The Adjoint of a Polytope

Kathlén Kohn
KTH

joint works with Kristian Ranestad (Universitetet i Oslo) / Boris Shapiro (Stockholms universitet) & Bernd Sturmfels (MPI MiS Leipzig / UC Berkeley)
The Adjoint of a Polygon

Wachspress (1975)

Definition

The adjoint A_P of a polygon $P \subset \mathbb{R}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$\deg A_P = |V(P)| - 3$
Definition

The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$$\text{deg } A_P = |V(P)| - 3$$
The Adjoint of a Polygon
Wachspress (1975)

Definition
The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$(\deg A_P = |V(P)| - 3)$

Generalization to higher-dimensional polytopes?
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

adj \(\tau(P) \) \((t) \) := \[
\sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),
\]

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

I adj \(\tau(P) \) \((t) \) is independent of the triangulation \(\tau(P) \). So adj \(P \) := adj \(\tau(P) \).

II If P is a polygon, then $Z(\text{adj} P) = A P^\ast$.

(Recall: P^\ast = \{ $x \in \mathbb{R}^n | \forall v \in V(P)$: $\ell_v(x) \geq 0$ \} dual polytope of P)

Geometric definition using a vanishing condition `a la Wachspress

II - XVIII
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

$$\text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

$\text{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\text{adj}_P := \text{adj}_{\tau(P)}(P)$.

II

If P is a polygon, then $Z(\text{adj} P) = A_P^*$.

(Recall: $P^* = \{x \in \mathbb{R}^n | \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

$$\text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

$\text{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\text{adj}_P := \text{adj}_{\tau(P)}$.
The Adjoint of a Polytope
Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

$$\text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

I. $\text{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\text{adj}_P := \text{adj}_{\tau(P)}$.

II. If P is a polygon, then $Z(\text{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)
The Adjoint of a Polytope

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition

$$\text{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \text{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where $t = (t_1, \ldots, t_n)$ and $\ell_v(t) = 1 - v_1 t_1 - v_2 t_2 - \ldots - v_n t_n$.

Theorem (Warren)

1. $\text{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\text{adj}_P := \text{adj}_{\tau(P)}$.
2. If P is a polygon, then $Z(\text{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \geq 0\}$ dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?
The Adjoint of a Polytope

- \mathcal{P}: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of \mathcal{P}
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)
If \mathcal{H}_P is simple (i.e. through any point in P pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.

III - XVIII
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)
If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)
If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.

III - XVIII
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.

III - XVIII
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- H_P: hyperplane arrangement spanned by facets of P
- R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

Theorem (K., Ranestad)

If H_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- H_P: hyperplane arrangement spanned by facets of P
- R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

Theorem (K., Ranestad)

If H_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through R_P. A_P is called the adjoint of P.

III - XVIII
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.

III - XVIII
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)
If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the adjoint of P.

adjoint quadric surface

adjoint plane
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the **adjoint** of P.
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the **adjoint** of P.

Proposition (K., Ranestad)

Warren’s adjoint polynomial $\text{adj} P$ vanishes along \mathcal{R}_P^*. If \mathcal{H}_P^* is simple, then $Z(\text{adj} P) = A_P^*$.

IV - XVIII
The Adjoint of a Polytope

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: hyperplane arrangement spanned by facets of P
- \mathcal{R}_P: residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree $d - n - 1$ passing through \mathcal{R}_P. A_P is called the **adjoint** of P.

Proposition (K., Ranestad)

Warren’s adjoint polynomial adj_P vanishes along \mathcal{R}_{P^*}. If \mathcal{H}_{P^*} is simple, then $Z(\text{adj}_P) = A_{P^*}$.

IV - XVIII
Application 1: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
Application 1: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- X^I: hypersurface obtained by taking X_{i_j} with multiplicity i_j

 for $I = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$
Application 1: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- X^I: hypersurface obtained by taking X_i with multiplicity i_j
 for $I = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$
- $A \subset \mathbb{Z}_{\geq 0}^n$ defines a monomial subscheme

$S_A = \bigcap_{I \in A} X^I$
Application 1: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- $X^\mathcal{I}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j
 for $\mathcal{I} = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}^n_{\geq 0}$
- $\mathcal{A} \subset \mathbb{Z}^n_{\geq 0}$ defines a **monomial subscheme**

$S_\mathcal{A} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^\mathcal{I}$ and a Newton region $N_\mathcal{A} \subset \mathbb{R}^n_{\geq 0}$

