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Generalization to higher-dimensional polytopes?
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& P: convex polytope in R”
* V(P): set of vertices of P
& 7(P): triangulation of P using only the vertices of P

Definition  adj (p)(t) := Z vol(o) H €y(1),
oeT(P) veV(P)\V(o)

where t = (t1,...,tp) and £,(t) =1 — vity — votp — ... — vpty.

Theorem (Warren)

I adj,(p(t) is independent of the triangulation T(P). So adjp := adj,(p).
Il If P is a polygon, then Z(adjp) = Ap=.
(Recall: P* ={x e R" |Vv € V(P):¢,(x) > 0} dual polytope of P)

Geometric definition using a vanishing condition a la Wachspress?



The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P



The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P



The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

&y



The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P




The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P




The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P




The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P




The Adjoint of a Polytope
¢ P: polytope in P
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

Theorem (K., Ranestad)
If Hp is simple (i.e. through any point in P" pass < n hyperplanes),



The Adjoint of a Polytope

& P: polytope in P” with d facets

& Hp: hyperplane arrangement spanned by facets of P

¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

Theorem (K., Ranestad)
If Hp is simple (i.e. through any point in P" pass < n hyperplanes),



The Adjoint of a Polytope
& P: polytope in P” with d facets
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is
a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.



The Adjoint of a Polytope
& P: polytope in P” with d facets
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

2./

Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is
a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.

AlmAz

adjoint_plane



The Adjoint of a Polytope
& P: polytope in P” with d facets
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

2./

adjoint quadric surface adjoint_plane
Theorem (K., Ranestad)
If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is

a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.

AlmAz



The Adjoint of a Polytope
& P: polytope in P” with d facets
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

2./

/i
adjoint double plane  adjoint quadric surface adjoint_plane
Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is
a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.

AlmAz



The Adjoint of a Polytope

& P: polytope in P" with d facets
& Hp: hyperplane arrangement spanned by facets of P

¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is
a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.



The Adjoint of a Polytope

& P: polytope in P" with d facets
& Hp: hyperplane arrangement spanned by facets of P

¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P" pass < n hyperplanes), there is
a unique hypersurface Ap in P" of degree d — n — 1 passing through Rp.
Ap is called the adjoint of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adjp vanishes along R p~.
If Hp~ is simple, then Z(adjp) = Ap-~.
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Theorem (Aluffi, (K., Ranestad))
The Segre class of S4 in the Chow ring of V is

nl Xy~ HXad] ()
H gv(_X)

VEV(NA)

, if N4 is finite.
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Aluffi
o N4 may have vertices at oo in the direction Example: n =2
of the standard basis vectors ey, ..., e, A= {(2,6),(3,4),
o for vertex v; at oo in direction of e;: =), (5,1), (7,0)}

bot) =1
Theorem (Aluffi, (K., Ranestad))
The Segre class of S4 in the Chow ring of V is

n! Xy --- Xpadjy, (—=X)
H év(_X)

veV(Ny)

Example: 2X1 Xz adjy , (— X1, —X2) :
,  Where
Xo(1+2X1 +6X2)(1 + 3X1 + 4X2)(1 +5X1 + X2)(1 +7X1)

adjy, (t) = 1—15t; — 226, + 718f + 21281 1, + 95t — 105¢; — 47617 t, — 511t 5 — 8413,
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Application 2: Moments of Probability Distributions
K., Shapiro, Sturmfels

¢ P: convex polytope in R”

o up: uniform probability distribution on P

¢ moments

m(P) = / W2 . Wit for T = (A hteer in) € 7%,

Proposition (K., Shapiro, Sturmfels)

= adjp(t)
% =BT ep T A
20 veV(P)

l'1+l'2+.~+in+n)

11402yeeeyinyn

where cg = (
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Bu(p) = o=
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Definition
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2\E)
| area(\;
il (L)
area(A1) + area(Az) + area(A3)
,",'" Al f0r I: 172’3
A 7
Al
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V) L = T :

Definition

Let P be a convex polytope in R”. A set of
functions {8, : P° > R | u € V(P)} is called

generalized barycentric coordinates for P
Barycentric coordinates for

if, for all p € P°,

VTV simplices are uniquely
(P yOE e ey determined from (i)-(iii).
(i) wC a(p) = L, and

ueV(P) This is not true for other polytopes!
(i) 95" Bu(plu =

ueV(P)
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Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:
& mean value coordinates

¢ Wachspress coordinates

Applications of generalized barycentric coordinates include:
& mesh parameterizations in geometric modelling
o deformations in computer graphics

o polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric
coordinates which are rational functions of minimal degree.
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Warren (1996)

¢ P: convex polytope in R”
* F(P): set of facets of P

V(P) &= BB (P& v(P)
Vil Fr—=vr

Definition (Warren)

The Wachspress coordinates of P are

adeu(t) 3 H EVF(t)
FeF(P): u¢F

Ve V(P) = 8,(t) = i)




Wachspress Map

e I 0

FeF(P): u¢F
adjp.(t)

Yu e VAPIZ s Bl =

& P: polytope in P” with d facets
& Hp: simple hyperplane arrangement spanned by facets of P



Wachspress Map

e I 0

FeF(P): u¢F

Vue VAP B adjp- (t)

& P: polytope in P” with d facets
& Hp: simple hyperplane arrangement spanned by facets of P

