 1)

Our results:
n = 2: yes, for strictly convex norm 4 or 6
⇒ bijection between VR vectors

and facets of Voronoi cell

no, for non-strictly convex norm
n ≥ 2: GVR vectors determine Voronoi #GVR vectors:

cell not bounded by f (n)

yes, for strictly convex and not bounded by f (n)

smooth norm but by
(

1 + 4 µ(Λ,‖·‖)
λ1(Λ,‖·‖)

)n

⇒ bijection between VR vectors
and facets of Voronoi cell



General upper bound

Proposition (Blömer, K.)
Every lattice Λ ⊆ Rn has at most

(
1 + 4 µ(Λ,‖·‖)

λ1(Λ,‖·‖)

)n
generalized

Voronoi-relevant vectors w.r.t. every norm.

Definition
The covering radius of Λ w.r.t. ‖ · ‖ is

µ(Λ, ‖ · ‖) := inf{d ∈ R≥0 | ∀x ∈ Rn ∃v ∈ Λ : ‖x − v‖ ≤ d}.

The first successive minimum of Λ w.r.t. ‖ · ‖ is

λ1(Λ, ‖ · ‖) := inf {‖v‖ | v ∈ Λ, v 6= 0} .
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∃x ∈ Rn :‖x‖ = ‖x − v‖,
∀w ∈ Λ :‖x‖ ≤ ‖x −w‖.



Generalized Voronoi-relevant vectors

Definition
v ∈ Λ\{0} is generalized Voronoi-relevant (GVR) w.r.t. ‖ · ‖ if

∃x ∈ Rn :‖x‖ = ‖x − v‖,
∀w ∈ Λ :‖x‖ ≤ ‖x −w‖.



Generalized Voronoi-relevant vectors

m = 3

Theorem (Blömer, K.)

I For every lattice Λ ⊆ Rn and every norm ‖ · ‖,
V(Λ, ‖ · ‖) = {x ∈ Rn | ∀v ∈ Λ GVR : ‖x‖ ≤ ‖x − v‖}.

II L
((

1
1

)
,

(
0
m

))
has at least 2m GVR vectors w.r.t. Taxicab norm.



Generalized Voronoi-relevant vectors

m = 3

Theorem (Blömer, K.)

I For every lattice Λ ⊆ Rn and every norm ‖ · ‖,
V(Λ, ‖ · ‖) = {x ∈ Rn | ∀v ∈ Λ GVR : ‖x‖ ≤ ‖x − v‖}.

II L
((

1
1

)
,

(
0
m

))
has at least 2m GVR vectors w.r.t. Taxicab norm.
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