A Lower Bound for Computing the Diameter

Kathlén Kohn

Faculty of Computer Science, Electrical Engineering and Mathematics University of Paderborn

5. Mai 2013

Inhaltsverzeichnis

Diameter

Proof of lower bound Part I Part II

Other lower bounds

Definition

Let
$$G = (V, E)$$
 be a graph, $u, v \in V$.

•
$$n := |V|, m := |E|$$

- ▶ distance: $d(u, v) \triangleq$ length of shortest path between u and v
- diameter: diam(G) := $\max_{u,v \in V} d(u,v)$

Definition

Let
$$G = (V, E)$$
 be a graph, $u, v \in V$.

•
$$n := |V|, m := |E|$$

- ▶ distance: d(u, v) = length of shortest path between u and v
- diameter: diam(G) := $\max_{u,v \in V} d(u,v)$

Computing the diameter:

breadth-first search from every v ∈ V ⇒ running time: O(n · (n + m))

Definition

Let
$$G = (V, E)$$
 be a graph, $u, v \in V$.

•
$$n := |V|, m := |E|$$

▶ distance: d(u, v) = length of shortest path between u and v

• diameter: diam(G) :=
$$\max_{u,v \in V} d(u,v)$$

Computing the diameter:

Die Universität der Informationsgesellschaf

- breadth-first search from every v ∈ V ⇒ running time: O(n ⋅ (n + m))
- connected G, algorithm using matrix multiplication \Rightarrow running time: $O(M(n) \log n)$

time for $n \times n$ -matrix multiplication, $M(n) \in O(n^{2.3727})$

- given graph G = (V, E)
- nodes have unbounded computational power
- nodes know theirselves and their neighbours

- given graph G = (V, E)
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round

- given graph G = (V, E)
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- ▶ goal: evaluate $g : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}$

Model of computation: DistributedRound(B)

- given graph G = (V, E)
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- ▶ goal: evaluate $g : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}$

Definition

Model of computation: DistributedRound(B)

- given graph G = (V, E)
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- ▶ goal: evaluate $g : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}$

Definition

•
$$\mathcal{A}_{\epsilon} := \begin{cases} A \text{ algorithm} \end{cases}$$

distributed, evaluating g, using randomness, error probability $< \epsilon$

Model of computation: DistributedRound(B)

- given graph G = (V, E)
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- ▶ goal: evaluate $g : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}$

Definition

$\blacktriangleright \ \mathcal{A}_{\epsilon} := \Big\langle$	(distributed, evaluating g ,
	A algorithm	using randomness,
		error probability $<\epsilon$

R^{dc}_ϵ(*A*(*G*)) = number of rounds *A* ∈ *A*_ϵ needs in order to compute *g*(*G*)

Model of computation: DistributedRound(B)

- given graph G = (V, E)
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- ▶ goal: evaluate $g : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}$

Definition

Die Universität der Informationsgesellschaf

	(distributed, evaluating g ,
• $\mathcal{A}_{\epsilon} := \langle$	A algorithm	using randomness,
		error probability $<\epsilon$

R^{dc}_ϵ(*A*(*G*)) = number of rounds *A* ∈ *A*_ϵ needs in order to compute *g*(*G*)

$$\blacktriangleright \ R_{\epsilon}^{dc}(g) := \min_{A \in \mathcal{A}_{\epsilon}} \max_{G = (V, E), |V| = n} R_{\epsilon}^{dc}(A(G))$$

Definition

$$\mathsf{diam}_4(G) := \left\{ \begin{array}{ll} 1 & , \mathsf{diam}(G) \leq 4 \\ 0 & , \mathsf{else} \end{array} \right.$$

Definition

$$\mathsf{diam}_4(G) := \left\{ egin{array}{cc} 1 & , \mathsf{diam}(G) \leq 4 \\ 0 & , \mathsf{else} \end{array}
ight.$$

Theorem

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\operatorname{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

Definition

$$\mathsf{diam}_4(G) := \left\{ egin{array}{cc} 1 & , \mathsf{diam}(G) \leq 4 \\ 0 & , \mathsf{else} \end{array}
ight.$$

Theorem

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\text{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

Idea of proof:

Die Universität der Informationsgesellschaf

- part I: transfer to another model of computation
- part II: use known lower bound

