

Peter Bürgisser¹, Kathlén Kohn¹, Pierre Lairez¹, Bernd Sturmfels^{1,2}

¹Institute of Mathematics, Technische Universität Berlin ²Department of Mathematics, University of California, Berkeley

2015 - 11 - 12

Section 1

Problem Description

Problem Description

Coisotropic Quadrics

Chow Forms

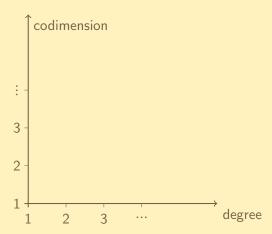
General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

Problem Descriptio

Coisotropic Quadrics

Chow Forms

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

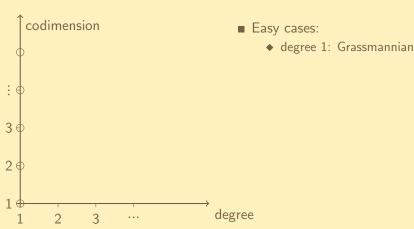


Problem Descriptio

Coisotropic Quadrics

Chow Forms

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

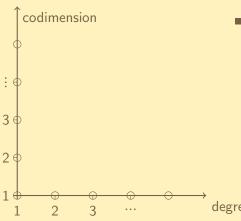


Problem Descriptio

Coisotropic Quadrics

Chow Forms

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?



Easy cases:

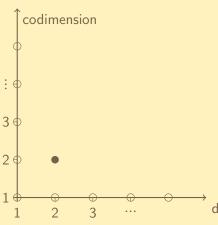
- ♦ degree 1: Grassmannian
- codimension 1: hypersurfaces with single equation

Problem Description

Coisotropic Quadrics

Chow Forms

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?



- Easy cases:
 - ♦ degree 1: Grassmannian
 - codimension 1: hypersurfaces with single equation
- First non-trivial case:
 - ♦ degree 2
 - ◆ codimension 2
 - \bullet n=4

degree

Problem Description

Coisotropic Quadrics

- $X \subseteq \mathbb{P}^3$ subvariety of dimension 1
- Grassmannian G(2,4): Lines in \mathbb{P}^3

- $X \subseteq \mathbb{P}^3$ subvariety of dimension 1
- lacktriangle Grassmannian G(2,4): Lines in \mathbb{P}^3

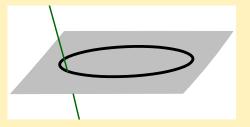
$$L\in G(2,4)$$

Problem Description

Coisotropic Quadrics

- $X \subseteq \mathbb{P}^3$ subvariety of dimension 1
- Grassmannian G(2,4): Lines in \mathbb{P}^3

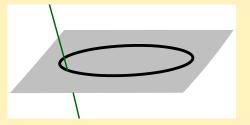
$$\Rightarrow \{L \in G(2,4) \mid X \cap L \neq \emptyset\}$$
 is **hypersurface** in $G(2,4)$



Problem Description

Coisotropic Quadrics

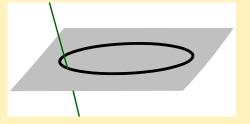
- $X \subseteq \mathbb{P}^3$ subvariety of dimension 1
- Grassmannian G(2,4): Lines in \mathbb{P}^3
- $\Rightarrow \{L \in G(2,4) \mid X \cap L \neq \emptyset\}$ is **hypersurface** in G(2,4)
- \Rightarrow $\{L \in G(2,4) \mid X \cap L \neq \emptyset\}$ is defined by single polynomial in Plücker coordinates, called **Chow form**



Problem Description

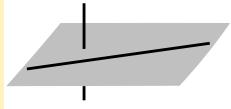
Coisotropic Quadrics

- $X \subseteq \mathbb{P}^3$ subvariety of dimension 1
- Grassmannian G(2,4): Lines in \mathbb{P}^3
- $\Rightarrow \{L \in G(2,4) \mid X \cap L \neq \emptyset\}$ is **hypersurface** in G(2,4)
- \Rightarrow { $L \in G(2,4) \mid X \cap L \neq \emptyset$ } is defined by single polynomial in Plücker coordinates, called **Chow form**
- ⇒ Goal: Which polynomials in Plücker coordinates are Chow forms?



