A Lower Bound for Computing the Diameter

Kathlén Kohn

Faculty of Computer Science, Electrical Engineering and Mathematics University of Paderborn
5. Mai 2013

Inhaltsverzeichnis

Diameter

Proof of lower bound
Part I
Part II

Other lower bounds

Diameter

Diameter

Definition

Let $G=(V, E)$ be a graph, $u, v \in V$.

- $n:=|V|, m:=|E|$
- distance: $d(u, v) \hat{=}$ length of shortest path between u and v
- diameter: $\operatorname{diam}(G):=\max _{u, v \in V} d(u, v)$

Diameter

Definition

Let $G=(V, E)$ be a graph, $u, v \in V$.

- $n:=|V|, m:=|E|$
- distance: $d(u, v) \hat{=}$ length of shortest path between u and v
- diameter: $\operatorname{diam}(G):=\max _{u, v \in V} d(u, v)$

Computing the diameter:

- breadth-first search from every $v \in V$
\Rightarrow running time: $O(n \cdot(n+m))$

Diameter

Definition

Let $G=(V, E)$ be a graph, $u, v \in V$.

- $n:=|V|, m:=|E|$
- distance: $d(u, v) \xlongequal[=]{\text { length }}$ of shortest path between u and v
- diameter: $\operatorname{diam}(G):=\max _{u, v \in V} d(u, v)$

Computing the diameter:

- breadth-first search from every $v \in V$ \Rightarrow running time: $O(n \cdot(n+m))$
- connected G, algorithm using matrix multiplication \Rightarrow running time: $O(\underbrace{M(n)} \log n)$ time for $n \times n$-matrix multiplication, $M(n) \in O\left(n^{2.3727}\right)$

Diameter - Lower bounds?

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

- given graph $G=(V, E)$
- nodes have unbounded computational power
- nodes know theirselves and their neighbours

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

- given graph $G=(V, E)$
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

- given graph $G=(V, E)$
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- goal: evaluate $g:\{G=(V, E)$ graph $| | V \mid=n\} \rightarrow\{0,1\}$

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

- given graph $G=(V, E)$
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- goal: evaluate $g:\{G=(V, E)$ graph $| | V \mid=n\} \rightarrow\{0,1\}$

Definition

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

- given graph $G=(V, E)$
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- goal: evaluate $g:\{G=(V, E)$ graph $| | V \mid=n\} \rightarrow\{0,1\}$

Definition

- $\mathcal{A}_{\epsilon}:=\{$ A algorithm \mid $\left.\begin{array}{l}\text { distributed, evaluating } g, \\ \text { using randomness, } \\ \text { error probability }<\epsilon\end{array}\right\}$

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

- given graph $G=(V, E)$
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- goal: evaluate $g:\{G=(V, E)$ graph $| | V \mid=n\} \rightarrow\{0,1\}$

Definition

- $\mathcal{A}_{\epsilon}:=\left\{\begin{array}{l}\text { a algorithm } \mid\end{array}\right.$ $\left.\begin{array}{l}\text { distributed, evaluating } g, \\ \text { using randomness, } \\ \text { error probability }<\epsilon\end{array}\right\}$
- $R_{\epsilon}^{d c}(A(G)) \hat{=}$ number of rounds $A \in \mathcal{A}_{\epsilon}$ needs in order to compute $g(G)$

Diameter - Lower bounds?

Model of computation: DistributedRound (B)

- given graph $G=(V, E)$
- nodes have unbounded computational power
- nodes know theirselves and their neighbours
- round based model: each node can send B bits over each incident edge in one round
- goal: evaluate $g:\{G=(V, E)$ graph $| | V \mid=n\} \rightarrow\{0,1\}$

Definition

- $\mathcal{A}_{\epsilon}:=\left\{\begin{array}{l}\text { a algorithm } \mid\end{array}\right.$ $\left.\begin{array}{l}\text { distributed, evaluating } g, \\ \text { using randomness, } \\ \text { error probability }<\epsilon\end{array}\right\}$
- $R_{\epsilon}^{d c}(A(G)) \hat{=}$ number of rounds $A \in \mathcal{A}_{\epsilon}$ needs in order to compute $g(G)$
- $R_{\epsilon}^{d c}(g):=\min _{A \in \mathcal{A}_{\epsilon}} \max _{G=(V, E),|V|=n} R_{\epsilon}^{d c}(A(G))$

Diameter - Lower bound!

