The geometry of neural networks

Kathlén Kohn

KTH Stockholm

joint with Matthew Trager and Joan Bruna (both at Center for Data Science and Courant Institute at NYU)

Neural Networks

Neural Networks

 \rightarrow

| - XIII

A neural network is defined by a continuous mapping $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$.

A neural network is defined by a continuous mapping $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$. **Definition** $\mathcal{M}_{\Phi} := \left\{ \Phi(w, \cdot) : \mathbb{R}^{d_x} \to \mathbb{R}^{d_y} \mid w \in \mathbb{R}^{d_w} \right\}$ is called the **neuromanifold** of Φ .

A neural network is defined by a continuous mapping $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$. **Definition** $\mathcal{M}_{\Phi} := \left\{ \Phi(w, \cdot) : \mathbb{R}^{d_x} \to \mathbb{R}^{d_y} \mid w \in \mathbb{R}^{d_w} \right\}$ is called the **neuromanifold** of Φ .

Observation 1. Φ piecewise smooth $\Rightarrow \mathcal{M}_{\Phi}$ manifold with singularities

A neural network is defined by a continuous mapping $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$. **Definition** $\mathcal{M}_{\Phi} := \left\{ \Phi(w, \cdot) : \mathbb{R}^{d_x} \to \mathbb{R}^{d_y} \mid w \in \mathbb{R}^{d_w} \right\} \subset C(\mathbb{R}^{d_x}, \mathbb{R}^{d_y})$ is called the **neuromanifold** of Φ . **Observation** 1. Φ piecewise smooth $\Rightarrow \mathcal{M}_{\Phi}$ manifold with singularities

2. dim $\mathcal{M}_{\Phi} \leq d_w$

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w, x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}}$,

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w, x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h \overline{d_{h-1} + \ldots + d_1 d_0}$, $d_x = d_0$ and $d_y = d_h$).

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h \overline{d_{h-1} + \ldots + d_1 d_0}$, $d_x = d_0$ and $d_y = d_h$).

Example The neuromanifold of the linear network Φ is

 $\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq \min\{d_0, d_1, \dots, d_h\} \right\}.$

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h \overline{d_{h-1} + \ldots + d_1 d_0}$, $d_x = d_0$ and $d_y = d_h$).

Example The neuromanifold of the linear network Φ is

$$\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq \underbrace{\min\{d_0, d_1, \dots, d_h\}}_{=:r} \right\}$$

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

$$\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$$

where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}}$

$$(so d_w = d_h d_{h-1} + \ldots + d_1 d_0, d_x = d_0 and d_y = d_h).$$

Example The neuromanifold of the linear network Φ is

$$\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq \underbrace{\min\{d_0, d_1, \dots, d_h\}}_{=:r} \right\}$$

1. If $r = \min\{d_0, d_h\}$, then $\mathcal{M}_{\Phi} = \mathbb{R}^{d_h \times d_0}$.

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h \overline{d_{h-1} + \ldots + d_1 d_0}$, $d_x = d_0$ and $d_y = d_h$).

Example The neuromanifold of the linear network Φ is

$$\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq \underbrace{\min\{d_0, d_1, \dots, d_h\}}_{=:r} \right\}.$$

1. If $r = \min\{\overline{d}_0, \overline{d}_h\}$, then $\mathcal{M}_{\Phi} = \mathbb{R}^{d_h \times d_0}$.

"filling architecture"

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h d_{h-1} + \ldots + d_1 d_0$, $d_x = d_0$ and $d_y = d_h$).

Example The neuromanifold of the linear network Φ is

$$\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq \underbrace{\min\{d_0, d_1, \ldots, d_h\}}_{\longleftarrow} \right\}.$$

1. If $r = \min\{d_0, d_h\}$, then $\mathcal{M}_{\Phi} = \mathbb{R}^{d_h \times d_0}$."filling architecture"2. If $r < \min\{d_0, d_h\}$,"non-filling architecture"

=:ľ

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h d_{h-1} + \ldots + d_1 d_0$, $d_x = d_0$ and $d_y = d_h$).