- given $a \in \{0,1\}^k$ to Alice, $b \in \{0,1\}^k$ to Bob
- Alice and Bob have unbounded computational power

- given $a \in \{0,1\}^k$ to Alice, $b \in \{0,1\}^k$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round

- given $a \in \{0,1\}^k$ to Alice, $b \in \{0,1\}^k$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- ▶ goal: evaluate $g: \{0,1\}^k \times \{0,1\}^k \rightarrow \{0,1\}$

Model of computation: Communication

- given $a \in \{0,1\}^k$ to Alice, $b \in \{0,1\}^k$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- ▶ goal: evaluate $g : \{0,1\}^k \times \{0,1\}^k \rightarrow \{0,1\}$

Definition

Model of computation: Communication

- given $a \in \{0,1\}^k$ to Alice, $b \in \{0,1\}^k$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- ▶ goal: evaluate $g : \{0,1\}^k \times \{0,1\}^k \rightarrow \{0,1\}$

Definition

•
$$\mathcal{A}_{\epsilon} := \begin{cases} A \text{ algorithm} \end{cases}$$

for two parties, evaluating g, using randomness, error probability $< \epsilon$

Model of computation: Communication

- given $a \in \{0,1\}^k$ to Alice, $b \in \{0,1\}^k$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- ▶ goal: evaluate $g : \{0,1\}^k \times \{0,1\}^k \rightarrow \{0,1\}$

Definition

$$\blacktriangleright \ \mathcal{A}_{\epsilon} := \begin{cases} A \text{ algorithm} & \text{for two parties, evaluating } g, \\ using randomness, \\ error probability < \epsilon \end{cases}$$

► R^{cc}_ϵ(A(a, b)) = number of 1-bit messages exchanged in order to compute g(a, b)

Model of computation: Communication

- given $a \in \{0,1\}^k$ to Alice, $b \in \{0,1\}^k$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- ▶ goal: evaluate $g : \{0,1\}^k \times \{0,1\}^k \rightarrow \{0,1\}$

Definition

Die Universität der Informationsgesellschaf

$$\blacktriangleright \ \mathcal{A}_{\epsilon} := \begin{cases} A \text{ algorithm} & \text{for two parties, evaluating } g, \\ using randomness, \\ error probability < \epsilon \end{cases}$$

► R^{cc}_ϵ(A(a, b)) = number of 1-bit messages exchanged in order to compute g(a, b)

$$\blacktriangleright \ R_{\epsilon}^{cc}(g) := \min_{A \in \mathcal{A}_{\epsilon}} \max_{a,b \in \{0,1\}^{k}} R_{\epsilon}^{cc}(A(a,b))$$

Let $f : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}.$

Let
$$f : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}.$$

Definition

Let G = (V, E) be a graph. (G_a, G_b, C) with subgraphs $G_a = (V_a, E_a)$ and $G_b = (V_b, E_b)$ is a cut iff $V = V_a \cup V_b$, $E = E_a \cup E_b \cup C$ and $C = \{\{u, v\} \in E \mid u \in V_a, v \in V_b\}$.

Let
$$f : \{G = (V, E) \text{ graph } | |V| = n\} \rightarrow \{0, 1\}.$$

Definition

Let
$$G = (V, E)$$
 be a graph. (G_a, G_b, C) with subgraphs $G_a = (V_a, E_a)$ and $G_b = (V_b, E_b)$ is a cut iff $V = V_a \cup V_b$, $E = E_a \cup E_b \cup C$ and $C = \{\{u, v\} \in E \mid u \in V_a, v \in V_b\}$.

Let G be a graph with cut (G_a, G_b, C) . Define

$$f'((G_a, C), (G_b, C)) := f(G).$$

Lemma

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

Lemma

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

Lemma

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

Lemma

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

Lemma

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

Lemma

Die Universität der Informationsgesellschaf

If f(G) can be computed in the DistributedRound(B) model, $f'((G_a, C), (G_b, C)) := f(G)$ can be computed in the Communication model. Furthermore

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

Lemma

If f(G) can be computed in the DistributedRound(B) model, $f'((G_a, C), (G_b, C)) := f(G)$ can be computed in the Communication model. Furthermore