Diameter - Lower bound!

Definition
$\operatorname{diam}_{4}(G):= \begin{cases}1 & , \operatorname{diam}(G) \leq 4 \\ 0 & , \text { else }\end{cases}$

Diameter - Lower bound!

$$
\begin{aligned}
& \text { Definition } \\
& \operatorname{diam}_{4}(G):= \begin{cases}1 & , \text { diam }(G) \leq 4 \\
0 & , \text { else }\end{cases}
\end{aligned}
$$

Theorem

$\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

Diameter - Lower bound!

> Definition
> $\operatorname{diam}_{4}(G):= \begin{cases}1 & , \text { diam }(G) \leq 4 \\ 0 & , \text { else }\end{cases}$

Theorem
$\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

Idea of proof:

- part I: transfer to another model of computation
- part II: use known lower bound

Part I: transfer to another model of computation

Part I: transfer to another model of computation

Model of computation: Communication

Part I: transfer to another model of computation

Model of computation: Communication

- given $a \in\{0,1\}^{k}$ to Alice, $b \in\{0,1\}^{k}$ to Bob
- Alice and Bob have unbounded computational power

Part I: transfer to another model of computation

Model of computation: Communication

- given $a \in\{0,1\}^{k}$ to Alice, $b \in\{0,1\}^{k}$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round

Part I: transfer to another model of computation

Model of computation: Communication

- given $a \in\{0,1\}^{k}$ to Alice, $b \in\{0,1\}^{k}$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- goal: evaluate $g:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$

Part I: transfer to another model of computation

Model of computation: Communication

- given $a \in\{0,1\}^{k}$ to Alice, $b \in\{0,1\}^{k}$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- goal: evaluate $g:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$

Definition

Part I: transfer to another model of computation

Model of computation: Communication

- given $a \in\{0,1\}^{k}$ to Alice, $b \in\{0,1\}^{k}$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- goal: evaluate $g:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$

Definition

- $\mathcal{A}_{\epsilon}:=\{$ A algorithm \mid
for two parties, evaluating g, using randomness, error probability $<\epsilon$

Part I: transfer to another model of computation

Model of computation: Communication

- given $a \in\{0,1\}^{k}$ to Alice, $b \in\{0,1\}^{k}$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- goal: evaluate $g:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$

Definition

- $\mathcal{A}_{\epsilon}:=\left\{\begin{array}{l}A \text { algorithm }\end{array}\right.$
for two parties, evaluating g, using randomness, error probability $<\epsilon$

- $R_{\epsilon}^{c c}(A(a, b)) \hat{=}$ number of 1-bit messages exchanged in order to compute $g(a, b)$

Part I: transfer to another model of computation

Model of computation: Communication

- given $a \in\{0,1\}^{k}$ to Alice, $b \in\{0,1\}^{k}$ to Bob
- Alice and Bob have unbounded computational power
- round based model: Alice and Bob can exchange one bit in one round
- goal: evaluate $g:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}$

Definition

- $\mathcal{A}_{\epsilon}:=\{A$ algorithm \mid
for two parties, evaluating g,
using randomness,
error probability $<\epsilon$
- $R_{\epsilon}^{c c}(A(a, b)) \hat{=}$ number of 1 -bit messages exchanged in order to compute $g(a, b)$
- $R_{\epsilon}^{c c}(g):=\min _{A \in \mathcal{A}_{\epsilon}} \max _{a, b \in\{0,1\}^{k}} R_{\epsilon}^{c c}(A(a, b))$

Part I: transfer to another model of computation

$$
\text { Let } f:\{G=(V, E) \text { graph }| | V \mid=n\} \rightarrow\{0,1\} .
$$

Part I: transfer to another model of computation

$$
\text { Let } f:\{G=(V, E) \text { graph }| | V \mid=n\} \rightarrow\{0,1\} .
$$

Definition

Let $G=(V, E)$ be a graph. $\left(G_{a}, G_{b}, C\right)$ with subgraphs $G_{a}=\left(V_{a}, E_{a}\right)$ and $G_{b}=\left(V_{b}, E_{b}\right)$ is a cut iff $V=V_{a} \dot{\cup} V_{b}$, $E=E_{a} \dot{\cup} E_{b} \dot{\cup} C$ and $C=\left\{\{u, v\} \in E \mid u \in V_{a}, v \in V_{b}\right\}$.