Example The neuromanifold of the linear network Φ is

 $\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq \min\{d_0, d_1, \dots, d_h\} \right\}.$

= r

 If r = min{d₀, d_h}, then M_Φ = ℝ<sup>d_h×d₀. "filling architecture"
 If r < min{d₀, d_h}, "non-filling architecture" then M_Φ is a determinantal variety.
</sup>

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h \overline{d_{h-1} + \ldots + d_1 d_0}$, $d_x = d_0$ and $d_y = d_h$).

Example The neuromanifold of the linear network Φ is

 $\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h imes d_0} \mid \operatorname{rk}(M) \leq \min\{d_0, d_1, \dots, d_h\}
ight\}.$

 If r = min{d₀, d_h}, then M_Φ = ℝ<sup>d_h×d₀.
 If r < min{d₀, d_h}, then M_Φ is a determinantal variety. Note: M_Φ is neither convex nor smooth
</sup> "filling architecture" "non-filling architecture"

= r

A linear network is defined by a map $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

 $\Phi(w,x) = W_h W_{h-1} \dots W_1 x,$ where $w = (W_h, \dots, W_1)$ and $W_i \in \mathbb{R}^{d_i imes d_{i-1}},$

(so $d_w = d_h d_{h-1} + \ldots + d_1 d_0$, $d_x = d_0$ and $d_y = d_h$).

Example The neuromanifold of the linear network Φ is

$$\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq \min\{d_0, d_1, \dots, d_h\} \right\}.$$

= r

I - XIII

 If r = min{d₀, d_h}, then M_Φ = ℝ<sup>d_h×d₀. "filling architecture"
 If r < min{d₀, d_h}, "non-filling architecture" then M_Φ is a determinantal variety. Note: M_Φ is neither convex nor smooth (Sing M_Φ = {M | rk(M) ≤ r − 1})
</sup>

A loss function on a neural network $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ is of the form $L : \mathbb{R}^{d_w} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\ell|_{\mathcal{M}_{\Phi}}} \mathbb{R},$ $w \longmapsto \Phi(w, \cdot)$

A loss function on a neural network $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ is of the form $L : \mathbb{R}^{d_w} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\ell|_{\mathcal{M}_{\Phi}}} \mathbb{R},$ $w \longmapsto \Phi(w, \cdot)$

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$ containing $\mathcal{M}_{\Phi}.$

A loss function on a neural network $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ is of the form $L : \mathbb{R}^{d_w} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\ell|_{\mathcal{M}_{\Phi}}} \mathbb{R},$ $w \longmapsto \Phi(w, \cdot)$

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$ containing $\mathcal{M}_{\Phi}.$

Source: Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in Neural Information Processing Systems. 2018.

III - XIII

A loss function on a neural network $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ is of the form $L : \mathbb{R}^{d_w} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\ell|_{\mathcal{M}_{\Phi}}} \mathbb{R},$ $w \longmapsto \Phi(w, \cdot)$

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$ containing \mathcal{M}_{Φ} .

Source: Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in Neural Information Processing Systems. 2018.

Observation If $\varphi \in \operatorname{Crit}(\ell|_{\mathcal{M}_{\Phi}})$, then $\mu^{-1}(\varphi) \subset \operatorname{Crit}(L)$.

A loss function on a linear network is of the form

$$L: \mathbb{R}^{d_h \times d_{h-1}} \times \ldots \times \mathbb{R}^{d_1 \times d_0} \xrightarrow{\mu} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h \times d_0} \xrightarrow{\ell} \mathbb{R},$$
$$(W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$$

 $\mathsf{Recall:} \ \mathcal{M}_{\Phi} = \big\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq r \big\}, \ \mathsf{where} \ r := \mathsf{min} \ \{d_0, d_1, \ldots, d_h\}.$

A loss function on a linear network is of the form

$$L: \mathbb{R}^{d_h imes d_{h-1}} imes \dots imes \mathbb{R}^{d_1 imes d_0} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \stackrel{\ell}{\longrightarrow} \mathbb{R}, \ (W_h, \dots, W_1) \longmapsto W_h \cdots W_1$$

Recall: $\mathcal{M}_{\Phi} = \{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq r \}$, where $r := \min \{ d_0, d_1, \dots, d_h \}$.