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

bits over $C \ge R_{\epsilon}^{cc}(f')$

Lemma

If f(G) can be computed in the DistributedRound(B) model, $f'((G_a, C), (G_b, C)) := f(G)$ can be computed in the Communication model. Furthermore

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

$$\begin{array}{l} \# \text{ bits over } C \geq R_{\epsilon}^{cc}(f') \\ \Rightarrow \# \text{ messages over } C \geq \frac{R_{\epsilon}^{cc}(f')}{B} \end{array}$$

Lemma

If f(G) can be computed in the DistributedRound(B) model, $f'((G_a, C), (G_b, C)) := f(G)$ can be computed in the Communication model. Furthermore

$$\frac{R_{\epsilon}^{cc}(f')}{2|C|B} \leq R_{\epsilon}^{dc}(f).$$

$$\begin{array}{l} \# \text{ bits over } C \geq R_{\epsilon}^{cc}(f') \\ \Rightarrow \# \text{ messages over } C \geq \frac{R_{\epsilon}^{cc}(f')}{B} \\ \Rightarrow R_{\epsilon}^{dc}(f) \geq \frac{R_{\epsilon}^{cc}(f')}{2|C|B} \end{array}$$

Theorem

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\text{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

 $R^{dc}_{\epsilon}(\mathsf{diam}_4)$

 $\frac{R_{\epsilon}^{cc}(\mathsf{diam}_4')}{2|C|B}$

Definition

$$\begin{split} \mathsf{disj}_k &: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}, \\ \mathsf{disj}_k(a,b) &:= \left\{ \begin{array}{c} 0 &, \exists i \in \{0,\ldots,k-1\}: a_i = b_i = 1 \\ 1 &, \textit{else} \end{array} \right. \end{split}$$

Definition

$$\begin{aligned} \mathsf{disj}_k : \{0,1\}^k \times \{0,1\}^k \to \{0,1\}, \\ \mathsf{disj}_k(a,b) := \left\{ \begin{array}{l} 0 & , \exists i \in \{0,\ldots,k-1\} : a_i = b_i = 1 \\ 1 & , \textit{else} \end{array} \right. \end{aligned}$$

Lemma

$$\forall \epsilon > 0$$
 sufficiently small: $R_{\epsilon}^{cc}(disj_k) \in \Omega(k)$

Definition

$$\begin{split} \mathsf{disj}_k &: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}, \\ \mathsf{disj}_k(a,b) &:= \left\{ \begin{array}{c} 0 &, \exists i \in \{0,\dots,k-1\}: a_i = b_i = 1 \\ 1 &, \textit{else} \end{array} \right. \end{split}$$

Lemma

$$\forall \epsilon > 0$$
 sufficienty small: $R_{\epsilon}^{cc}(disj_k) \in \Omega(k)$

Needed:

 $\begin{aligned} \mathcal{R}_k : \{\mathsf{A}, \, \mathsf{B}\} \times \{0, 1\}^k &\to \{(H, C) \mid H \subseteq G, (H, G \setminus H, C) \text{ cut} \} \\ \text{such that } \operatorname{disj}_k(a, b) &= \operatorname{diam}'_4(\mathcal{R}_k(A, a), \mathcal{R}_k(B, b)) \end{aligned}$

Definition

$$\begin{split} \mathsf{disj}_k &: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}, \\ \mathsf{disj}_k(a,b) &:= \left\{ \begin{array}{c} 0 &, \exists i \in \{0,\dots,k-1\}: a_i = b_i = 1 \\ 1 &, \textit{else} \end{array} \right. \end{split}$$

Lemma

$$\forall \epsilon > 0$$
 sufficienty small: $R_{\epsilon}^{cc}(disj_k) \in \Omega(k)$

Needed:

 $\begin{aligned} \mathcal{R}_k : \{\mathsf{A}, \mathsf{B}\} \times \{0,1\}^k &\to \{(H,C) \mid H \subseteq G, (H,G \setminus H,C) \text{ cut} \} \\ \text{such that } \operatorname{disj}_k(a,b) &= \operatorname{diam}'_4(\mathcal{R}_k(A,a),\mathcal{R}_k(B,b)) \end{aligned}$

$$\Rightarrow R_{\epsilon}^{dc}(\mathsf{diam}_4) \geq \frac{R_{\epsilon}^{cc}(\mathsf{diam}_4')}{2|C|B} \geq \frac{R_{\epsilon}^{cc}(\mathsf{disj}_k)}{2|C|B}$$

