Invariant theory and scaling algorithms for maximum likelihood estimation

Kathlén Kohn KTH Stockholm

joint with

Carlos Améndola TU Munich

Philipp Reichenbach TU Berlin

Anna Seigal University of Oxford

September 10, 2020

Global picture Invariant theory

Statistics

Given: statistical model sample data S_Y Task: find maximum likelihood estimate (MLE) = point in model that best fits S_Y **Given**: orbit $G \cdot v = \{g \cdot v \mid g \in G\}$

Task: compute **capacity** = closest distance of orbit to origin

Invariant theory

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $\overline{G.v} = \{g \cdot v \mid g \in G\} \subset V.$

- v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)
- v semistable iff $0 \notin \overline{G.v}$
- v polystable iff $v \neq 0$ and its orbit G.v is closed
- v is stable iff v is polystable and its stabilizer is finite

The **null cone** of the action by G is the set of unstable vectors v.

Invariant theory

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants) Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

 $\operatorname{cap}_{G}(v) := \inf_{g \in G} \|g \cdot v\|_{2}^{2}.$

Observation: $cap_G(v) = 0$ iff v lies in null cone

Hence: Testing null cone membership is a minimization problem. → algorithms: [series of 3 papers in 2017 – 2019 by Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]

Maximum likelihood estimation

Given:

- *M*: a statistical **model** = a set of probability distributions
- $Y = (Y_1, \dots, Y_n)$: *n* samples of observed **data**

Goal: find a distribution in the model $\mathcal M$ that best fits the empirical data Y

Approach: maximize the likelihood function

 $L_Y(
ho) :=
ho(Y_1) \cdots
ho(Y_n), \quad ext{where }
ho \in \mathscr{M} \,.$

A maximum likelihood estimate (MLE) is a distribution in the model \mathcal{M} that maximizes the likelihood L_{Y} .

IV - XIV

Discrete statistical models

A probability distribution on *m* states is determined by is **probability mass** function ρ , where ρ_i is the probability that the *j*-th state occurs.

 ρ is a point in the **probability simplex**

$$\Delta_{m-1} = \left\{ q \in \mathbb{R}^m \mid q_j \geq 0 ext{ and } \sum q_j = 1
ight\}.$$

A discrete statistical model \mathcal{M} is a subset of the simplex Δ_{m-1} .

Discrete statistical models

maximum likelihood estimation

Given data is a vector of counts $Y \in \mathbb{Z}_{\geq 0}^m$, where Y_i is the number of times the *j*-th state occurs.

The empirical distribution is $S_Y = \frac{1}{n}Y \in \Delta_{m-1}$, where $n = Y_1 + \ldots + Y_m$.

The likelihood function takes the form $L_Y(\rho) = \rho_1^{Y_1} \cdots \rho_m^{Y_m}$, where $\rho \in \mathcal{M}$.

An **MLE** is a point in model \mathcal{M} that maximizes the likelihood L_Y of observing Y.

Log-linear models

= set of distributions whose logarithms lie in a fixed linear space. Let $A \in \mathbb{Z}^{d \times m}$, and define

 $\mathcal{M}_{A} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}.$

We assume that $1 := (1, ..., 1) \in \text{rowspan}(A)$ (i.e., uniform distribution in \mathcal{M}_A).

Matrix $A = [a_1 | a_2 | ... | a_m]$ also defines an action by the torus $(\mathbb{C}^{\times})^d$ on \mathbb{C}^m : $g \in (\mathbb{C}^{\times})^d$ acts on $x \in \mathbb{C}^m$ by left multiplication with

$$\begin{bmatrix} g^{a_1} & & \\ & \ddots & \\ & & g^{a_m} \end{bmatrix}, \quad \text{where } g^{a_j} = g_1^{a_{1j}} \dots g_d^{a_{dj}}.$$

 \mathcal{M}_A is the orbit of the uniform distribution in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$.