Part I: transfer to another model of computation

$$
\text { Let } f:\{G=(V, E) \text { graph }| | V \mid=n\} \rightarrow\{0,1\} .
$$

Definition

Let $G=(V, E)$ be a graph. $\left(G_{a}, G_{b}, C\right)$ with subgraphs $G_{a}=\left(V_{a}, E_{a}\right)$ and $G_{b}=\left(V_{b}, E_{b}\right)$ is a cut iff $V=V_{a} \dot{U} V_{b}$, $E=E_{a} \dot{\cup} E_{b} \dot{\cup} C$ and $C=\left\{\{u, v\} \in E \mid u \in V_{a}, v \in V_{b}\right\}$.

Let G be a graph with cut $\left(G_{a}, G_{b}, C\right)$. Define

$$
f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)
$$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound(B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f)
$$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound(B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f) .
$$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound(B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f)
$$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound(B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f)
$$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound(B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f) .
$$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound(B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f)
$$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound(B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the
Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f) .
$$

\# bits over $C \geq R_{\epsilon}^{c c}\left(f^{\prime}\right)$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound (B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the
Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f) .
$$

\# bits over $C \geq R_{\epsilon}^{c c}\left(f^{\prime}\right)$
$\Rightarrow \#$ messages over $C \geq \frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{B}$

Part I: transfer to another model of computation

Lemma

If $f(G)$ can be computed in the DistributedRound (B) model, $f^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right):=f(G)$ can be computed in the
Communication model. Furthermore

$$
\frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B} \leq R_{\epsilon}^{d c}(f)
$$

\# bits over $C \geq R_{\epsilon}^{c c}\left(f^{\prime}\right)$
\Rightarrow \# messages over $C \geq \frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{B}$
$\Rightarrow R_{\epsilon}^{d c}(f) \geq \frac{R_{\epsilon}^{c c}\left(f^{\prime}\right)}{2|C| B}$

Part I: transfer to another model of computation

$$
\begin{aligned}
& R_{\epsilon}^{d c}(f) \\
& \geq=1(G)
\end{aligned}
$$

Part I: transfer to another model of computation

Theorem

$\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

$\operatorname{diam}_{4}(G)$
$R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right)$

$\operatorname{diam}_{4}^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right)$

$$
\geq \quad \frac{R_{\epsilon}^{c c}\left(\operatorname{diam}_{4}^{\prime}\right)}{2|C| B}
$$

Part II: use known lower bound

Part II: use known lower bound

Definition

$$
\begin{aligned}
& \operatorname{disj}_{k}:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\} \\
& \operatorname{disj}_{k}(a, b):= \begin{cases}0, \exists i \in\{0, \ldots, k-1\}: a_{i}=b_{i}=1 \\
1 & , \text { else }\end{cases}
\end{aligned}
$$

Part II: use known lower bound

Definition

$$
\begin{aligned}
& \operatorname{disj}_{k}:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\} \\
& \operatorname{disj}_{k}(a, b):= \begin{cases}0 & , \exists i \in\{0, \ldots, k-1\}: a_{i}=b_{i}=1 \\
1 & , \text { else }\end{cases}
\end{aligned}
$$

Lemma

$\forall \epsilon>0$ sufficienty small: $R_{\epsilon}^{c c}\left(\right.$ disj $\left._{k}\right) \in \Omega(k)$

Part II: use known lower bound

Definition

$$
\begin{aligned}
& \operatorname{disj}_{k}:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}, \\
& \operatorname{disj}_{k}(a, b):= \begin{cases}0 & , \exists i \in\{0, \ldots, k-1\}: a_{i}=b_{i}=1 \\
1 & , \text { else }\end{cases}
\end{aligned}
$$

Lemma

$\forall \epsilon>0$ sufficienty small: $R_{\epsilon}^{c c}\left(\right.$ disj $\left._{k}\right) \in \Omega(k)$
Needed:
$\mathcal{R}_{k}:\{\mathrm{A}, \mathrm{B}\} \times\{0,1\}^{k} \rightarrow\{(H, C) \mid H \subseteq G,(H, G \backslash H, C) \mathrm{cut}\}$ such that $\operatorname{disj}_{k}(a, b)=\operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k}(A, a), \mathcal{R}_{k}(B, b)\right)$