Example: $n = 2$

$\mathcal{A} = \{(2, 6), (3, 4), (4, 3), (5, 1), (7, 0)\}$
Application 1: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- $X^\mathcal{I}$: hypersurface obtained by taking X_i with multiplicity i_j
 for $\mathcal{I} = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}^n_{\geq 0}$
- $\mathcal{A} \subset \mathbb{Z}^n_{\geq 0}$ defines a monomial subscheme

$S_\mathcal{A} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^\mathcal{I}$ and a Newton region $\mathcal{N}_\mathcal{A} \subset \mathbb{R}^n_{\geq 0}$

$$\mathcal{N}_\mathcal{A} := \mathbb{R}^n_{\geq 0} \setminus \text{convHull} \left(\bigcup_{\mathcal{I} \in \mathcal{A}} (\mathbb{R}^n_{\geq 0} + \mathcal{I}) \right)$$

Example: $n = 2$

$\mathcal{A} = \{(2, 6), (3, 4), (4, 3), (5, 1), (7, 0)\}$
Application 1: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_1, \ldots, X_n: smooth hypersurfaces meeting with normal crossings in V
- X^I: hypersurface obtained by taking X_{i_j} with multiplicity i_j
 for $I = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}^n_{\geq 0}$
- $A \subset \mathbb{Z}^n_{\geq 0}$ defines a **monomial subscheme**

$$S_A = \bigcap_{I \in A} X^I$$

and a Newton region $N_A \subset \mathbb{R}^n_{\geq 0}$

$$N_A := \mathbb{R}^n_{\geq 0} \setminus \text{convHull} \left(\bigcup_{I \in A} (\mathbb{R}^n_{\geq 0} + I) \right)$$

Theorem (Aluffi, (K., Ranestad))

The Segre class of S_A in the Chow ring of V is

$$n! \prod_{v \in V(N_A)} \ell_v(-X) \left(-X \right)^{\text{adj}_{N_A}} / \prod_{v \in V(N_A)} \ell_v(-X),$$

if N_A is finite.

Example: $n = 2$

$A = \{(2, 6), (3, 4), (4, 3), (5, 1), (7, 0)\}$
Application 1: Segre Classes of Monomial Schemes

- \(N_A \) may have vertices at \(\infty \) in the direction of the standard basis vectors \(e_1, \ldots, e_n \)

Example: \(n = 2 \)

\(A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\} \)

\[N \]
Application 1: Segre Classes of Monomial Schemes

Aluffi

- N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n
- for vertex v_i at ∞ in direction of e_i:
 \[\ell_{v_i}(t) := -t_i \]

Theorem (Aluffi, (K., Ranestad))

The Segre class of S_A in the Chow ring of V is

\[
\frac{n! X_1 \cdots X_n \text{adj}_{N_A}(-X)}{\prod_{v \in V(N_A)} \ell_v(-X)}.
\]

Example: $n = 2$

\[A = \{(2, 6), (3, 4), (4, 3), (5, 1), (7, 0)\} \]
Application 1: Segre Classes of Monomial Schemes

Aluffi

- N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n
- For vertex v_i at ∞ in direction of e_i:
 $$\ell_{v_i}(t) := -t_i$$

Theorem (Aluffi, (K., Ranestad))

The Segre class of S_A in the Chow ring of V is

$$\frac{n! \, X_1 \cdots X_n \, \text{adj}_{N_A}(-X)}{\prod_{v \in V(N_A)} \ell_v(-X)}.$$

Example: $n = 2$

$A = \{(2, 6), (3, 4), (4, 3), (5, 1), (7, 0)\}$

Example: $2X_1X_2 \, \text{adj}_{N_A}(-X_1, -X_2)$

$$\frac{X_2(1 + 2X_1 + 6X_2)(1 + 3X_1 + 4X_2)(1 + 5X_1 + X_2)(1 + 7X_1)}{1 - 15t_1 - 22t_2 + 71t_1^2 + 212t_1t_2 + 95t_2^2 - 105t_1^3 - 476t_1^2t_2 - 511t_1t_2^2 - 84t_2^3},$$

where

$$\text{adj}_{N_A}(t) = 1 - 15t_1 - 22t_2 + 71t_1^2 + 212t_1t_2 + 95t_2^2 - 105t_1^3 - 476t_1^2t_2 - 511t_1t_2^2 - 84t_2^3.$$
Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P: uniform probability distribution on P

$$m_I(P) := \int_{\mathbb{R}^n} w_{i_1} w_{i_2} \ldots w_{i_n} d\mu_P$$

Proposition (K., Shapiro, Sturmfels)

$$\sum_{I \in \mathbb{Z}^n_{\geq 0}} c_I m_I(P) t_I = \text{adj} P(t) \cdot \text{vol}(P) \prod_{v \in V(P)} \ell_v(t),$$

where $c_I := (i_1 + i_2 + \ldots + i_n + n, i_1, i_2, \ldots, i_n, n)$.