Theorem

Die Universität der Informationsgesellschaft

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\text{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

Theorem

Die Universität der Informationsgesellschaft

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\text{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

Needed: $\mathcal{R}_{k_n^2}: \{A, B\} \times \{0, 1\}^{k_n^2} \rightarrow \{(H, C) \mid H \subseteq G, (H, G \setminus H, C) \text{ cut}\}$ such that $\operatorname{disj}_{k_n^2}(a, b) = \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A, a), \mathcal{R}_{k_n^2}(B, b))$

UNIVERSIT

ÄT PADERBORN

Die Universität der Informationsgesellschaft

$$k_n := \lfloor \frac{n}{10} \rfloor$$
Ex.: $n = 20, k_n = 2,$
 $a = (0, 0, 0, 1), b = (0, 1, 1, 1)$

UNIVERSITÄT PADERBORN

Die Universität der Informationsgesellschaft

$k_n := \lfloor \frac{n}{10} \rfloor$		Ex.: $n = 20, k_n = 2,$		
	a = (0	(0,0,0,1), b = (0,1,1,1)		
Bob	Alice	Bob		
	$k_n := \lfloor \frac{n}{10} \rfloor$ Bob	$k_n := \lfloor \frac{n}{10} \rfloor \qquad a = (1)$ Bob Alice		

Die Universität der Informationsgesellschaft

20

Part II: use known lower bound

Die Universität der Informationsgesellschaft

$k_n := \lfloor \frac{n}{10} \rfloor$		Ex.: $n = 20, k_n = 2,$ a = (0, 0, 0, 1), b = (0, 1, 1, 1)			
Alice	Bob	Alice	<u> </u>	Bob	
$L := \{l_i i < 2k_n\}$ $L' := \{l'_i i < 2k_n\}$	$R := \{r_i i < 2k_n\}$ $R' := \{r'_i i < 2k_n\}$				
		(1'0)	$\left(I_{0} \right)$	(\mathbf{r}_0)	(r ' ₀)
			$\left(I_{1} \right)$	(\mathbf{r}_1)	(\mathbf{r}'_1)
			$\left(l_{2}\right)$	(\mathbf{r}_2)	(\mathbf{r}'_2)
			$\left(I_{3} \right)$	(\mathbf{r}_3)	(\mathbf{r}'_{3})
	A Lower Bound for Computing the	Diameter			20

k	$z_n := \lfloor \frac{n}{10} \rfloor$		Ex.: <i>n</i> =	20, $k_n = 1$	2,
		<i>a</i> = (0	,0,0,1)	, b = (0, 1)	, 1, 1)
Alice	Bob	Alice		Bob	
$L := \{ I_i i < 2k_n \} \\ L' := \{ I'_i i < 2k_n \}$	$R := \{r_i i < 2k_n\}$ $R' := \{r'_i i < 2k_n\}$			(W_0)	(W_1)
CL	$c_R, W := \{w_i i < n - 8k_n - 2\}$				
		$('_0)$	$\left(\mathbf{I}_{0}\right)$	(\mathbf{r}_0)	(\mathbf{r}'_0)
		$('_1)$	$\left(\mathbf{I}_{1} \right)$	(\mathbf{r}_1)	(\mathbf{r}'_1)
		$('_2)$		(\mathbf{r}_2)	(\mathbf{r}'_2)
				(\mathbf{r}_3)	(r ' ₃)

k _n :=	$= \lfloor \frac{n}{10} \rfloor$	Ex.: <i>n</i> =	$20, k_n = 2,$
		a = (0, 0, 0, 1)	, b = (0, 1, 1, 1)
Alice	Bob	Alice	Bob
$L := \{l_i i < 2k_n\}$	$R := \{r_i i < 2k_n\}$		(W_{2}) (W_{1})
$L' := \{l'_i l < 2k_n\}$	$R' := \{r'_i i < 2\kappa_n\}$		
	$c_R, v_V := \{w_i i < n - 8k_n - 2\}$		
E_A := {{ $l: l'_i$ } $i < 2k_r$ }	E_B $:= \{\{r_i, r'_i\} i < 2k_n\}$		
$((n, n)) \rightarrow (n, n)$	$\cdot ((n,n)) < 2nn$	$(I_0) \rightarrow (I_0)$	(\mathbf{r}_0) (\mathbf{r}'_0)
		$(l_1) - (l_1)$	(\mathbf{r}_1) (\mathbf{r}'_1)
		(l_2) (l_2)	(\mathbf{r}_2) (\mathbf{r}'_2)
•			(\mathbf{r}_3) (\mathbf{r}'_3)

