#### Invariant theory and scaling algorithms for maximum likelihood estimation

Kathlén Kohn KTH Stockholm

#### joint with

Carlos Améndola TU Munich



Philipp Reichenbach TU Berlin



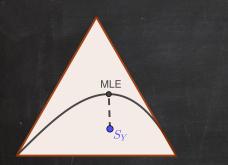
Anna Seigal University of Oxford



September 10, 2020

## Global picture Invariant theory

#### **Statistics**





Given: statistical model sample data S<sub>Y</sub> Task: find maximum likelihood estimate (MLE) = point in model that best fits S<sub>Y</sub> **Given**: orbit  $G \cdot v = \{g \cdot v \mid g \in G\}$ 

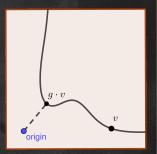
**Task:** compute **capacity** = closest distance of orbit to origin

## Invariant theory

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $\overline{G.v} = \{g \cdot v \mid g \in G\} \subset V.$ 



- v is unstable iff  $0 \in \overline{G.v}$  (i.e. v can be scaled to 0 in the limit)
- v semistable iff  $0 \notin \overline{G.v}$
- v polystable iff  $v \neq 0$  and its orbit G.v is closed
- v is stable iff v is polystable and its stabilizer is finite

The **null cone** of the action by G is the set of unstable vectors v.

## Invariant theory

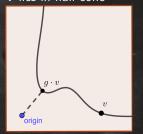
Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants) Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

 $\operatorname{cap}_{G}(v) := \inf_{g \in G} \|g \cdot v\|_{2}^{2}.$ 

**Observation:**  $cap_G(v) = 0$  iff v lies in null cone



Hence: Testing null cone membership is a minimization problem. → algorithms: [series of 3 papers in 2017 – 2019 by Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]

## Maximum likelihood estimation

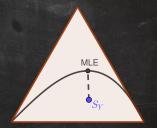
Given:

- *M*: a statistical **model** = a set of probability distributions
- $Y = (Y_1, \dots, Y_n)$ : *n* samples of observed **data**

Goal: find a distribution in the model  $\mathcal M$  that best fits the empirical data Y

Approach: maximize the likelihood function

 $L_Y(
ho) := 
ho(Y_1) \cdots 
ho(Y_n), \quad ext{where } 
ho \in \mathscr{M} \,.$ 



A maximum likelihood estimate (MLE) is a distribution in the model  $\mathcal{M}$  that maximizes the likelihood  $L_{Y}$ .

IV - XIV

## Discrete statistical models

A probability distribution on *m* states is determined by is **probability mass** function  $\rho$ , where  $\rho_i$  is the probability that the *j*-th state occurs.

 $\rho$  is a point in the **probability simplex** 

$$\Delta_{m-1} = \left\{ q \in \mathbb{R}^m \mid q_j \geq 0 ext{ and } \sum q_j = 1 
ight\}.$$

A discrete statistical model  $\mathcal{M}$  is a subset of the simplex  $\Delta_{m-1}$ .



## Discrete statistical models

maximum likelihood estimation

Given data is a vector of counts  $Y \in \mathbb{Z}_{\geq 0}^m$ , where  $Y_i$  is the number of times the *j*-th state occurs.

The empirical distribution is  $S_Y = \frac{1}{n}Y \in \Delta_{m-1}$ , where  $n = Y_1 + \ldots + Y_m$ .

The likelihood function takes the form  $L_Y(\rho) = \rho_1^{Y_1} \cdots \rho_m^{Y_m}$ , where  $\rho \in \mathcal{M}$ .

An **MLE** is a point in model  $\mathcal{M}$  that maximizes the likelihood  $L_Y$  of observing Y.



#### Log-linear models

= set of distributions whose logarithms lie in a fixed linear space. Let  $A \in \mathbb{Z}^{d \times m}$ , and define

 $\mathcal{M}_{A} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}.$ 

We assume that  $1 := (1, ..., 1) \in \text{rowspan}(A)$  (i.e., uniform distribution in  $\mathcal{M}_A$ ).

Matrix  $A = [a_1 | a_2 | ... | a_m]$  also defines an action by the torus  $(\mathbb{C}^{\times})^d$  on  $\mathbb{C}^m$ :  $g \in (\mathbb{C}^{\times})^d$  acts on  $x \in \mathbb{C}^m$  by left multiplication with

$$\begin{bmatrix} g^{a_1} & & \\ & \ddots & \\ & & g^{a_m} \end{bmatrix}, \quad \text{where } g^{a_j} = g_1^{a_{1j}} \dots g_d^{a_{dj}}.$$

 $\mathcal{M}_A$  is the orbit of the uniform distribution in  $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$ .

Example  $\mathcal{M}_{A} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}. \qquad A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$  $g \in (\mathbb{C}^{ imes})^2 ext{ acts on } x \in \mathbb{C}^3 ext{ by } \left| egin{array}{c} g^{a_1} \ g^{a_2} \ g^{a_2} \end{array} 
ight| = \left| egin{array}{c} g_1^2 \ g_1 g_2 \ g_2^2 \end{array} 
ight|.$  $\mathscr{M}_{\mathcal{A}} = ((\mathbb{C}^{ imes})^2 \cdot \frac{1}{3}\mathbb{1}) \cap \Delta_2 \cap \mathbb{R}^3_{>0}$  $=\left\{\frac{1}{3}\left(g_{1}^{2},g_{1}g_{2},g_{2}^{2}\right) \mid g_{1},g_{2}>0, \ g_{1}^{2}+g_{1}g_{2}+g_{2}^{2}=3\right\}$ 1.5  $= \{ \rho \in \mathbb{R}^3_{>0} \mid \rho_2^2 = \rho_1 \rho_3, \rho_1 + \rho_2 + \rho_3 = 1 \}$ 1.0 0.5 other examples: independence model, graphical models, hierarchical models, ... 0.5 1.0 1.5

## Combining both worlds

**Theorem** (Améndola, Kohn, Reichenbach, Seigal) Let  $A = [a_1|...|a_m] \in \mathbb{Z}^{d \times m}$  and  $Y \in \mathbb{Z}^m$  be a vector of counts with  $n = \sum Y_j$ .

