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Neural Networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}

⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw
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Linear Networks
A linear network is defined by a map Φ : Rdw × Rdx −→ Rdy of the form

Φ(w , x) = WhWh−1 . . .W1x ,

where w = (Wh, . . . ,W1) and Wi ∈ Rdi×di−1 ,

(so dw = dhdh−1 + . . .+ d1d0, dx = d0 and dy = dh).

Example The neuromanifold of the linear network Φ is

MΦ =
{
M ∈ Rdh×d0 | rk(M) ≤ min{d0, d1, . . . , dh}

}
.

︸ ︷︷ ︸
=:r

1. If r = min{d0, dh}, then MΦ = Rdh×d0 .

“filling architecture”

2. If r < min{d0, dh}, “non-filling architecture”

then MΦ is a determinantal variety.
Note: MΦ is neither convex nor smooth

(SingMΦ = {M | rk(M) ≤ r − 1})
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Loss Landscapes
A loss function on a neural network Φ : Rdw × Rdx −→ Rdy is of the form

L : Rdw µ−−−−−→ MΦ

`|MΦ−−−−−−−→ R,
w 7−−−−−→ Φ(w , ·)

where ` is a functional defined on a subset of C (Rdx ,Rdy ) containing MΦ.

Visualizations
of L

Source: Li, Hao, et al. “Visualizing the loss landscape of neural nets.”
Advances in Neural Information Processing Systems. 2018.

Observation If ϕ ∈ Crit(`|MΦ
), then µ−1(ϕ) ⊂ Crit(L).
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Linear Networks

A loss function on a linear network is of the form

L : Rdh×dh−1 × . . .× Rd1×d0
µ−−−−−→ MΦ ⊂ Rdh×d0 `−−−−−→ R,

(Wh, . . . ,W1) 7−−−−−→Wh · · ·W1

Recall: MΦ =
{
M ∈ Rdh×d0 | rk(M) ≤ r

}
, where r := min {d0, d1, . . . , dh}.

Theorem Let M ∈MΦ.

1. If rk(M) = r , then µ−1(M) has 2b path-connected components

where b := # {i | 0 < i < h, di = r} .

2. If rk(M) < r , then µ−1(M) is path-connected.
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Loss Landscapes
A loss function on a neural network Φ : Rdw × Rdx −→ Rdy is of the form
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where ` is a functional defined on a subset of C (Rdx ,Rdy ) containing MΦ.

Visualizations
of L

Source: Li, Hao, et al. “Visualizing the loss landscape of neural nets.”
Advances in Neural Information Processing Systems. 2018.

Observation If ϕ ∈ Crit(`|MΦ
), then µ−1(ϕ) ⊂ Crit(L).

V - XIII



Pure & Spurious Critical Points

pure
spurious

not critical

A loss function on a neural network Φ : Rdw × Rdx −→ Rdy is of the form

L : Rdw µ−−−−−→ MΦ

`|MΦ−−−−−−−→ R,
w 7−−−−−→ Φ(w , ·)

where ` is a functional defined on a subset of C (Rdx ,Rdy ) containing MΦ.

Definition
w∗ ∈ Crit(L) is called pure if
µ(w∗) ∈ Crit(`|MΦ

) and
µ(w∗) /∈ SingMΦ.

Otherwise w∗ ∈ Crit(L) is
called spurious.

Proposition If the differential Dw∗µ at w∗ ∈ Crit(L) has maximal rank
(i.e., rk(Dw∗µ) = dimMΦ), then w∗ is pure, and

w∗ is a minimum for L
(resp. saddle/maximum)

⇔ µ(w∗) is a minimum for `|MΦ

(resp. saddle/maximum)
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Linear Networks
A loss function on a linear network is of the form

L : Rdh×dh−1 × . . .× Rd1×d0
µ−−−−−→ MΦ ⊂ Rdh×d0 `−−−−−→ R,

(Wh, . . . ,W1) 7−−−−−→Wh · · ·W1

Recall: MΦ =
{
M ∈ Rdh×d0 | rk(M) ≤ r

}
, where r := min {d0, d1, . . . , dh}.

Proposition Let w = (Wh, . . . ,W1).