VII - XVIII
Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P: uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \ldots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$$
Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P: uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \ldots w_n^{i_n} d\mu_P \quad \text{for} \quad \mathcal{I} = (i_1, i_2, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Proposition (K., Shapiro, Sturmfels)

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^n} c_{\mathcal{I}} m_{\mathcal{I}}(P) t^{\mathcal{I}} = \frac{\text{adj}_P(t)}{\text{vol}(P) \prod_{v \in V(P)} \ell_v(t)},$$

where $c_{\mathcal{I}} := (i_1 + i_2 + \ldots + i_n + n)_{i_1, i_2, \ldots, i_n, n}$.
Application 3: Barycentric Coordinates

\[\beta_{v_i}(p) := \frac{\text{area}(\triangle_i)}{\text{area}(\triangle_1) + \text{area}(\triangle_2) + \text{area}(\triangle_3)} \]

for \(i = 1, 2, 3 \)
Application 3: Barycentric Coordinates

\[\beta_{v_i}(p) := \frac{\text{area}(\triangle_i)}{\text{area}(\triangle_1) + \text{area}(\triangle_2) + \text{area}(\triangle_3)} \]

for \(i = 1, 2, 3 \)

Definition
Let \(P \) be a convex polytope in \(\mathbb{R}^n \). A set of functions \(\{ \beta_u : P^\circ \to \mathbb{R} \mid u \in V(P) \} \) is called **generalized barycentric coordinates** for \(P \) if, for all \(p \in P^\circ \),

(i) \(\forall u \in V(P) : \beta_u(p) > 0, \)

(ii) \[\sum_{u \in V(P)} \beta_u(p) = 1, \] and

(iii) \[\sum_{u \in V(P)} \beta_u(p)u = p. \]
Application 3: Barycentric Coordinates

\[\beta_{v_i}(p) := \frac{\text{area}(\triangle_i)}{\text{area}(\triangle_1) + \text{area}(\triangle_2) + \text{area}(\triangle_3)} \]

for \(i = 1, 2, 3 \)

Definition

Let \(P \) be a convex polytope in \(\mathbb{R}^n \). A set of functions \(\{ \beta_u : P^\circ \rightarrow \mathbb{R} \mid u \in V(P) \} \) is called **generalized barycentric coordinates** for \(P \) if, for all \(p \in P^\circ \),

(i) \(\forall u \in V(P) : \beta_u(p) > 0, \)
(ii) \(\sum_{u \in V(P)} \beta_u(p) = 1, \) and
(iii) \(\sum_{u \in V(P)} \beta_u(p) u = p. \)

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!
Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:
- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric coordinates which are rational functions of minimal degree.
Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:
- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:
- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods
Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- **Wachspress coordinates**

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric coordinates which are rational functions of minimal degree.
Wachspress Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P
Wachspress Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$V(P) \leftrightarrow_{1:1} \mathcal{F}(P^*)$

$v \mapsto F_v$
Wachspress Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

Definition (Warren)

The Wachspress coordinates of P are:

$$\beta_u(t) := \text{adj}_{F_u(t)} \prod_{F \in \mathcal{F}(P)} u \notin F \ell_v F(t).$$
Wachspress Coordinates

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \xleftrightarrow{1:1} \mathcal{F}(P^*)$$

$v \mapsto F_v$

$\text{Definition (Warren)}$

The Wachspress coordinates of P are

$$\forall u \in V(P) : \beta_u(t) := \frac{\text{adj}_{F_u}(t) \cdot \prod_{F \in \mathcal{F}(P) : u \notin F} \ell_{v_F}(t)}{\text{adj}_{P^*}(t)}.$$
∀ \(u \in V(P) \): \(\beta_u(t) := \frac{\text{adj}_{F_u}(t) \cdot \prod_{F \in \mathcal{F}(P): u \notin F} \ell_{v_F}(t)}{\text{adj}_{P^*}(t)} \).