$$k_{n} := \lfloor \frac{n}{10} \rfloor$$
Ex.: $n = 20, k_{n} = 2,$
 $a = (0, 0, 0, 1), b = (0, 1, 1, 1)$
Alice
Bob
$$L := \{l_{i} | i < 2k_{n}\}$$
 $R := \{r_{i} | i < 2k_{n}\}$
 $L' := \{l'_{i} | i < 2k_{n}\}$
 C_{L}
 $C_{R}, W := \{w_{i} | i < 2k_{n}\}$
 C_{L}
 $R' := \{r_{i} | i < 2k_{n}\}$
 $C_{R}, W := \{w_{i} | i < 2k_{n}\}$
 $U = \{l_{i}, l'_{i}\} | i < 2k_{n}\}$
 $U = \{l_{i}, c_{L}\} | i < 2k_{n}\}$
 $U = \{r_{i}, c_{R}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, c_{R}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}, r_{i}\} | i < 2k_{n}\}$
 $U = \{r_{i}, r_{i}\} | i < 2k_{n}\}$

$k_n :=$	$\left\lfloor \frac{n}{10} \right\rfloor$	Ex.: <i>n</i> =	$20, k_n = 2,$
		a = (0, 0, 0, 1),	b = (0, 1, 1, 1)
Alice	Bob	Alice	Bob
$L := \{l_i i < 2k_n\}$	$R := \{r_i i < 2k_n\}$		
$L' := \{l'_i i < 2k_n\}$	$R' := \{r'_i i < 2k_n\}$		(W_0) (W_1)
CL	$c_R, W := \{w_i i < \}$	_	-
	$n-8k_n-2\}$		
E _A	E _B		Λ^{-}
$:= \{\{l_i, l'_i\} i < 2k_n\}$	$:= \{\{r_i, r_i'\} i < 2k_n\}$		$(\mathbf{r}_0) / (\mathbf{r}_0)$
$\cup\{\{I_i, C_L\} i < 2K_n\}$	$\cup\{\{r_i, c_R\} i < 2k_n\}$	$ \bigcirc \land \downarrow$	$\gamma / \gamma \sim$
$\cup\{\{I_i,I_j\} I < J < K_n\}$	$\cup\{\{r_i,r_j\} I < J < k_n\}$		
			$ \rightarrow $
1		$(\Gamma_3) \rightarrow (\Gamma_3)$	(\mathbf{r}_3) (\mathbf{r}_3)

$k_n :=$	$\left\lfloor \frac{n}{10} \right\rfloor$	Ex.: <i>n</i> =	$20, k_n = 2,$
		a = (0, 0, 0, 1),	b = (0, 1, 1, 1)
Alice	Bob	Alice	Bob
$L := \{l_i i < 2k_n\}$	$R := \{r_i i < 2k_n\}$		
$L' := \{I'_i i < 2k_n\}$	$R' := \{r'_i i < 2k_n\}$		(W_0) (W_1)
CL	$c_R, W := \{w_i i < \}$		-
	$n-8k_n-2$		
E _A	E _B		\bigwedge
$:= \{\{l_i, l_i'\} i < 2k_n\}$	$:= \{\{r_i, r_i'\} i < 2k_n\}$		(\mathbf{r})
$\cup\{\{l_i, c_L\} i < 2k_n\}$	$\cup\{\{r_i, c_R\} i < 2k_n\}$		Ψ / Φ
$\cup\{\{I_i, I_j\} i < j < k_n\}$	$\cup \{\{r_i, r_j\} i < j < k_n\}$		
$\cup\{\{I_i,I_j\} i>j\geq k_n\}$	$\cup\{\{r_i,r_j\} i>j\geq k_n\}$		
		(I'_2)	(\mathbf{r}_2) (\mathbf{r}_2)
			\downarrow
		$ (\mathbf{I}_3) - (\mathbf{I}_3)$	$(r_{3}) - (r'_{3})$