1. If rk(µ(w)) = r , then Dwµ has maximal rank.

2. Let ` be smooth and convex.
a) If w is a non-global local minimum for L, then rk(µ(w)) = r .

b) L has non-global minima ⇔ `|MΦ
has non-global minima.

Corollary [Laurent & von Brecht ’17]
If ` is smooth convex and r = min{d0, dh} (filling architecture),
then all local minima for L are global.
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The Quadratic Loss

Fixed data matrices X ∈ Rd0×s and Y ∈ Rdh×s define a quadratic loss

`X ,Y : Rdh×d0 −→ R,
M 7−→ ‖MX − Y ‖2

F

Observation If XXT = Id0 (“whitened data”), then

`X ,Y (M) = ‖M − YXT‖2
F + const.

Minimizing `X ,Y on the determinantal variety MΦ = {M | rk(M) ≤ r} is
equivalent to minimizing the Euclidean distance of YXT to MΦ.
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Euclidean Distance to Varieties

δ(ellipse) = 4 δ(circle) = 2

Let Z ⊂ CN be an algebraic variety
(i.e., the common zero locus of some set of polynomials).

There is a constant δ ∈ Z>0 such that for almost all q ∈ CN the
minimization problem min

z∈Z
‖z − q‖2

2 has δ complex critical points.

δ is called the ED degree of Z.

The other q ∈ CN form a complex hypersurface, called EDdiscriminant of Z.
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Eckart-Young Theorem

Mr = {M | rk(M) ≤ r} ⊂ Cm×n determinantal variety

EY Theorem
Let Q ∈ Cm×n be of full rank with pairwise distinct singular values.

1. min
M∈Mr

‖M − Q‖2
F has

(min{m,n}
r

)
complex critical points.

⇒ ED degree δ(Mr ) =
(min{m,n}

r

)
2. If Q ∈ Rm×n, all critical points are real.

⇒ ED discriminant has codimension 2 over R
In fact: ED discriminant = { matrices with ≥ 2 coinciding singular values }

3. min
M∈Mr

‖M − Q‖2
F has unique local minimum

Corollary [Baldi & Hornik ’89, Kawaguchi ’16]
If ` is a quadratic loss, then all local minima for the loss L = ` ◦ µ on a
linear network are global. (even in the non-filling case!)
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Linear Networks Can Have Bad Local Minima

δ(ellipse) = 4 δ(circle) = 2

Let Z ⊂ CN be an algebraic variety.

There is a constant δgen ∈ Z>0 such that for almost all
linear coordinate changes f : CN → CN the ED degree of f (Z) is δgen.

δgen is called the generic ED degree of Z.

δgen(circle)
= δ(ellipse)

= 4

Equivalently: δgen is the ED degree of Z
under the perturbed Euclidean distance ‖f (·)‖2.
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Linear Networks Can Have Bad Local Minima
Example M1 = {M | rk(M) ≤ 1} ⊂ C3×3

1. δ(M1) = 3

< 39 = δgen(M1)

2. under almost all perturbed Euclidean distances ‖f (·)‖2,
the ED discriminant of M1 is a hypersurface over R

⇒ different number of real critical points in different open regions of R3×3

3. Also: different number of local minima in different open regions of R3×3,
not all of them global !

All determinantal varieties behave like this !

Remark Closed formula for generic ED degree of
Mr = {M | rk(M) ≤ r} ⊂ Cm×n involving only m, n, r difficult to derive.

For r = 1,

δgen(M1) =
m+n∑
s=0

(−1)s(2m+n+1−s − 1)(m + n − s)!

 ∑
i+j=s

i≤m, j≤n

(m+1
i

)(n+1
j

)
(m − i)!(n − j)!



δ(M1) = min{m, n}
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Take Away

convex optimization

on vector space
←−

special embedding of

determinantal varieties

↑

neuromanifolds

pure & spurious critical points vs. bad minima

for linear networks with smooth convex losses:

quadratic loss other loss

filling no bad min. no bad min.

non-filling no bad min. bad min.

future extensions to

� networks with polynomial activation functions or
� ReLU networks (using semi-algebraic sets)
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