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
Wachspress Map

\[\forall u \in V(P) : \quad \beta_u(t) := \frac{\text{adj}_{F_u}(t) \cdot \prod_{F \in \mathcal{F}(P) : u \notin F} \ell_{v_F}(t)}{\text{adj}_{P^*}(t)}. \]

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)

The numerators of the Wachspress coordinates define the **Wachspress map**:

\[\omega_P : \mathbb{P}^n \rightarrow \mathbb{P}^{|V(P)|-1}, \]

\[t \mapsto \]
Wachspress Map

\[\forall u \in V(P) : \quad \beta_u(t) := \frac{\operatorname{adj}_{F_u}(t) \cdot \prod_{F \in \mathcal{F}(P) : u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}. \]

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)

The numerators of the Wachspress coordinates define the \textbf{Wachspress map}:

\[\omega_P : \mathbb{P}^n \dashrightarrow \mathbb{P}^{|V(P)| - 1}, \]

\[t \mapsto \left(\prod_{F \in \mathcal{F}(P) : u \notin F} \ell_F(t) \right)_{u \in V(P)} \]

where \(\ell_F \) is a homogeneous linear equation defining the hyperplane span \{\(F \)\}.

\[\text{XI - XVIII} \]
Wachspress Map

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \rightarrow \mathbb{P}^{|V(P)|-1}$,

\[t \mapsto \left(\prod_{F \in \mathcal{F}(P) : u \notin F} \ell_F(t) \right) \quad u \in V(P) \]

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement R_P.
Wachspress Map

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \rightarrow \mathbb{P} | V(P)|^{-1}$,

$$
\begin{pmatrix}
\prod_{F \in \mathcal{F}(P): u \notin F} \ell_F(t)
\end{pmatrix}_{u \in V(P)}
$$

Theorem (K., Ranestad)
The base locus of the Wachspress map ω_P is the residual arrangement \mathcal{R}_P.

$$
\forall u \in V(P) : \omega_P, u \in \Omega_P := H^0(\mathbb{P}^n, I_{\mathcal{R}_P}(d - n))
$$
Wachspress Map

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- Wachspress map: $\omega_P : \mathbb{P}^n \rightarrow \mathbb{P}^{\vert V(P) \vert - 1}$,

$$
t \mapsto \left(\prod_{F \in \mathcal{F}(P): u \notin F} \ell_F(t) \right)_{u \in V(P)}
$$

Theorem (K., Ranestad)

The base locus of the Wachspress map ω_P is the residual arrangement \mathcal{R}_P.

$$
\Rightarrow \forall u \in V(P) : \omega_{P,u} \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d - n))
$$

Theorem (K., Ranestad)

$$
\dim \Omega_P = \vert V(P) \vert, \text{ so } \{ \omega_{P,u} \mid u \in V(P) \} \text{ is a basis of } \Omega_P.
$$
Wachspress Map

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
- Wachspress map: \(\omega_P : \mathbb{P}^n \rightarrow \mathbb{P}^{\left| V(P) \right| - 1} \)

\[t \mapsto \left(\prod_{F \in \mathcal{F}(P) : u \notin F} \ell_F(t) \right) \]

\(u \in V(P) \)

Theorem (K., Ranestad)

The base locus of the Wachspress map \(\omega_P \) is the residual arrangement \(\mathcal{R}_P \).

\[\Rightarrow \forall u \in V(P) : \omega_P, u \in \Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d - n)) \]

Theorem (K., Ranestad)

\(\dim \Omega_P = |V(P)| \), so \(\{ \omega_P, u \mid u \in V(P) \} \) is a basis of \(\Omega_P \).

\[\Rightarrow \omega_P : \mathbb{P}^n \rightarrow \mathbb{P}(\Omega_P^*) \cong \mathbb{P}^{\left| V(P) \right| - 1} \]
Wachspress Map

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d - n))$
- $W_P := \omega_P(\mathbb{P}^n)$ is the Wachspress variety
Wachspress Map

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
- \(\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{H}_P}(d - n)) \)
- \(W_P := \omega_P(\mathbb{P}^n) \) is the Wachspress variety
- \(V_P := \text{span}\{\omega_P(A_P)\} \)

Theorem (K., Ranestad)

\[\dim V_P = |V_P(P)| - n - 2. \]