Theorem Let $M \in \mathcal{M}_{\Phi}$. 1. If rk(M) = r, then $\mu^{-1}(M)$ has 2^b path-connected components

where $b := \# \{i \mid 0 < i < h, d_i = r\}$.

IV - XIII

A loss function on a linear network is of the form

$$L: \mathbb{R}^{d_h imes d_{h-1}} imes \dots imes \mathbb{R}^{d_1 imes d_0} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \stackrel{\ell}{\longrightarrow} \mathbb{R}, \ (W_h, \dots, W_1) \longmapsto W_h \cdots W_1$$

Recall: $\mathcal{M}_{\Phi} = \{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq r \}$, where $r := \min \{ d_0, d_1, \dots, d_h \}$.

Theorem Let $M \in \mathcal{M}_{\Phi}$. 1. If $\operatorname{rk}(M) = r$, then $\mu^{-1}(M)$ has 2^b path-connected components

where $b := \# \{i \mid 0 < i < h, d_i = r\}$.

2. If rk(M) < r, then $\mu^{-1}(M)$ is path-connected.

IV - XIII

A loss function on a neural network $\Phi : \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ is of the form $L : \mathbb{R}^{d_w} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\ell|_{\mathcal{M}_{\Phi}}} \mathbb{R},$ $w \longmapsto \Phi(w, \cdot)$

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$ containing \mathcal{M}_{Φ} .

Source: Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in Neural Information Processing Systems. 2018.

Observation If $\varphi \in \operatorname{Crit}(\ell|_{\mathcal{M}_{\Phi}})$, then $\mu^{-1}(\varphi) \subset \operatorname{Crit}(L)$.

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_x}, \mathbb{R}^{d_y})$ containing \mathcal{M}_{Φ} .

Definition $w^* \in \operatorname{Crit}(L)$ is called **pure** if $\mu(w^*) \in \operatorname{Crit}(\ell|_{\mathcal{M}_{\Phi}})$ and $\mu(w^*) \notin \operatorname{Sing} \mathcal{M}_{\Phi}.$

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_{\chi}}, \mathbb{R}^{d_{y}})$ containing \mathcal{M}_{Φ} .

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_{\chi}}, \mathbb{R}^{d_{y}})$ containing \mathcal{M}_{Φ} .

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_{\chi}}, \mathbb{R}^{d_{y}})$ containing \mathcal{M}_{Φ} .

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_{\chi}}, \mathbb{R}^{d_{y}})$ containing \mathcal{M}_{Φ} .

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_x}, \mathbb{R}^{d_y})$ containing \mathcal{M}_{Φ} .

Definition $w^* \in \operatorname{Crit}(L)$ is called **pure** if $\mu(w^*) \in \operatorname{Crit}(\ell|_{\mathcal{M}_{\Phi}})$ and $\mu(w^*) \notin \operatorname{Sing} \mathcal{M}_{\Phi}.$ Otherwise $w^* \in \operatorname{Crit}(L)$ is called **spurious**.

Proposition If the differential $D_{w^*}\mu$ at $w^* \in \operatorname{Crit}(L)$ has maximal rank (i.e., $\operatorname{rk}(D_{w^*}\mu) = \dim \mathcal{M}_{\Phi}$), then w^* is pure,

where ℓ is a functional defined on a subset of $C(\mathbb{R}^{d_x}, \mathbb{R}^{d_y})$ containing \mathcal{M}_{Φ} .

Definition $w^* \in \operatorname{Crit}(L)$ is called **pure** if $\mu(w^*) \in \operatorname{Crit}(\ell|_{\mathcal{M}_{\Phi}})$ and $\mu(w^*) \notin \operatorname{Sing} \mathcal{M}_{\Phi}.$ Otherwise $w^* \in \operatorname{Crit}(L)$ is called **spurious**.