$k_n :=$	$\left\lfloor \frac{n}{10} \right\rfloor$	Ex.: $n = 2$	$20, k_n = 2,$
		a = (0, 0, 0, 1), b = (0, 1, 1, 1)	
Alice	Bob	Alice	Bob
$L := \{l_i i < 2k_n\}$	$R := \{r_i i < 2k_n\}$		
$L' := \{I'_i i < 2k_n\}$	$R' := \{r'_i i < 2k_n\}$		(W_0) (W_1)
CL	$c_R, W := \{w_i i < \}$		-
	$n-8k_n-2$		(\mathbf{c}_{R})
E_A	E _B		Λ
$:= \{\{l_i, l_i'\} i < 2k_n\}$	$:= \{\{r_i, r_i'\} i < 2k_n\}$		(\mathbf{r})
$\cup\{\{l_i,c_L\} i<2k_n\}$	$\cup\{\{r_i,c_R\} i<2k_n\}$		
$\cup \{\{l_i, l_j\} i < j < k_n\}$	$\cup \{\{r_i, r_j\} i < j < k_n\}$		
$\cup\{\{l_i, l_j\} i>j\geq k_n\}$	$\cup\{\{r_i,r_j\} i>j\geq k_n\}$		$(\mathbf{r}_1) + (\mathbf{r}_1)$
$\cup\{\{I_{i \mod k_n}, I_{k_n+\lfloor \frac{i}{k_n}\rfloor}\}$	$\cup \{\{r_{i \mod k_n}, r_{k_n + \lfloor \frac{i}{k_n} \rfloor}\}$		
$ a_i = 0\}$	$ b_i = 0\}$		\mathbf{r}_{2}
4		$ (l'_3) - (l_3)$	(\mathbf{r}_3) (\mathbf{r}'_3)

$k_n :=$	$\left\lfloor \frac{n}{10} \right\rfloor$	Ex.: <i>n</i> =	$20, k_n = 2,$
		a = (0, 0, 0, 1),	$b=\left(0,1,1,1\right)$
Alice	Bob	Alice	Bob
$L := \{l_i i < 2k_n\}$	$R := \{r_i i < 2k_n\}$		\cap \cap
$L' := \{l'_i i < 2k_n\}$	$R' := \{r'_i i < 2k_n\}$		(W_0) (W_1)
CL	$c_R, W := \{w_i i < \}$	_	
	$n-8k_n-2$		$\left \right\rangle \left(\mathbf{C}_{R} \right)$
E _A	E _B		
$:= \{\{l_i, l_i'\} i < 2k_n\}$	$:= \{\{r_i, r_i'\} i < 2k_n\}$		
$\cup\{\{l_i,c_L\} i<2k_n\}$	$\cup\{\{r_i,c_R\} i<2k_n\}$		
$\cup \{\{l_i, l_j\} i < j < k_n\}$	$\cup \{\{r_i, r_j\} i < j < k_n\}$		
$\cup\{\{l_i, l_j\} i>j\geq k_n\}$	$\cup \{\{r_i, r_j\} i > j \ge k_n\}$		$(r_1) + (r_1)$
$\cup \{\{I_{i \mod k_n}, I_{k_n + \lfloor \frac{i}{k_n} \rfloor}\}$	$\cup \{\{r_{i \mod k_n}, r_{k_n + \lfloor \frac{i}{k_n} \rfloor}\}$		
$ a_i = 0\}$	$ b_i = 0\}$	(l_2)	$(\mathbf{r}_2) + (\mathbf{r}_2)$
	$\cup\{\{r_0,w_i\}\}$		\uparrow
			(\mathbf{r}_3) (\mathbf{r}_3)

UNIVERSI

Needed: $\mathcal{R}_{k_n^2}: \{A, B\} \times \{0, 1\}^{k_n^2} \rightarrow \{(H, C) \mid H \subseteq G, (H, G \setminus H, C) \text{ cut}\}$ such that $\operatorname{disj}_{k_n^2}(a, b) = \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A, a), \mathcal{R}_{k_n^2}(B, b))$

A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 1 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 1$

A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 1 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 1$

$$a = (0, 0, 0, 1)$$
 $b = (0, 1, 1, 0)$
A Lower Bound for Computing the Diameter