MLE given Y exists in  $\mathcal{M}_A \Leftrightarrow \mathbb{1} \in \mathbb{C}^m$  is polystable under the action of  $(\mathbb{C}^{\times})^d$ given by the matrix  $[na_1 - AY| ... | na_m - AY]$ 





attains its maximum ⇔ attains its minimum How are the two optimal points related?

Theorem (cont'd) If  $x \in \mathbb{C}^m$  is a point of minimal norm in the orbit  $(\mathbb{C}^{\times})^d \cdot \mathbb{1}$ , then the MLE is  $\frac{x^{(2)}}{\|x\|^2}$ , where  $x^{(2)}$  is the vector with *j*-th entry  $|x_j|^2$ .

## Algorithmic consequences



algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

maximize likelihood ⇔ minimize KL divergence

model lives in  $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$ 



↔ scaling algorithms to compute capacity

minimize  $\ell_2$ -norm

orbit lives in  $\mathbb{C}^m$ 

## Gaussian statistical models

The density function of an *m*-dimensional Gaussian with mean zero and covariance matrix  $\Sigma \in \mathbb{R}^{m \times m}$  is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-rac{1}{2}y^T \Sigma^{-1} y
ight), \quad ext{where } y \in \mathbb{R}^m.$$

The concentration matrix  $\Psi = \Sigma^{-1}$  is symmetric and positive definite. A **Gaussian model**  $\mathcal{M}$  is a set of concentration matrices, i.e. a subset of the cone of  $m \times m$  symmetric positive definite matrices.

Given data  $Y = (Y_1, \dots, Y_n)$ , the likelihood is

MLE

 $\overline{L_Y}(\Psi) = 
ho_{\Psi^{-1}}(Y_1) \cdots 
ho_{\Psi^{-1}}(Y_n), \quad ext{ where } \Psi \in \mathscr{M}.$ 

likelihood  $L_Y$  can be unbounded from above MLE might not exist MLE might not be unique

XI - XIV

## Combining both worlds

Invariant theory classically over  $\mathbb{C}$  – can also define Gaussian models over  $\mathbb{C}$ The **Gaussian group model** of a group  $G \subset \operatorname{GL}_m(\mathbb{C})$  is  $\mathcal{M}_G := \{g^*g \mid g \in G\}$ .

**Theorem** (Améndola, Kohn, Reichenbach, Seigal) Let  $Y = (Y_1, \ldots, Y_n)$  with  $Y_i \in \mathbb{C}^m$  and  $G \subset \operatorname{GL}_m(\mathbb{C})$  be a group closed under non-zero scalar multiples (i.e.,  $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$ ). If G is linearly reductive. ML estimation for  $\mathcal{M}_G$  relates to the action by  $G \cap \mathrm{SL}_m(\mathbb{C})$  as follows: Y unstable  $\Leftrightarrow L_Y$  not bounded from above (a) (b) Y semistable  $\Leftrightarrow$   $L_Y$  bounded from above (c) Y polystable  $\Leftrightarrow$ MLE exists (d) Y stable  $\Leftrightarrow$  finitely many MLEs exist  $\Leftrightarrow$ unique MLE MLE

XII - XIV

## Combining both worlds

#### Real examples

**Theorem** (Améndola, Kohn, Reichenbach, Seigal) Let  $Y = (Y_1, ..., Y_n)$  with  $Y_i \in \mathbb{R}^m$ , and let  $G \subset GL_m(\mathbb{R})$  be a linearly reductive group which is closed under non-zero scalar multiples. ML estimation for  $\mathcal{M}_G$  relates to the action by  $G \cap SL_m(\mathbb{R})$  as follows: (a) Y unstable  $\Leftrightarrow \ell_Y$  not bounded from above (b) Y semistable  $\Leftrightarrow \ell_Y$  bounded from above (c) Y polystable  $\Leftrightarrow MLE$  exists (d) Y stable  $\Rightarrow$  finitely many MLEs exist  $\Leftrightarrow$  unique MLE

Examples: full Gaussian model, independence model, matrix normal model

**Theorem** (Améndola, Kohn, Reichenbach, Seigal) Let  $Y = (Y_1, ..., Y_n)$  with  $Y_i \in \mathbb{R}^m$ , and let  $G \subset GL_m(\mathbb{R})$  be a group which is closed under non-zero scalar multiples, but not necessarily linearly reductive. ML estimation for  $\mathcal{M}_G$  relates to the action by  $G \cap SL_m^+(\mathbb{R})$  as follows:

Harm Derksen, Visu Makam: computed ML thresholds using our

- (a) Y unstable  $\Leftrightarrow \ell_Y$  not bounded from above
- (b) Y semistable  $\Leftrightarrow$   $\ell_Y$  bounded from above
- (c) Y polystable  $\Rightarrow$  MLE exists

Example: Gaussian graphical models

# Summary