Proposition If the differential $D_{w^*}\mu$ at $w^* \in \operatorname{Crit}(L)$ has maximal rank (i.e., $\operatorname{rk}(D_{w^*}\mu) = \dim \mathcal{M}_{\Phi}$), then w^* is pure, and w^* is a minimum for $L \Leftrightarrow \mu(w^*)$ is a minimum for $\ell|_{\mathcal{M}_{\Phi}}$ (resp. saddle/maximum) (resp. saddle/maximum)/
A loss function on a linear network is of the form

 $L: \mathbb{R}^{d_h \times d_{h-1}} \times \ldots \times \mathbb{R}^{d_1 \times d_0} \xrightarrow{\mu} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h \times d_0} \xrightarrow{\ell} \mathbb{R},$ $(W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$

Recall: $\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq r \right\}$, where $r := \min \left\{ d_0, d_1, \ldots, d_h \right\}$.

Proposition Let $w = (W_h, \ldots, W_1)$.

A loss function on a linear network is of the form

 $L: \mathbb{R}^{d_h imes d_{h-1}} imes \ldots imes \mathbb{R}^{d_1 imes d_0} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \stackrel{\ell}{\longrightarrow} \mathbb{R}, \ (W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$

Recall: $\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq r \right\}$, where $r := \min \left\{ d_0, d_1, \ldots, d_h \right\}$.

Proposition Let $w = (W_h, ..., W_1)$. 1. If $rk(\mu(w)) = r$, then $D_w \mu$ has maximal rank.

A loss function on a linear network is of the form

 $L: \mathbb{R}^{d_h imes d_{h-1}} imes \ldots imes \mathbb{R}^{d_1 imes d_0} \xrightarrow{\mu} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \xrightarrow{\ell} \mathbb{R},$ $(W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$

 $\mathsf{Recall}: \ \mathcal{M}_\Phi = \big\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq r \big\}, \ \mathsf{where} \ r := \min{\{d_0, d_1, \ldots, d_h\}}.$

Proposition Let w = (W_h,..., W₁). 1. If rk(μ(w)) = r, then D_wμ has maximal rank. 2. Let ℓ be smooth and convex. a) If w is a non-global local minimum for L, then rk(μ(w)) = r.

A loss function on a linear network is of the form

 $L: \mathbb{R}^{d_h imes d_{h-1}} imes \ldots imes \mathbb{R}^{d_1 imes d_0} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \stackrel{\ell}{\longrightarrow} \mathbb{R}, \ (W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$

 $\mathsf{Recall}: \ \mathcal{M}_\Phi = \big\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq r \big\}, \ \mathsf{where} \ r := \min{\{d_0, d_1, \ldots, d_h\}}.$

Proposition Let $w = (W_h, \ldots, W_1)$.

1. If $rk(\mu(w)) = r$, then $D_w \mu$ has maximal rank.

2. Let ℓ be smooth and convex.

a) If w is a non-global local minimum for L, then $rk(\mu(w)) = r$.

b) L has non-global minima $\Leftrightarrow \ell|_{\mathcal{M}_{\Phi}}$ has non-global minima.

A loss function on a linear network is of the form

 $L: \mathbb{R}^{d_h imes d_{h-1}} imes \ldots imes \mathbb{R}^{d_1 imes d_0} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \stackrel{\ell}{\longrightarrow} \mathbb{R}, \ (W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$

 $\mathsf{Recall}: \ \mathcal{M}_\Phi = \big\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq r \big\}, \ \mathsf{where} \ r := \min{\{d_0, d_1, \ldots, d_h\}}.$

Proposition Let $w = (W_h, \ldots, W_1)$.

- 1. If $rk(\mu(w)) = r$, then $D_w\mu$ has maximal rank.
- **2**. Let ℓ be smooth and convex.
 - a) If w is a non-global local minimum for L, then $rk(\mu(w)) = r$.
 - b) L has non-global minima $\Leftrightarrow \ell|_{\mathcal{M}_{\Phi}}$ has non-global minima.

Corollary [Laurent & von Brecht '17] If ℓ is smooth convex and $r = \min\{d_0, d_h\}$ (filling architecture), then all local minima for *L* are global.

VII - XIII

A loss function on a linear network is of the form

 $L: \mathbb{R}^{d_h imes d_{h-1}} imes \ldots imes \mathbb{R}^{d_1 imes d_0} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \stackrel{\ell}{\longrightarrow} \mathbb{R}, \ (W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$

 $\mathsf{Recall}: \ \mathcal{M}_\Phi = \big\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq r \big\}, \ \mathsf{where} \ r := \min{\{d_0, d_1, \ldots, d_h\}}.$

Proposition Let $w = (W_h, \ldots, W_1)$.