Part II: use known lower bound

Definition

$$
\begin{aligned}
& \operatorname{disj}_{k}:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}, \\
& \operatorname{disj}_{k}(a, b):= \begin{cases}0 & , \exists i \in\{0, \ldots, k-1\}: a_{i}=b_{i}=1 \\
1 & , \text { else }\end{cases}
\end{aligned}
$$

Lemma

```
\(\forall \epsilon>0\) sufficienty small: \(R_{\epsilon}^{c c}\left(\right.\) disj \(\left._{k}\right) \in \Omega(k)\)
```

Needed:
$\mathcal{R}_{k}:\{\mathrm{A}, \mathrm{B}\} \times\{0,1\}^{k} \rightarrow\{(H, C) \mid H \subseteq G,(H, G \backslash H, C) \mathrm{cut}\}$ such that $\operatorname{disj}_{k}(a, b)=\operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k}(A, a), \mathcal{R}_{k}(B, b)\right)$

$$
\Rightarrow R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \geq \frac{R_{\epsilon}^{c c}\left(\operatorname{diam}_{4}^{\prime}\right)}{2|C| B} \geq \frac{R_{\epsilon}^{c c}\left(\operatorname{disj}_{k}\right)}{2|C| B}
$$

Part II: use known lower bound

Theorem
 $\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

$\operatorname{diam}_{4}(G)$
$R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right)$

$\operatorname{diam}_{4}^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right)$
$\operatorname{disj}_{k}(a, b)$

$$
\frac{R_{\epsilon}^{c c}\left(\operatorname{diam}_{4}^{\prime}\right)}{2|C| B}
$$

$$
\geq
$$

$$
\frac{R_{\epsilon}^{c c}\left(\operatorname{disj}_{k}\right)}{2|C| B}
$$

Part II: use known lower bound

Theorem
 $\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

$\operatorname{diam}_{4}(G)$
$R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right)$

$\operatorname{diam}_{4}^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right)$

$$
\frac{R_{\epsilon}^{c c}\left(\operatorname{diam}_{4}^{\prime}\right)}{2|C| B}
$$

$$
\geq
$$

$$
\frac{R_{\epsilon}^{c c}\left(\operatorname{disj}_{k_{n}^{2}}\right)}{2|C| B}
$$

Part II: use known lower bound

Needed:
$\mathcal{R}_{k_{n}^{2}}:\{\mathrm{A}, \mathrm{B}\} \times\{0,1\}^{k_{n}^{2}} \rightarrow\{(H, C) \mid H \subseteq G,(H, G \backslash H, C) \mathrm{cut}\}$
such that $\operatorname{disj}_{k_{n}^{2}}(a, b)=\operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)$

Part II: use known lower bound

$$
\begin{array}{l|l}
k_{n}:=\left\lfloor\frac{n}{10}\right\rfloor & \begin{array}{c}
\text { Ex.: } n=20, k_{n}=2, \\
a=(0,0,0,1), b=(0,1,1,1)
\end{array}
\end{array}
$$

Part II: use known lower bound

	$k_{n}:=\left\lfloor\frac{n}{10}\right\rfloor$	$\left.\begin{array}{c}\text { Ex.: } n=20, k_{n}=2, \\ \\ \\ \text { Alice } \\ \hline \text { Bob }\end{array} 0,0,0,1\right), b=(0,1,1,1)$

Part II: use known lower bound

	$\left\lfloor\frac{n}{10}\right\rfloor$	$\begin{gathered} \text { Ex.: } n=20, k_{n}=2 \\ a=(0,0,0,1), b=(0,1,1,1) \end{gathered}$	
Alice	Bob	Alice	Bob
$L:=\left\{l_{i} \mid i<2 k_{n}\right\}$	$R:=\left\{r_{i} \mid i<2 k_{n}\right\}$		
			(0_{0}
			(${ }_{1}$
			(${ }_{2}$
1			(${ }_{3}$