The projection \(\text{pr}_{V_P} : \mathbb{P}(\Omega^*_P) \rightarrow \mathbb{P}^n \) restricted to the Wachspress variety \(W_P \) is the inverse of the Wachspress map \(\omega_P \).
Wachspress Map

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{R_P}(d - n))$
- $W_P := \omega_P(\mathbb{P}^n)$ is the Wachspress variety
- $V_P := \text{span}\{\omega_P(A_P)\}$

Theorem (K., Ranestad)

$$\dim V_P = |V(P)| - n - 2.$$

The projection $\text{pr}_{V_P} : \mathbb{P}(\Omega_P^*) \rightarrow \mathbb{P}^n$ from V_P.
Wachspress Map

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- $\Omega_P := H^0(\mathbb{P}^n, \mathcal{I}_{\mathcal{R}_P}(d - n))$
- $W_P := \omega_P(\mathbb{P}^n)$ is the **Wachspress variety**
- $\mathcal{V}_P := \text{span}\{\omega_P(A_P)\}$

Theorem (K., Ranestad)

$\dim \mathcal{V}_P = |V(P)| - n - 2$.

The projection $\text{pr}_{\mathcal{V}_P} : \mathbb{P}(\Omega_P^*) \to \mathbb{P}^n$ from \mathcal{V}_P restricted to the Wachspress variety W_P is the inverse of the Wachspress map ω_P.

![Diagram](image-url)
Theorem (Irving, Schenck)
Let P be a d-gon in \mathbb{P}^2.

Let P be a d-gon in \mathbb{P}^2.

\[\mathbb{P}^2 \xrightarrow{\text{pr}_{\mathbb{V}_P}} \mathbb{P}(\Omega^*_P) \cong \mathbb{P}^{d-1} \]

\[\mathbb{P}^2 \xleftarrow{\text{pr}_{\mathbb{V}_P}} \mathbb{P}(\Omega^*_P) \cong \mathbb{P}^{d-4} \]
Theorem (Irving, Schenck)

Let P be a d-gon in \mathbb{P}^2.

- The Wachspress variety W_P is a surface of degree $\left(\frac{d-2}{2}\right) + 1$.

Theorem (Irving, Schenck)
Let P be a d-gon in \mathbb{P}^2.

- The Wachspress variety W_P is a surface of degree $\binom{d-2}{2} + 1$.
- The image of the adjoint curve A_P under ω_P is a curve of degree $\binom{d-3}{2}$, if $d > 4$.
Theorem (Irving, Schenck)

Let P be a d-gon in \mathbb{P}^2.

- The Wachspress variety W_P is a surface of degree $\binom{d-2}{2} + 1$.
- The image of the adjoint curve A_P under ω_P is a curve of degree $\binom{d-3}{2}$, if $d > 4$.
- If $d = 4$, the image of the adjoint line A_P is a point.
Wachspress Threefolds

$\omega_P(\Pi_{\triangle_1 : \Pi_{\triangle_2}}) \otimes (\Pi_{\square_1 : \Pi_{\square_2 : \Pi_{\square_3}}})$

$W_P P_1 \times P_2 \hookrightarrow P_5$

\mathcal{R}_P

\mathcal{A}_P

adjoint plane

projection from point contracts ruling of lines

$\omega_P |_{\mathcal{A}_P}$

line twisted cubic curve
Wachspress Threefolds

\[\omega_P \mid A_P \text{ projection from point} \]

contracts ruling of lines

\[\omega_P \mid (\ell_{\Delta_1} : \ell_{\Delta_2}) \otimes (\ell_{\square_1} : \ell_{\square_2} : \ell_{\square_3}) \]
Wachspress Threefolds

P

$\Delta_1 \cap \Delta_2$

\mathcal{R}_P

A_P

ω_P

$\omega_P|_{AP}$ projection from point contracts ruling of lines

$\omega_P (\ell_{\Delta_1} : \ell_{\Delta_2}) \otimes (\ell_{\Box_1} : \ell_{\Box_2} : \ell_{\Box_3})$

W_P

$\mathbb{P}^1 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^5$
Wachspress Threefolds

\[\mathbb{P} \]

\[\mathbb{R}_P \]

\[A_P \]

adjoint plane

\[\omega_P \]

\[\left(\ell_{\Delta_1} : \ell_{\Delta_2} \right) \otimes \left(\ell_{\square_1} : \ell_{\square_2} : \ell_{\square_3} \right) \]

\[\mathbb{W}_P \]

\[\mathbb{W}_P |_{A_P} \]

projection from point

\[\omega_P |_{A_P} \]
Wachspress Threefolds

\[\mathcal{R}_P \]

adjoint plane

\[\omega_P \]