- 1. If $rk(\mu(w)) = r$, then $D_w\mu$ has maximal rank.
- **2**. Let ℓ be smooth and convex.
 - a) If w is a non-global local minimum for L, then $rk(\mu(w)) = r$.
 - b) L has non-global minima $\Leftrightarrow \ell|_{\mathcal{M}_{\Phi}}$ has non-global minima.

Corollary [Laurent & von Brecht '17] If ℓ is smooth convex and $r = \min\{d_0, d_h\}$ (filling architecture), then all local minima for *L* are global.

Corollary [Baldi & Hornik '89, Kawaguchi '16] If ℓ is a quadratic loss, then all local minima for *L* are global.

A loss function on a linear network is of the form

 $L: \mathbb{R}^{d_h imes d_{h-1}} imes \ldots imes \mathbb{R}^{d_1 imes d_0} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h imes d_0} \stackrel{\ell}{\longrightarrow} \mathbb{R}, \ (W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$

 $\mathsf{Recall}: \ \mathcal{M}_\Phi = \big\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq r \big\}, \ \mathsf{where} \ r := \min{\{d_0, d_1, \ldots, d_h\}}.$

Proposition Let $w = (W_h, \ldots, W_1)$.

- 1. If $rk(\mu(w)) = r$, then $D_w\mu$ has maximal rank.
- **2**. Let ℓ be smooth and convex.
 - a) If w is a non-global local minimum for L, then $rk(\mu(w)) = r$.
 - b) L has non-global minima $\Leftrightarrow \ell|_{\mathcal{M}_{\Phi}}$ has non-global minima.

Corollary [Laurent & von Brecht '17] If ℓ is smooth convex and $r = \min\{d_0, d_h\}$ (filling architecture), then all local minima for *L* are global.

Corollary [Baldi & Hornik '89, Kawaguchi '16] If ℓ is a quadratic loss, then all local minima for *L* are global. (even in the non-filling case!)

The Quadratic Loss

Fixed data matrices $X \in \mathbb{R}^{d_0 \times s}$ and $Y \in \mathbb{R}^{d_h \times s}$ define a quadratic loss

$$\ell_{X,Y}: \mathbb{R}^{d_h imes d_0} \longrightarrow \mathbb{R}, \ M \longmapsto \|MX - Y\|_F^2$$

The Quadratic Loss

Fixed data matrices $X \in \mathbb{R}^{d_0 \times s}$ and $Y \in \mathbb{R}^{d_h \times s}$ define a quadratic loss

$$\ell_{X,Y}: \mathbb{R}^{d_h imes d_0} \longrightarrow \mathbb{R}, \ M \longmapsto \|MX - Y\|_F^2$$

Observation If $XX^{T} = I_{d_0}$ ("whitened data"), then

 $\ell_{X,Y}(M) = \|M - YX^{T}\|_{F}^{2} + \text{const.}$

The Quadratic Loss

Fixed data matrices $X \in \mathbb{R}^{d_0 \times s}$ and $Y \in \mathbb{R}^{d_h \times s}$ define a quadratic loss

$$\ell_{X,Y}: \mathbb{R}^{d_h imes d_0} \longrightarrow \mathbb{R}, \ M \longmapsto \|MX - Y\|_F^2$$

Observation If $XX^T = I_{d_0}$ ("whitened data"), then $\ell_{X,Y}(M) = ||M - YX^T||_F^2 + \text{const.}$

Minimizing $\ell_{X,Y}$ on the determinantal variety $\mathcal{M}_{\Phi} = \{M \mid \mathrm{rk}(M) \leq r\}$ is equivalent to minimizing the Euclidean distance of YX^{T} to \mathcal{M}_{Φ} .

VIII - XIII

Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety (i.e., the common zero locus of some set of polynomials).

Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety

(i.e., the common zero locus of some set of polynomials).

There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{C}^N$ the minimization problem $\min_{z \in \mathcal{Z}} ||z - q||_2^2$ has δ complex critical points.

Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety

(i.e., the common zero locus of some set of polynomials).

There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{C}^N$ the minimization problem $\min_{z \in \mathcal{Z}} ||z - q||_2^2$ has δ complex critical points. δ is called the **ED degree** of \mathcal{Z} .

Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety

(i.e., the common zero locus of some set of polynomials).

There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{C}^N$ the minimization problem $\min_{z \in \mathcal{Z}} ||z - q||_2^2$ has δ complex critical points. δ is called the **ED degree** of \mathcal{Z} .

Euclidean Distance to Varieties Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety (i.e., the common zero locus of some set of polynomials). There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{C}^N$ the minimization problem $\min_{z \in \mathcal{Z}} ||z - q||_2^2$ has δ complex critical points. δ is called the ED degree of \mathcal{Z} .

- Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety
- (i.e., the common zero locus of some set of polynomials).
- There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{C}^N$ the minimization problem $\min_{z \in \mathcal{Z}} ||z q||_2^2$ has δ complex critical points. δ is called the **ED degree** of \mathcal{Z} .
- The other $q \in \mathbb{C}^N$ form a complex hypersurface, called **ED** discriminant of \mathcal{Z} .

- Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety
- (i.e., the common zero locus of some set of polynomials).
- There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{C}^N$ the minimization problem $\min_{z \in \mathcal{Z}} ||z q||_2^2$ has δ complex critical points. δ is called the **ED degree** of \mathcal{Z} .
- The other $q \in \mathbb{C}^N$ form a complex hypersurface, called **ED** discriminant of \mathcal{Z} .

- Let $\mathcal{Z} \subset \mathbb{C}^N$ be an algebraic variety
- (i.e., the common zero locus of some set of polynomials).
- There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{C}^N$ the minimization problem $\min_{z \in \mathcal{Z}} ||z q||_2^2$ has δ complex critical points. δ is called the **ED degree** of \mathcal{Z} .
- The other $q \in \mathbb{C}^N$ form a complex hypersurface, called **ED** discriminant of \mathcal{Z} .

 $\mathcal{M}_r = \{M \mid \mathrm{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2$ has $\binom{\min\{m,n\}}{r}$ complex critical points.

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2 \text{ has } \binom{\min\{m,n\}}{r} \text{ complex critical points.}$

 $\Rightarrow \mathsf{ED} \mathsf{ d} \mathsf{e} \mathsf{g} \mathsf{r} \mathsf{e} \mathsf{e} \ \delta(\mathcal{M}_r) = \left(\begin{smallmatrix} \min\{m,n\} \\ r \end{smallmatrix}
ight)$

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2$ has $\binom{\min\{m,n\}}{r}$ complex critical points.

$$\Rightarrow \mathsf{ED} \mathsf{ degree} \ \delta(\mathcal{M}_r) = \binom{\min\{m,n\}}{r}$$

2. If $Q \in \mathbb{R}^{m \times n}$, all critical points are real.

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2$ has $\binom{\min\{m,n\}}{r}$ complex critical points.

 \Rightarrow ED degree $\delta(\mathcal{M}_r) = \binom{\min\{m,n\}}{r}$

2. If $Q \in \mathbb{R}^{m \times n}$, all critical points are real.

 \Rightarrow ED discriminant has codimension 2 over $\mathbb R$

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2$ has $\binom{\min\{m,n\}}{r}$ complex critical points.

 \Rightarrow ED degree $\delta(\mathcal{M}_r) = \binom{\min\{m,n\}}{r}$

2. If $Q \in \mathbb{R}^{m \times n}$, all critical points are real.

⇒ ED discriminant has codimension 2 over \mathbb{R} In fact: ED discriminant = { matrices with ≥ 2 coinciding singular values }

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2$ has $\binom{\min\{m,n\}}{r}$ complex critical points.