Example $\mathcal{M}_{A} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}. \qquad A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ $g \in (\mathbb{C}^{ imes})^2 ext{ acts on } x \in \mathbb{C}^3 ext{ by } \left| egin{array}{c} g^{a_1} \ g^{a_2} \ g^{a_2} \end{array}
ight| = \left| egin{array}{c} g_1^2 \ g_1 g_2 \ g_2^2 \end{array}
ight|.$ $\mathscr{M}_{\mathcal{A}} = ((\mathbb{C}^{ imes})^2 \cdot \frac{1}{3}\mathbb{1}) \cap \Delta_2 \cap \mathbb{R}^3_{>0}$ $=\left\{\frac{1}{3}\left(g_{1}^{2},g_{1}g_{2},g_{2}^{2}\right) \mid g_{1},g_{2}>0, \ g_{1}^{2}+g_{1}g_{2}+g_{2}^{2}=3\right\}$ 1.5 $= \{ \rho \in \mathbb{R}^3_{>0} \mid \rho_2^2 = \rho_1 \rho_3, \rho_1 + \rho_2 + \rho_3 = 1 \}$ 1.0 0.5 other examples: independence model, graphical models, hierarchical models, ... 0.5 1.0 1.5

Combining both worlds

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $A = [a_1|...|a_m] \in \mathbb{Z}^{d \times m}$ and $Y \in \mathbb{Z}^m$ be a vector of counts with $n = \sum Y_j$.

MLE given Y exists in $\mathcal{M}_A \Leftrightarrow \mathbb{1} \in \mathbb{C}^m$ is polystable under the action of $(\mathbb{C}^{\times})^d$ given by the matrix $[na_1 - AY| ... | na_m - AY]$

attains its maximum ⇔ attains its minimum How are the two optimal points related?

Theorem (cont'd) If $x \in \mathbb{C}^m$ is a point of minimal norm in the orbit $(\mathbb{C}^{\times})^d \cdot \mathbb{1}$, then the MLE is $\frac{x^{(2)}}{\|x\|^2}$, where $x^{(2)}$ is the vector with *j*-th entry $|x_j|^2$.

Algorithmic consequences

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

maximize likelihood ⇔ minimize KL divergence

model lives in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$

↔ scaling algorithms to compute capacity

minimize ℓ_2 -norm

orbit lives in \mathbb{C}^m

Gaussian statistical models

The density function of an *m*-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-rac{1}{2}y^T \Sigma^{-1} y
ight), \quad ext{where } y \in \mathbb{R}^m.$$

The concentration matrix $\Psi = \Sigma^{-1}$ is symmetric and positive definite. A **Gaussian model** \mathcal{M} is a set of concentration matrices, i.e. a subset of the cone of $m \times m$ symmetric positive definite matrices.

Given data $Y = (Y_1, \dots, Y_n)$, the likelihood is

MLE

 $\overline{L_Y}(\Psi) =
ho_{\Psi^{-1}}(Y_1) \cdots
ho_{\Psi^{-1}}(Y_n), \quad ext{ where } \Psi \in \mathscr{M}.$

likelihood L_Y can be unbounded from above MLE might not exist MLE might not be unique

XI - XIV

Combining both worlds

Invariant theory classically over \mathbb{C} – can also define Gaussian models over \mathbb{C} The **Gaussian group model** of a group $G \subset \operatorname{GL}_m(\mathbb{C})$ is $\mathcal{M}_G := \{g^*g \mid g \in G\}$.

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{C}^m$ and $G \subset \operatorname{GL}_m(\mathbb{C})$ be a group closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$). If G is linearly reductive. ML estimation for \mathcal{M}_G relates to the action by $G \cap \mathrm{SL}_m(\mathbb{C})$ as follows: Y unstable $\Leftrightarrow L_Y$ not bounded from above (a) (b) Y semistable \Leftrightarrow L_Y bounded from above (c) Y polystable \Leftrightarrow MLE exists (d) Y stable \Leftrightarrow finitely many MLEs exist \Leftrightarrow unique MLE MLE

XII - XIV

Combining both worlds

Real examples

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a linearly reductive group which is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows: (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above (c) Y polystable $\Leftrightarrow MLE$ exists (d) Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem (Améndola, Kohn, Reichenbach, Seigal) Let $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a group which is closed under non-zero scalar multiples, but not necessarily linearly reductive. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m^+(\mathbb{R})$ as follows:

Harm Derksen, Visu Makam: computed ML thresholds using our

- (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above
- (b) Y semistable \Leftrightarrow ℓ_Y bounded from above
- (c) Y polystable \Rightarrow MLE exists

Example: Gaussian graphical models

Summary

