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Global picture
Statistics Invariant theory

Given: statistical model Given: orbit G ·v = {g ·v | g ∈G}
sample data SY

Task: find maximum likelihood Task: compute capacity
estimate (MLE) = closest distance of orbit to origin

= point in model that best fits SY
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Invariant theory
Stability notions

The orbit of a vector v in a vector space V under an
action by a group G is

G .v = {g ·v | g ∈ G} ⊂ V .

v is unstable iff 0 ∈ G .v (i.e. v can be scaled to 0 in the limit)

v semistable iff 0 /∈ G .v

v polystable iff v 6= 0 and its orbit G .v is closed

v is stable iff v is polystable and its stabilizer is finite

The null cone of the action by G is the set of unstable vectors v .
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Invariant theory
Null cone membership testing

Classical and often hard question: Describe null cone
(essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

capG (v) := inf
g∈G
‖g ·v‖22.

Observation: capG (v) = 0 iff v lies in null cone

Hence: Testing null cone membership is a minimization problem.
 algorithms: [series of 3 papers in 2017 – 2019 by

Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]
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Maximum likelihood estimation
Given:

M : a statistical model = a set of probability distributions

Y = (Y1, . . . ,Yn): n samples of observed data

Goal: find a distribution in the model M that best fits the empirical data Y

Approach: maximize the likelihood function

LY (ρ) := ρ(Y1) · · ·ρ(Yn), where ρ ∈M .

A maximum likelihood estimate (MLE) is a distribution in the model M that
maximizes the likelihood LY .
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Discrete statistical models

A probability distribution on m states is determined by is probability mass
function ρ, where ρj is the probability that the j-th state occurs.

ρ is a point in the probability simplex

∆m−1 =
{
q ∈ Rm | qj ≥ 0 and ∑qj = 1

}
.

A discrete statistical model M is a subset of the simplex ∆m−1.

V - XIV



Discrete statistical models
maximum likelihood estimation

Given data is a vector of counts Y ∈ Zm
≥0,

where Yj is the number of times the j-th state occurs.

The empirical distribution is SY = 1
nY ∈∆m−1, where n = Y1 + . . .+Ym.

The likelihood function takes the form LY (ρ) = ρ
Y1
1 · · ·ρYm

m , where ρ ∈M .

An MLE is a point in model M that maximizes the likelihood LY of observing Y .
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Log-linear models
= set of distributions whose logarithms lie in a fixed linear space.

Let A ∈ Zd×m, and define

MA = {ρ ∈∆m−1 | log ρ ∈ rowspan(A)} .

We assume that 1 := (1, . . . ,1) ∈ rowspan(A) (i.e., uniform distribution in MA).

Matrix A = [a1 | a2 | . . . | am] also defines an action by the torus (C×)d on Cm:

g ∈ (C×)d acts on x ∈ Cm by left multiplication with

 ga1

. . .
gam

 , where gaj = g
a1j
1 . . .g

adj
d .

MA is the orbit of the uniform distribution in ∆m−1∩Rm
>0. VII - XIV



Example
MA = {ρ ∈∆m−1 | log ρ ∈ rowspan(A)} . A =

[
2 1 0
0 1 2

]

g ∈ (C×)2 acts on x ∈ C3 by

 ga1

ga2

ga3

=

 g2
1

g1g2
g2
2

.
MA = ((C×)2 · 1

3
1)∩∆2∩R3

>0

=

{
1
3
(
g2
1 ,g1g2,g

2
2
)
| g1,g2 > 0, g2

1 +g1g2 +g2
2 = 3

}

=
{

ρ ∈ R3
>0 | ρ2

2 = ρ1ρ3, ρ1 + ρ2 + ρ3 = 1
}

other examples: independence model,
graphical models, hierarchical models, . . .

VIII - XIV



Combining both worlds
Theorem (Améndola, Kohn, Reichenbach, Seigal)
Let A = [a1| . . . |am] ∈ Zd×m and Y ∈ Zm be a vector of counts with n = ∑Yj .

MLE given Y exists in MA ⇔ 1 ∈ Cm is polystable under the action of (C×)d

given by the matrix [na1−AY | . . . |nam−AY ]

attains its maximum ⇔ attains its minimum
How are the two optimal points related?

Theorem (cont’d)
If x ∈ Cm is a point of minimal norm in the orbit (C×)d ·1, then the MLE is

x(2)

‖x‖2
, where x (2) is the vector with j-th entry |xj |2.
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Algorithmic consequences

algorithms for finding MLE, e.g. ↔ scaling algorithms to
iterative proportional scaling (IPS) compute capacity

maximize likelihood ⇔ minimize KL divergence minimize `2-norm

model lives in ∆m−1∩Rm
>0 orbit lives in Cm
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Gaussian statistical models
The density function of an m-dimensional Gaussian with mean zero and covariance
matrix Σ ∈ Rm×m is

ρΣ(y) =
1√

det(2πΣ)
exp

(
−1
2
yTΣ−1y

)
, where y ∈ Rm.

The concentration matrix Ψ = Σ−1 is symmetric and positive definite.
A Gaussian model M is a set of concentration matrices, i.e. a subset of the cone
of m×m symmetric positive definite matrices.

Given data Y = (Y1, . . . ,Yn), the likelihood is

LY (Ψ) = ρΨ−1(Y1) · · ·ρΨ−1(Yn), where Ψ ∈M .

likelihood LY can be unbounded from above
MLE might not exist
MLE might not be unique

XI - XIV



Combining both worlds
Invariant theory classically over C – can also define Gaussian models over C

The Gaussian group model of a group G ⊂ GLm(C) is MG := {g∗g | g ∈ G} .

Theorem (Améndola, Kohn, Reichenbach, Seigal)
Let Y = (Y1, . . . ,Yn) with Yi ∈ Cm and G ⊂ GLm(C) be a group closed under
non-zero scalar multiples (i.e., g ∈G ,λ ∈ C,λ 6= 0⇒ λg ∈G ).
If G is linearly reductive,
ML estimation for MG relates to the action by G ∩SLm(C) as follows:
(a) Y unstable ⇔ LY not bounded from above
(b) Y semistable ⇔ LY bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇔ finitely many MLEs exist ⇔ unique MLE
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Combining both worlds
Real examples

Theorem (Améndola, Kohn, Reichenbach, Seigal)
Let Y = (Y1, . . . ,Yn) with Yi ∈ Rm, and let G ⊂ GLm(R) be a linearly reductive group
which is closed under non-zero scalar multiples.
ML estimation for MG relates to the action by G ∩SLm(R) as follows:
(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇒ finitely many MLEs exist ⇔ unique MLE

Examples: full Gaussian model, independence model, matrix normal model ↖
Harm Derksen, Visu Makam:
computed ML thresholds using our
dictionary! (arXiv:2007.10206)Theorem (Améndola, Kohn, Reichenbach, Seigal)

Let Y = (Y1, . . . ,Yn) with Yi ∈ Rm, and let G ⊂ GLm(R) be a group which is closed under
non-zero scalar multiples, but not necessarily linearly reductive.
ML estimation for MG relates to the action by G ∩SL±m(R) as follows:
(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇒ MLE exists

Example: Gaussian graphical models XIII - XIV



Summary

Invariant theory Statistics

historical
progression

y
describe null cone algorithms to find MLE

algorithmic null cone convergence analysis
membership testing

×
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