10

30

A Lower Bound for Computing the Diameter

A Lower Bound for Computing the Diameter

A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 1 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 1$

A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 1 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 1$

$$a = (0, 0, 0, 1)$$
 $b = (0, 1, 1, 0)$

A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 1 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 1$

$$a = (0, 0, 0, 1)$$
 $b = (0, 1, 1, 0)$

A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 1 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 1 \quad \checkmark$

A Lower Bound for Computing the Diameter

a = (0, 0, 0, 1) b = (0, 1, 1, 0)

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 0 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 0$

A Lower Bound for Computing the Diameter

a = (0, 0, 0, 1) b = (0, 1, 1, 1)

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 0 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 0$

$$a = (0, 0, 0, 1)$$
 $b = (0, 1, 1, 1)$

A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 0 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 0$

a = (0, 0, 0, 1) b = (0, 1, 1, 1)A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_n^2}(a,b) = 0 \implies \operatorname{diam}'_4(\mathcal{R}_{k_n^2}(A,a),\mathcal{R}_{k_n^2}(B,b)) = 0$

a = (0, 0, 0, 1) b = (0, 1, 1, 1)A Lower Bound for Computing the Diameter

Part II: use known lower bound $\operatorname{disj}_{k_a^2}(a,b) = 0 \implies \operatorname{diam}'_4(\mathcal{R}_{k_a^2}(A,a),\mathcal{R}_{k_a^2}(B,b)) = 0 \quad \checkmark$

A Lower Bound for Computing the Diameter

a = (0, 0, 0, 1) b = (0, 1, 1, 1)

Part II: use known lower bound $\operatorname{disj}_{k_a^2}(a,b) = 0 \implies \operatorname{diam}'_4(\mathcal{R}_{k_a^2}(A,a),\mathcal{R}_{k_a^2}(B,b)) = 0 \quad \checkmark$

a = (0,0,0,1) b = (0,1,1,1)A Lower Bound for Computing the Diameter

Part II: use known lower bound

Theorem

Die Universität der Informationsgesellschaft

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\text{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

Part II: use known lower bound

Theorem

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\text{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

Lemma

$$\forall \epsilon > 0$$
 sufficienty small: $R_{\epsilon}^{cc}(disj_k) \in \Omega(k)$

$$k_n = \lfloor \frac{n}{10} \rfloor$$
, $|C| = 2k_n = 2 \lfloor \frac{n}{10} \rfloor$

Part II: use known lower bound

Theorem

 $\forall n \geq 10 \ \forall B \geq 1 \ \forall \epsilon > 0$ sufficiently small: $R_{\epsilon}^{dc}(\text{diam}_4) \in \Omega(\frac{n}{B})$ (even when diameter is bounded by 5)

Lemma

 $\forall \epsilon > 0$ sufficienty small: $R_{\epsilon}^{cc}(disj_k) \in \Omega(k)$

$$k_n = \lfloor \frac{n}{10} \rfloor, \ |C| = 2k_n = 2\lfloor \frac{n}{10} \rfloor$$

$$\Rightarrow R_{\epsilon}^{dc}(\mathsf{diam}_4) \geq \frac{R_{\epsilon}^{cc}(\mathsf{disj}_{k_n^2})}{2|C|B} \in \Omega\left(\frac{n}{B}\right)$$

Other lower bounds using this technique

Other lower bounds using this technique

Other lower bounds using this technique

Theorem

 $\forall \delta > 0 \ \forall n \ge 16 \left\lceil \frac{3}{4\delta} \right\rceil + 8 \ \forall B \ge 1 \ \forall \epsilon > 0$ sufficiently small: any distributed ϵ -error algorithm that $\left(\frac{3}{2} - \delta\right)$ -approximates the diameter of a graph needs $\Omega\left(\frac{\sqrt{\delta n}}{B}\right)$ rounds.

Theorem

 $\forall \delta > 0 \ \forall n \ge 16 \lceil \frac{2}{\delta} \rceil + 4 \ \forall B \ge 1 \ \forall \epsilon > 0$ sufficiently small: any distributed ϵ -error algorithm that $(2 - \delta)$ -approximates the girth of a graph needs $\Omega(\frac{\sqrt{\delta n}}{B})$ rounds.