The numerators of the Wachspress coordinates define the Wachspress map:

wpPL: = s PHAPIEL

=



Wachspress Map

e I 0
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& P: polytope in P” with d facets
& Hp: simple hyperplane arrangement spanned by facets of P

The numerators of the Wachspress coordinates define the Wachspress map:

WPy pP) el

Fih g @

FeF(P): u¢F ueV(P)

where (¢ is a homogeneous linear equation defining the hyperplane span{F}.
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& P: polytope in P" with d facets

o Hp: simple hyperplane arrangement spanned by facets of P
¢ Qp:= HY(P",Zr,(d — n))

o Wp := wp(P") is the Wachspress variety

* Vp :=span{wp(Ap)}

Theorem (K., Ranestad) , We
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Wachspress Map

& P: polytope in P" with d facets

o Hp: simple hyperplane arrangement spanned by facets of P
¢ Qp:= HY(P",Zr,(d — n))

o Wp := wp(P") is the Wachspress variety

* Vp :=span{wp(Ap)}

Theorem (K., Ranestad) Wp
dimVp = ’V(P)‘ —n—2. wp /,,/’// \[

The projection o
pry, : P(Qp) --» P” from Vp Plvp
restricted to the Wachspress ]

variety Wp is the inverse of
the Wachspress map wp. Rl
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Woachspress Surfaces

ol
wp //,/’// \[
]}f e B(QR= B
,,,,,,,,,,,,,,,, ~ d—4
AP wP|AP b VP =P

Theorem (lIrving, Schenck)
Let P be a d-gon in P
& The Wachspress variety Wp is a surface of degree (d§2) JE kg

o The image of the adjoint curve Ap under wp is a curve of degree (?7°),
ifd > 4.

o If d = 4, the image of the adjoint line Ap is a point.
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adjoint plane

(€A, = Lo, Js0Rll 4, - oy, )

P! x P2 — P°

projection from point

line
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Woachspress Threefolds

Ap adjoint plane adjoint quadric surface
wp (KAI : €A2) &® (fDl : KDZ : 553) (fl : KG) (029) (52 : 55) & (53 ; 54)
Wp PIagEe Pl P Ehe bl
WP, projection from point contracts ruling of lines

wp(Ap) line twisted cubic curve
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Wachspress Threefolds

& P: polytope in P? with d facets

& Hp: simple hyperplane arrangement spanned by facets of P
& a: number of isolated points in Rp

¢ b: number of double points in Rp

¢ c: number of triple points in Rp

Proposition (K., Ranestad)
The Wachspress variety Wp C P?9=5 js a threefold of degree

1
2b+4c—a—%(d—3)(d2—11d+26):b+2c+1—6(d—3)(d—4)(d—11)

and sectional genus b+ 2c + 1+ 3(d — 3)(d — 6).
The image of the adjoint surface Ap under wp is a surface iff P is neither a
tetrahedron, a triangular prism nor a cube. In that case, its degree is

1
2b+4c—a—%(d—3)(d—4)(d—6):b+2c—|—1—6(d—3)(d2—12d+38)

and its sectional genus is b+ 2c + 1 — 1(d — 3)(d — 4).
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Why “Adjoint”?
& P: polytope in P” with d facets

& Hp: simple hyperplane arrangement spanned by facets of P

¢ Rp: codimension-c part of Rp
blowup 7

Idea: b X smooth

polytopal hypersurface:

hypersurface hypersurface of degree d, 2
of degree d multiplicity ¢ along R, When can we find
smooth outside of Rp a polytopal hypersurface D?

Adjunction formula: K5 = (Kx + [[3])|f)
Def.: An adjoint to D in X is a hypersurface A in X s.t. [A] = Kx + [D].

Proposition (K., Ranestad)

D has a unique adjoint A in X, and thus a unique canonical divisor: AN D.
Moreover, w(A) = Ap.
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Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in P?>. There is a polygonal curve D iffd < 6.
In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let C be a combinatorial type of simple polytopes in P2 and let P be a
general polytope of type C. There is a polytopal surface D iff C is one of:

¢ 10

In that case, the general D is either an or a K3-surface.




comb. facet Rp (a,b,c) Wp wp(Ap) dimTp wp (D)
type sizes (deg., sec. genus) (deg., sec. genus) (deg., sec. genus)
B @00 iy : M (moothauartiom P
44433 \ . (1,0,0) P! X(?%TQO)C P line 93 min(i;r’l;;l) K3
i A44444 \\ / (0,0,0) P! x ]P(16>’<£P;1 cP? twisted cubic curve % mir(lilrga;)K3
. 554433 \" */ (2,2,0) W& C3 )]P” quadléc, (s)t)lrface 17 non-r?liifrél)al K3
sssadts X e TEST MRRe T e
5544444 Q / (0,5,0) Fano (31_4%18% in P? rationa(l ch;)ll inP° 19 non—r(riigxtiﬁz)ﬂ K3
6644433 ﬁ (3,6,1) szlpzcl 11?)’9 rational ellil();f(;) ;urface inP® 4 mini(r;;’l fél)iptic
66444444 3 — (0,12,2) V[f2p77C2§)11 elliptic K(?;;}l;)face inP” 3 mini(r;l;l f;I;ptic
55554444 0.16,0) Ve cE! K3-surface in P7 . non-minimal K3

(27,22)

(12,7)

(24,15)