(line) twisted cubic curve

Projection from point

\[W_P \]

line
Wachspress Threefolds

\(P \)

\(\square_1 \cap \square_2 \cap \square_3 \)

\(\Delta_1 \cap \Delta_2 \)

\(R_P \)

\(A_P \), adjoint plane

\(\omega_P \)

\((\ell_{\Delta_1} : \ell_{\Delta_2}) \otimes (\ell_{\square_1} : \ell_{\square_2} : \ell_{\square_3}) \)

\(W_P \)

\(\omega_P|_{A_P} \), projection from point

\(\omega_P(A_P) \), line

adjoint quadric surface

\(X V - X V I I I \)
Wachspress Threefolds

\[P \]

\[\square_1 \cap \square_2 \cap \square_3 \]

\[\Delta_1 \cap \Delta_2 \]

\[R_P \]
adjoint plane

\[\omega_P \]
line

\[(\ell_{\Delta_1} : \ell_{\Delta_2}) \otimes (\ell_{\square_1} : \ell_{\square_2} : \ell_{\square_3}) \]

\[W_P \]
projection from point

\[\omega_P|_{A_P} \]
line

\[\omega_P(A_P) \]
adjoint quadric surface

\[(\ell_1 : \ell_6) \otimes (\ell_2 : \ell_5) \otimes (\ell_3 : \ell_4) \]
Wachspress Threefolds

\[\mathcal{R}_P \]

adjoint plane

\[\mathcal{A}_P \]

line

\[\omega_P \]

projection from point

\[\omega_P(A_P) \]

adjoint quadric surface

\[\omega_P|_{A_P} \]

line

\[(l_1 : l_2) \otimes (l_3 : l_4) \]

\[(l_5 : l_6) \otimes (l_7 : l_8) \]

\[\mathbb{P}^1 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^5 \]

\[\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^7 \]
Wachspress Threefolds

\mathcal{R}_P

\mathcal{A}_P adjoint plane

$\omega_P \big(\ell_1 : \ell_2 \big) \otimes \big(\ell_3 : \ell_4 \big)$

\mathcal{W}_P projection from point

$\omega_P|_{\mathcal{A}_P}$ line

$\omega_P(\mathcal{A}_P)$

$\square_1 \cap \square_2 \cap \square_3 \cap \Delta_1 \cap \Delta_2$

adjoint quadric surface

$(\ell_1 : \ell_6) \otimes (\ell_2 : \ell_5) \otimes (\ell_3 : \ell_4)$

contracts ruling of lines
Wachspress Threefolds

\(P \)

\[\square_1 \cap \square_2 \cap \square_3 \]

\(\Delta_1 \cap \Delta_2 \)

\(R_P \)

adjoint plane

\(\omega_P \)

\((\ell_{\Delta_1} : \ell_{\Delta_2}) \otimes (\ell_{\square_1} : \ell_{\square_2} : \ell_{\square_3}) \)

\(W_P \)

\(\mathbb{P}^1 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^5 \)

\(\omega_P|_{A_P} \)

projection from point

\(\omega_P(A_P) \)

line

\(\text{adjoint quadric surface} \)

\((\ell_1 : \ell_6) \otimes (\ell_2 : \ell_5) \otimes (\ell_3 : \ell_4) \)

\(\text{contracts ruling of lines} \)

\(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^7 \)

\(\text{twisted cubic curve} \)
Wachspress Threefolds

- P: polytope in \mathbb{P}^3 with d facets
- H_P: simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in R_P
- b: number of double points in R_P
- c: number of triple points in R_P
Wachspress Threefolds

- \(P \): polytope in \(\mathbb{P}^3 \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
- \(a \): number of isolated points in \(\mathcal{R}_P \)
- \(b \): number of double points in \(\mathcal{R}_P \)
- \(c \): number of triple points in \(\mathcal{R}_P \)

Proposition (K., Ranestad)

The Wachspress variety \(W_P \subset \mathbb{P}^{2d-5} \) is a threefold of degree

\[
2b + 4c - a - \frac{1}{2} (d - 3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6} (d - 3)(d - 4)(d - 11)
\]

and sectional genus \(b + 2c + 1 + \frac{1}{2} (d - 3)(d - 6) \).
Wachspress Threefolds

- P: polytope in \mathbb{P}^3 with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad)

The Wachspress variety $W_P \subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - \frac{1}{2}(d - 3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6}(d - 3)(d - 4)(d - 11)$$

and sectional genus $b + 2c + 1 + \frac{1}{2}(d - 3)(d - 6)$.