Part II: use known lower bound

Part II: use known lower bound

$k_{n}:=\left\lfloor\frac{n}{10}\right\rfloor$	$\begin{gathered} \text { Ex.: } n=20, k_{n}=2 \\ a=(0,0,0,1), b=(0,1,1,1) \end{gathered}$			
Alice Bob	Alice		Bob	
$\begin{array}{ll} L:=\left\{I_{i} \mid i<2 k_{n}\right\} & R:=\left\{r_{i} \mid i<2 k_{n}\right\} \\ L^{\prime}:=\left\{I_{i}^{\prime} \mid i<2 k_{n}\right\} & R^{\prime}:=\left\{r_{i}^{\prime} \mid i<2 k_{n}\right\} \end{array}$			W	W
C_{L} $\begin{aligned} c_{R}, W:= & \left\{w_{i} \mid i<\right. \\ & \left.n-8 k_{n}-2\right\} \end{aligned}$	(C)			(C_{R}
	(10)	(10)	(ro)	r_{0}^{\prime}
	(11)	(1)	(r)	(r_{1}
	(I_{2}	(${ }_{2}$	(r2)	(r2)
1	(13	(${ }_{3}$	(${ }_{3}$	r_{3}

Part II: use known lower bound

$k_{n}:=\left\lfloor\frac{n}{10}\right\rfloor$		$\begin{gathered} \text { Ex.: } n=20, k_{n}=2 \\ a=(0,0,0,1), b=(0,1,1,1) \end{gathered}$		
Alice	Bob	Alice	Bob	
$\begin{aligned} & L:=\left\{I_{i} \mid i<2 k_{n}\right\} \\ & L^{\prime}:=\left\{I_{i}^{\prime} \mid i<2 k_{n}\right\} \end{aligned}$	$\begin{aligned} & R:=\left\{r_{i} \mid i<2 k_{n}\right\} \\ & R^{\prime}:=\left\{r_{i}^{\prime} \mid i<2 k_{n}\right\} \end{aligned}$		W_{0}	
C_{L}	$\begin{aligned} c_{R}, W:= & \left\{w_{i} \mid i<\right. \\ & \left.n-8 k_{n}-2\right\} \end{aligned}$	(C_{L}	(CR)	
E_{A}	E_{B}			
$:=\left\{\left\{l_{i}, l_{i}^{\prime}\right\} \mid i<2 k_{n}\right\}$	$:=\left\{\left\{r_{i}, r_{i}^{\prime}\right\} \mid i<2 k_{n}\right\}$		(r_{0}	r_{0}^{\prime}
			r_{1}	(ris
			(${ }_{2}$	r_{2}
1		I_{3}	(r_{3}	r_{3}

Part II: use known lower bound

Die Universität der Informationsgesellschaft

Part II: use known lower bound

Die Universität der Informationsgesellschaft

Part II: use known lower bound

$k_{n}:=\left\lfloor\frac{n}{10}\right\rfloor$		$\begin{gathered} \text { Ex.: } n=20, k_{n}=2, \\ a=(0,0,0,1), b=(0,1,1,1) \end{gathered}$
Alice	Bob	
$L:=\left\{l_{i} i<2 k_{n}\right\}$	$R:=\left\{r_{i} i<2 k_{n}\right\}$	
$L^{\prime}:=\left\{{ }^{\prime} l^{\prime} \mid i<2 k_{n}\right\}$	$R^{\prime}:=\left\{r_{i}^{\prime} \mid i<2 k_{n}\right\}$	
c_{L}		
$:=\left\{\left\{1, \ldots, l_{1}\right\} \mid i<2 k_{n}\right\}$	$:=\left\{\left\{r_{1}, r_{1}^{\prime}\right\} \mid i<2 k_{n}\right\}$	(10) (10)
	$\left.u_{\left\{\left\{r_{i}, c_{c}\right\}\right.}\right\}$	
		(1)
$\cup\left\{\{1, i, j\} \mid i>j \geq k_{n}\right\}$	$\cup\left\{\left\{r_{r}, r_{j}\right\} \mid i>j \geq k_{n}\right\}$	(1)
		(b) T_{2}
		(2) (2) ${ }^{2}$

