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A neural network is defined by a continuous mapping ® : R% x R% — R%

Definition Mo = {CD(W7 J:R* S RY | w e Rdw} C C(R%,R%)

is called the neuromanifold of .

Observation 1. ® piecewise smooth = Mg manifold with singularities

2. dim Mg < d,
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Linear Networks

A linear network is defined by a map ® : R% x R% — R% of the form

d)(WaX) = W/—,Wh,:[ o W]_X7
where w = (Wh, .., W1) and W; € R%*91,

(SO dy = dpdp_1 + ...+ didp, dy = dy and dy = dh)
Example The neuromanifold of the linear network & is

N {M € R%X% | tk(M) < min{d, dy, ..., d,,}} i

= 6
1. If r = min{do, dp}, then Mg = R, “filling architecture”

2. If r < min{dp, dp}, “non-filling architecture”
then Mg is a determinantal variety.
Note: Mg is neither convex nor smooth  (Sing Mo = {M | k(M) < r —1})
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A loss function on a linear network is of the form

L RF¥d—t x5 SO, [ R0 LR
(Wh,...,W1)+—> Wh~--W1

Recall: Mo = {M € R%*% | tk(M) < r}, where r := min{do, d1,. .., ds}.

Theorem Let M € My.
1. If tk(M) = r, then u~1(M) has 2° path-connected components

where b:=#{i |0<i< h,di=r}.

2. If k(M) < r, then u~%(M) is path-connected.



Loss Landscapes
A loss function on a neural network ® : R% x R% — R% js of the form
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where £ is a functional defined on a subset of C(R%, R%) containing M.

Visualizations
of L

Source: Li, Hao, et al. “Visualizing the loss landscape of neural nets.”
Advances in Neural Information Processing Systems. 2018.

Observation If ¢ € Crit(¢| ), then u=t(p) C Crit(L). Vit X1 ‘
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Pure & Spurious Critical Points
A loss function on a neural network ® : R% x R% — R% js of the form

4
[ Rwveel S0 A4 LR,

wi—— d(w,)

where £ is a functional defined on a subset of C(R%,R%) containing M.

dﬂ . ., .
= Definition

w* € Crit(L) is called pure if
p(w*) € Crit(£4|am,) and
p(w*) ¢ Sing M.

Otherwise w* € Crit(L) is
called spurious.

spurious 6~

Proposition If the differential Dy p at w* € Crit(L) has maximal rank
(i.e., rk(Dw=p) = dim Mg), then w* is pure, and
w* is a minimum for L i) p(w*) is a minimum for ¢|

(resp. saddle/maximum) (resp. saddle/maximum)
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A loss function on a linear network is of the form
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Recall: Mg = {M € R%*% | k(M) < r}, where r := min {do, dy, ..., ds}.

Proposition Let w = (W, ..., W;).
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b) L has non-global minima < ¢| ¢, has non-global minima.

Corollary [Laurent & von Brecht '17]
If £ is smooth convex and r = min{dp, dx} (filling architecture),
then all local minima for L are global.

Corollary [Baldi & Hornik '89, Kawaguchi '16]
If £ is a quadratic loss, then all local minima for L are global.
(even in the non-filling case!)
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The Quadratic Loss

Fixed data matrices X € R%*5 and Y € R%** define a quadratic loss

Ix,y i R0 R,

Mi—s || MX—al
Observation If XX =14 (“whitened data”), then

Ix y(M) = |M — YXT||Z + const.

Minimizing £x y on the determinantal variety Mo = {M | k(M) < r} is
equivalent to minimizing the Euclidean distance of YXT to M.
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EY Theorem
Let @ € C™*" be of full rank with pairwise distinct singular values.
. 2 i 5 .. -
ik \min |M — Q||% has (m'"{rm "}) complex critical points.

= ED degree 6(M,) = (min{m,n})

r
2. If @ € R™*" all critical points are real.

= ED discriminant has codimension 2 over R
In fact: ED discriminant = { matrices with > 2 coinciding singular values }
3. min |[M — Q||% has unique local minimum
MeM,

Corollary [Baldi & Hornik '89, Kawaguchi '16]
If £ is a quadratic loss, then all local minima for the loss L = £ oy on a
linear network are global. (even in the non-filling case!)
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Linear Networks Can Have Bad Local Minima
Let Z C CN be an algebraic variety.

There is a constant 62" € Z~¢ such that for almost all
linear coordinate changes f : CN — CV the ED degree of f(Z) is 68",

08" is called the generic ED degree of Z.

d(ellipse) = 4 d(circle) = 2

08" (circle)
= 0(ellipse)
=

Equivalently: 68" is the ED degree of Z
under the perturbed Euclidean distance ||f(-)]]2.
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For r =1,

_ iy : &)
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& pure & spurious critical points

VS. bad minima

¢ for linear networks with smooth convex losses:

quadratic loss

filling

no bad min.

non-filling

special embedding of

determinantal varieties

no bad min.

other loss —
- convex optimization
= on vector space
bad min.

o future extensions to

© networks with polynomial activation functions or
o ReLU networks (using semi-algebraic sets)