The image of the adjoint surface A_P under ω_P is a surface iff P is neither a tetrahedron, a triangular prism nor a cube.
Wachspress Threefolds

- P: polytope in \mathbb{P}^3 with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- a: number of isolated points in \mathcal{R}_P
- b: number of double points in \mathcal{R}_P
- c: number of triple points in \mathcal{R}_P

Proposition (K., Ranestad)

The Wachspress variety $W_P \subset \mathbb{P}^{2d-5}$ is a threefold of degree

$$2b + 4c - a - \frac{1}{2} (d - 3)(d^2 - 11d + 26) = b + 2c + 1 - \frac{1}{6} (d - 3)(d - 4)(d - 11)$$

and sectional genus $b + 2c + 1 + \frac{1}{2} (d - 3)(d - 6)$.

The image of the adjoint surface A_P under ω_P is a surface iff P is neither a tetrahedron, a triangular prism nor a cube. In that case, its degree is

$$2b + 4c - a - \frac{1}{2} (d - 3)(d - 4)(d - 6) = b + 2c + 1 - \frac{1}{6} (d - 3)(d^2 - 12d + 38)$$

and its sectional genus is $b + 2c + 1 - \frac{1}{2} (d - 3)(d - 4)$.
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P

Idea:

$$P \rightarrow \mathcal{H}_P$$

hypersurface of degree d
Why “Adjoint”?

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
- \(\mathcal{R}_P^c \): codimension-\(c \) part of \(\mathcal{R}_P \)

Idea:

\[
P \quad \longrightarrow \quad \mathcal{H}_P \quad \longrightarrow \quad D
\]

hypersurface of degree \(d \)

polytopal hypersurface:
hypersurface of degree \(d \), multiplicity \(c \) along \(\mathcal{R}_P^c \), smooth outside of \(\mathcal{R}_P \)
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c: codimension-c part of \mathcal{R}_P

Idea:

$$\xymatrix{ & \mathbb{P}^n \ar[dl] \ar[rr]^{\text{blowup } \pi} && X \ar[ul] & \text{smooth} \\
\mathcal{H}_P \ar[rr] & & D \ar[ll] & \tilde{D} \ar[ll] & \text{smooth} \\
P \ar[rr] & & \text{hypersurface of degree } d \text{, multiplicity } c \text{ along } \mathcal{R}_P^c, \text{ smooth outside of } \mathcal{R}_P}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad): \tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A) = A \cap \mathcal{P}$. When can we find a polytopal hypersurface D?
Why “Adjoint”?

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
- \(\mathcal{R}_P^c \): codimension-\(c \) part of \(\mathcal{R}_P \)

Idea:

\[
\begin{array}{c}\mathbb{P}^n \quad \xleftarrow{\text{blowup } \pi} \quad X \quad \text{smooth} \\
\uparrow \quad \uparrow \\
P \xrightarrow{\text{hypersurface of degree } d} \mathcal{H}_P \xrightarrow{\text{polytopal hypersurface: hypersurface of degree } d, \text{ multiplicity } c \text{ along } \mathcal{R}_P^c, \text{ smooth outside of } \mathcal{R}_P} D \xrightarrow{\tilde{D} \text{ smooth}} \end{array}
\]

Adjunction formula:

\[
K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}
\]
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c: codimension-c part of \mathcal{R}_P

Idea:

\[\mathbb{P}^n \xrightarrow{\text{blowup } \pi} X \text{ smooth} \]

\[P \xrightarrow{\text{hypersurface of degree } d} \mathcal{H}_P \xrightarrow{\text{polytopal hypersurface:}} D \xrightarrow{\text{hypersurface of degree } d, \text{ multiplicity } c \text{ along } \mathcal{R}_P^c, \text{ smooth outside of } \mathcal{R}_P} \tilde{D} \text{ smooth} \]

Adjunction formula:

\[K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}} \]

Def.: An \textbf{adjoint to } \tilde{D} \textbf{in } X \textbf{is a hypersurface } A in X s.t. \[[A] = K_X + [\tilde{D}] \].
Why “Adjoint”?