 $\Rightarrow \mathsf{ED} \text{ degree } \delta(\mathcal{M}_r) = \binom{\min\{m,n\}}{r}$

2. If $Q \in \mathbb{R}^{m \times n}$, all critical points are real.

- ⇒ ED discriminant has codimension 2 over \mathbb{R} In fact: ED discriminant = { matrices with ≥ 2 coinciding singular values }
- 3. $\min_{M \in \mathcal{M}_r} \|M Q\|_F^2$ has unique local minimum

 $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{C}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2 \text{ has } \binom{\min\{m,n\}}{r} \text{ complex critical points.}$

 $\Rightarrow \mathsf{ED} \text{ degree } \delta(\mathcal{M}_r) = \binom{\min\{m,n\}}{r}$

2. If $Q \in \mathbb{R}^{m \times n}$, all critical points are real.

⇒ ED discriminant has codimension 2 over \mathbb{R} In fact: ED discriminant = { matrices with ≥ 2 coinciding singular values }

X _ XI

3. $\min_{M \in \mathcal{M}_r} \|M - Q\|_F^2$ has unique local minimum

Corollary [Baldi & Hornik '89, Kawaguchi '16] If ℓ is a quadratic loss, then all local minima for the loss $L = \ell \circ \mu$ on a linear network are global. (even in the non-filling case!)

Linear Networks Can Have Bad Local Minima

X

There is a constant $\delta^{\text{gen}} \in \mathbb{Z}_{>0}$ such that for almost all linear coordinate changes $f : \mathbb{C}^N \to \mathbb{C}^N$ the ED degree of $f(\mathcal{Z})$ is δ^{gen} .

There is a constant $\delta^{\text{gen}} \in \mathbb{Z}_{>0}$ such that for almost all linear coordinate changes $f : \mathbb{C}^N \to \mathbb{C}^N$ the ED degree of $f(\mathcal{Z})$ is δ^{gen} .

 δ^{gen} is called the generic ED degree of \mathcal{Z} .

There is a constant $\delta^{\text{gen}} \in \mathbb{Z}_{>0}$ such that for almost all linear coordinate changes $f : \mathbb{C}^N \to \mathbb{C}^N$ the ED degree of $f(\mathcal{Z})$ is δ^{gen} .

 δ^{gen} is called the generic ED degree of \mathcal{Z} .

There is a constant $\delta^{\text{gen}} \in \mathbb{Z}_{>0}$ such that for almost all linear coordinate changes $f : \mathbb{C}^N \to \mathbb{C}^N$ the ED degree of $f(\mathcal{Z})$ is δ^{gen} .

 δ^{gen} is called the generic ED degree of \mathcal{Z} .

Equivalently: δ^{gen} is the ED degree of \mathcal{Z} under the perturbed Euclidean distance $||f(\cdot)||_2$. $||f(\cdot)||_2$.

Linear Networks Can Have Bad Local Minima Example $\mathcal{M}_1 = \{M \mid \mathrm{rk}(M) \leq 1\} \subset \mathbb{C}^{3 \times 3}$

Linear Networks Can Have Bad Local Minima Example $\mathcal{M}_1 = \{M \mid \mathrm{rk}(M) \le 1\} \subset \mathbb{C}^{3 \times 3}$ 1. $\delta(\mathcal{M}_1) = 3$

Linear Networks Can Have Bad Local Minima Example $\mathcal{M}_1 = \{M \mid \mathrm{rk}(M) \leq 1\} \subset \mathbb{C}^{3 \times 3}$ 1. $\delta(\mathcal{M}_1) = 3 < 39 = \delta^{\mathrm{gen}}(\mathcal{M}_1)$

Linear Networks Can Have Bad Local Minima Example $\mathcal{M}_1 = \{M \mid \mathrm{rk}(M) \leq 1\} \subset \mathbb{C}^{3 \times 3}$

1. $\delta(\mathcal{M}_1) = 3 \quad < \quad 39 = \delta^{\text{gen}}(\mathcal{M}_1)$

2. under almost all perturbed Euclidean distances $||f(\cdot)||_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
Example $\mathcal{M}_1 = \{M \mid \operatorname{rk}(M) \le 1\} \subset \mathbb{C}^{3 \times 3}$

1. $\delta(\mathcal{M}_1) = 3 \quad < \quad 39 = \delta^{\mathrm{gen}}(\mathcal{M}_1)$

- 2. under almost all perturbed Euclidean distances $||f(\cdot)||_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
- \Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 imes 3}$

Example $\mathcal{M}_1 = \{M \mid \operatorname{rk}(M) \leq 1\} \subset \mathbb{C}^{3 \times 3}$

1. $\delta(\mathcal{M}_1) = 3 \quad < \quad 39 = \delta^{\mathrm{gen}}(\mathcal{M}_1)$

- 2. under almost all perturbed Euclidean distances $||f(\cdot)||_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
- \Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 imes 3}$
- Also: different number of local minima in different open regions of ℝ^{3×3}, not all of them global !