Die Universität der Informationsgesellschaft

Part II: use known lower bound

Needed:
$\mathcal{R}_{k_{n}^{2}}:\{\mathrm{A}, \mathrm{B}\} \times\{0,1\}^{k_{n}^{2}} \rightarrow\{(H, C) \mid H \subseteq G,(H, G \backslash H, C) \mathrm{cut}\}$
such that $\operatorname{disj}_{k_{n}^{2}}(a, b)=\operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=1 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=1$

$$
a=(0,0,0,1) \quad b=(0,1,1,0)
$$

Part II: use known lower bound

$$
\operatorname{disj}_{k_{n}^{2}}(a, b)=0 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=0
$$

$$
a=(0,0,0,1) \quad b=(0,1,1,1)
$$

Part II: use known lower bound

$$
\operatorname{disj}_{k_{n}^{2}}(a, b)=0 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=0
$$

$$
a=(0,0,0,1) \quad b=(0,1,1,1)
$$

Part II: use known lower bound

$$
\operatorname{disj}_{k_{n}^{2}}(a, b)=0 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=0
$$

$$
a=(0,0,0,1) \quad b=(0,1,1,1)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=0 \Rightarrow \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=0$

$$
a=(0,0,0,1) \quad b=(0,1,1,1)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=0 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=0$

$$
a=(0,0,0,1) \quad b=(0,1,1,1)
$$

Part II: use known lower bound $\operatorname{disj}_{k_{n}^{2}}(a, b)=0 \quad \Rightarrow \quad \operatorname{diam}_{4}^{\prime}\left(\mathcal{R}_{k_{n}^{2}}(A, a), \mathcal{R}_{k_{n}^{2}}(B, b)\right)=0$

$$
a=(0,0,0,1) \quad b=(0,1,1,1)
$$

Part II: use known lower bound

Theorem
 $\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

$\operatorname{diam}_{4}(G)$
$R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right)$

$\operatorname{diam}_{4}^{\prime}\left(\left(G_{a}, C\right),\left(G_{b}, C\right)\right)$

$$
\frac{R_{\epsilon}^{c c}\left(\operatorname{diam}_{4}^{\prime}\right)}{2|C| B}
$$

$$
\geq
$$

$$
\frac{R_{\epsilon}^{c c}\left(\text { disj }_{k_{n}^{2}}\right)}{2|C| B}
$$

Part II: use known lower bound

Theorem

$\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

Lemma

$\forall \epsilon>0$ sufficienty small: $R_{\epsilon}^{c c}\left(\operatorname{disj}_{k}\right) \in \Omega(k)$

$$
k_{n}=\left\lfloor\frac{n}{10}\right\rfloor,|C|=2 k_{n}=2\left\lfloor\frac{n}{10}\right\rfloor
$$

Part II: use known lower bound

Theorem

$\forall n \geq 10 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: $R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \in \Omega\left(\frac{n}{B}\right)$ (even when diameter is bounded by 5)

Lemma

$\forall \epsilon>0$ sufficienty small: $R_{\epsilon}^{c c}\left(\operatorname{disj}_{k}\right) \in \Omega(k)$
$k_{n}=\left\lfloor\frac{n}{10}\right\rfloor,|C|=2 k_{n}=2\left\lfloor\frac{n}{10}\right\rfloor$

$$
\Rightarrow R_{\epsilon}^{d c}\left(\operatorname{diam}_{4}\right) \geq \frac{R_{\epsilon}^{c c}\left(\operatorname{disj}_{k_{n}^{2}}\right)}{2|C| B} \in \Omega\left(\frac{n}{B}\right)
$$

Other lower bounds using this technique

Other lower bounds using this technique

$$
\begin{aligned}
& \text { Alice: a } \\
& \begin{array}{lll}
R_{\epsilon}^{d c}(f) \\
\text { Bob: } \mathrm{b}
\end{array} \\
& \geq \operatorname{iisj}_{k_{n}^{2}(a, b)}^{2|C| B}
\end{aligned}
$$

Other lower bounds using this technique

Theorem

$\forall \delta>0 \forall n \geq 16\left\lceil\frac{3}{4 \delta}\right\rceil+8 \forall B \geq 1 \forall \epsilon>0$ sufficiently small: any distributed ϵ-error algorithm that $\left(\frac{3}{2}-\delta\right)$-approximates the diameter of a graph needs $\Omega\left(\frac{\sqrt{\delta n}}{B}\right)$ rounds.

Theorem

$$
\forall \delta>0 \forall n \geq 16\left\lceil\frac{2}{\delta}\right\rceil+4 \forall B \geq 1 \forall \epsilon>0 \text { sufficiently small: }
$$ any distributed ϵ-error algorithm that $(2-\delta)$-approximates the girth of a graph needs $\Omega\left(\frac{\sqrt{\delta n}}{B}\right)$ rounds.