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_P^c: codimension-c part of \mathcal{R}_P

Idea:

\[\mathbb{P}^n \xrightarrow{\text{blowup } \pi} X \quad \text{smooth} \]

\[P \xrightarrow{\text{hypersurface of degree } d} \mathcal{H}_P \xrightarrow{\text{polytopal hypersurface:}} D \xrightarrow{\text{hypersurface of degree } d, \text{multiplicity } c \text{ along } \mathcal{R}_P^c, \text{smooth outside of } \mathcal{R}_P} \tilde{D} \quad \text{smooth} \]

Adjunction formula:

\[K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}} \]

Def.: An **adjoint to \tilde{D} in X** is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

\tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A) = A_P$.

When can we find a polytopal hypersurface D?
Why “Adjoint”?

- \(P \): polytope in \(\mathbb{P}^n \) with \(d \) facets
- \(\mathcal{H}_P \): simple hyperplane arrangement spanned by facets of \(P \)
- \(\mathcal{R}_P^c \): codimension-\(c \) part of \(\mathcal{R}_P \)

Idea:

\[
\begin{array}{ccc}
\mathbb{P}^n & \xrightarrow{\text{blowup } \pi} & X \text{ smooth} \\
\uparrow & & \uparrow \\
\mathcal{H}_P & \xrightarrow{D} & \tilde{D} \text{ smooth} \\
\end{array}
\]

\(D \): polytopal hypersurface: hypersurface of degree \(d \), multiplicity \(c \) along \(\mathcal{R}_P^c \), smooth outside of \(\mathcal{R}_P \)

Adjunction formula:
\[
K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}
\]

Def.: An \textbf{adjoint to} \(\tilde{D} \) \textbf{in} \(X \) is a hypersurface \(A \) in \(X \) s.t. \([A] = K_X + [\tilde{D}] \).

Proposition (K., Ranestad)

\(\tilde{D} \) has a unique adjoint \(A \) in \(X \), and thus a unique canonical divisor: \(A \cap \tilde{D} \). Moreover, \(\pi(A) = A_P \).
Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2. There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.
Proposition (K., Ranestad)
Let P be a general d-gon in \mathbb{P}^2. There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)
Let C be a combinatorial type of simple polytopes in \mathbb{P}^3 and let P be a general polytope of type C. There is a polytopal surface D iff C is one of:

In that case, the general D is either an elliptic surface or a K3-surface.
| comb. type | facet sizes | \mathcal{R}_P | $\langle a, b, c \rangle$ | W_P
(dg., sec. genus) | $\overline{w}_P(A_P)$
(dg., sec. genus) | dim Γ_P | $\overline{w}_P(D)$
(dg., sec. genus) |
|---|---|---|---|---|---|---|---|
| 3333 | | (0, 0, 0) | \mathbb{P}^3
(1, 0) | 0 | 34 | minimal K3
(small quartic in \mathbb{P}^3) |
| 44433 | | (1, 0, 0) | $\mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5$
(3, 0) | line | 23 | minimal K3
(8, 5) |
| 444444 | | (0, 0, 0) | $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7$
(6, 1) | twisted cubic curve | 26 | minimal K3
(12, 7) |
| 554433 | | (2, 2, 0) | $W_P \subset \mathbb{P}^7$
(8, 3) | quadric surface
(2, 0) | 17 | non-minimal K3
(14, 9) |
| 5554443 | | (1, 6, 0) | $W_P \subset \mathbb{P}^9$
(15, 9) | del Pezzo surface in \mathbb{P}^5
(5, 1) | 7 | non-minimal K3
(19, 12) |
| 5544444 | | (0, 5, 0) | Fano 3-fold in \mathbb{P}^9
(14, 8) | rational scroll in \mathbb{P}^5
(4, 0) | 12 | non-minimal K3
(18, 11) |
| 6644433 | | (3, 6, 1) | $W_P \subset \mathbb{P}^9$
(17, 11) | rational elliptic surface in \mathbb{P}^5
(7, 3) | 4 | minimal elliptic
(22, 15) |
| 66444444 | | (0, 12, 2) | $W_P \subset \mathbb{P}^{11}$
(27, 22) | elliptic K3-surface in \mathbb{P}^7
(12, 7) | 3 | minimal elliptic
(26, 17) |
| 55554444 | | (0, 16, 0) | $W_P \subset \mathbb{P}^{11}$
(27, 22) | K3-surface in \mathbb{P}^7
(12, 7) | 1 | non-minimal K3
(24, 15) |