Example $\mathcal{M}_1 = \{M \mid \operatorname{rk}(M) \le 1\} \subset \mathbb{C}^{3 \times 3}$

1. $\delta(\mathcal{M}_1) = 3 \quad < \quad 39 = \delta^{\text{gen}}(\mathcal{M}_1)$

- 2. under almost all perturbed Euclidean distances $||f(\cdot)||_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
- \Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 imes3}$
- 3. Also: different number of local minima in different open regions of $\mathbb{R}^{3\times 3}$, not all of them global !

All determinantal varieties behave like this !

Example $\mathcal{M}_1 = \{M \mid \operatorname{rk}(M) \le 1\} \subset \mathbb{C}^{3 \times 3}$

1. $\delta(\mathcal{M}_1) = 3 \quad < \quad 39 = \delta^{\mathrm{gen}}(\mathcal{M}_1)$

- 2. under almost all perturbed Euclidean distances $||f(\cdot)||_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
- \Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 imes3}$
- 3. Also: different number of local minima in different open regions of $\mathbb{R}^{3\times 3}$, not all of them global !

All determinantal varieties behave like this !

Remark Closed formula for generic ED degree of $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ involving only m, n, r difficult to derive.

Example $\mathcal{M}_1 = \{M \mid \operatorname{rk}(M) \le 1\} \subset \mathbb{C}^{3 \times 3}$

1. $\delta(\mathcal{M}_1) = 3 \quad < \quad 39 = \delta^{\mathrm{gen}}(\mathcal{M}_1)$

- 2. under almost all perturbed Euclidean distances $||f(\cdot)||_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
- \Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 imes3}$
- 3. Also: different number of local minima in different open regions of $\mathbb{R}^{3\times 3}$, not all of them global !

All determinantal varieties behave like this !

Remark Closed formula for generic ED degree of $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ involving only m, n, r difficult to derive. For r = 1,

$$\delta^{\text{gen}}(\mathcal{M}_1) = \sum_{s=0}^{m+n} (-1)^s (2^{m+n+1-s} - 1)(m+n-s)! \left[\sum_{\substack{i+j=s\\i\leq m,\ j\leq n}} \frac{\binom{m+1}{i}\binom{n+1}{j}}{(m-i)!(n-j)!} \right]$$

Example $\mathcal{M}_1 = \{M \mid \operatorname{rk}(M) \le 1\} \subset \mathbb{C}^{3 \times 3}$

1. $\delta(\mathcal{M}_1) = 3 \quad < \quad 39 = \delta^{\mathrm{gen}}(\mathcal{M}_1)$

 $O(\mathcal{N}_1)$

 $= \min\{m, n\}$

- 2. under almost all perturbed Euclidean distances $||f(\cdot)||_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
- \Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 imes 3}$
- 3. Also: different number of local minima in different open regions of $\mathbb{R}^{3\times 3}$, not all of them global !

All determinantal varieties behave like this !

Remark Closed formula for generic ED degree of $\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{C}^{m \times n}$ involving only m, n, r difficult to derive. For r = 1,

$$\delta^{\text{gen}}(\mathcal{M}_1) = \sum_{s=0}^{m+n} (-1)^s (2^{m+n+1-s} - 1)(m+n-s)! \left[\sum_{\substack{i+j=s\\i\leq m,\ j\leq n}} \frac{\binom{m+1}{i}\binom{n+1}{j}}{(m-i)!(n-j)!} \right]$$

Take Away

- neuromanifolds
- pure & spurious critical points vs. bad minima
- for linear networks with smooth convex losses:

future extensions to

- networks with polynomial activation functions or
- ReLU networks (using semi-algebraic sets)