- $X \subseteq \mathbb{P}^3$ subvariety of dimension 1
- Grassmannian G(2,4): Lines in \mathbb{P}^3
- $\Rightarrow \{L \in G(2,4) \mid X \cap L \neq \emptyset\}$ is **hypersurface** in G(2,4)
- \Rightarrow $\{L \in G(2,4) \mid X \cap L \neq \emptyset\}$ is defined by single polynomial in Plücker coordinates, called **Chow form**
- ⇒ Goal: Which polynomials in Plücker coordinates are Chow forms?
 - Chow variety G(2,2,4): Chow forms of 1-dimensional subvarieties of degree 2 in \mathbb{P}^3



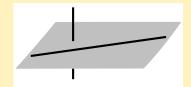


Chow variety G(2,2,4): Chow forms of 1-dimensional subvarieties of degree 2 in \mathbb{P}^3

G(2,2,4) has 2 irreducible components, corresponding to:

- planar quadrics
- pairs of lines

$$\Rightarrow G(2,2,4) = V(P_{\text{ChowConic}}) \cup V(P_{\text{ChowLines}})$$



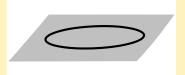
Chow variety G(2,2,4): Chow forms of 1-dimensional subvarieties of degree 2 in \mathbb{P}^3

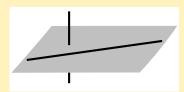
G(2,2,4) has 2 irreducible components, corresponding to:

- planar quadrics
- pairs of lines

$$\Rightarrow G(2,2,4) = V(P_{\text{ChowConic}}) \cup V(P_{\text{ChowLines}})$$

Wanted: $I_{G(2,2,4)} = P_{\text{ChowConic}} \cap P_{\text{ChowLines}}$





How to find $I_{G(2,2,4)}$

Problem Descriptio

oisotropic Quadrics

- Our point of departure: Book by Gel'fand, Kapranov, Zelevinsky
- They describe equations that discriminate Chow forms among all hypersurfaces in the Grassmannian
 - Find coisotropic hypersurfaces
 - 2 Find Chow forms among coisotropic hypersurfaces

- Our point of departure: Book by Gel'fand, Kapranov, Zelevinsky
- They describe equations that discriminate Chow forms among all hypersurfaces in the Grassmannian
 - 1 Find coisotropic hypersurfaces
 - 2 Find Chow forms among coisotropic hypersurfaces
- Here:
 - Check and refine equations from Gel'fand, Kapranov, Zelevinsky
 - Explicit computational solution for G(2,2,4)

- Our point of departure: Book by Gel'fand, Kapranov, Zelevinsky
- They describe equations that discriminate Chow forms among all hypersurfaces in the Grassmannian
 - 1 Find coisotropic hypersurfaces
 - 2 Find Chow forms among coisotropic hypersurfaces
- Here:
 - Check and refine equations from Gel'fand, Kapranov, Zelevinsky
 - Explicit computational solution for G(2,2,4): Chow forms are quadrics in the Plücker coordinates of G(2,4)

Section 2

Coisotropic Quadrics

Quadrics in G(2,4)

Problem Description

Coisotropic Quadrics

- Represent points in G(2,4) by Plücker coordinates
 - $\boldsymbol{p} = (p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23})$:
 - For a line in \mathbb{P}^3 , p_{ij} is ij-minor of a 2×4 -matrix whose rows span the line
 - ♦ Plücker relation: $\mathcal{R} := p_{01}p_{23} p_{02}p_{13} + p_{03}p_{12}$

oisotropic Quadrics

- Represent points in G(2,4) by Plücker coordinates
 - $\boldsymbol{p} = (p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23})$:
 - For a line in \mathbb{P}^3 , p_{ij} is ij-minor of a 2×4 -matrix whose rows span the line
 - ♦ Plücker relation: $\mathcal{R} := p_{01}p_{23} p_{02}p_{13} + p_{03}p_{12}$
- Write quadrics in G(2,4) as

$$Q(\mathbf{p}) = \mathbf{p} \cdot \begin{pmatrix} c_0 & c_1 & c_2 & c_3 & c_4 & c_5 \\ c_1 & c_6 & c_7 & c_8 & c_9 & c_{10} \\ c_2 & c_7 & c_{11} & c_{12} & c_{13} & c_{14} \\ c_3 & c_8 & c_{12} & c_{15} & c_{16} & c_{17} \\ c_4 & c_9 & c_{13} & c_{16} & c_{18} & c_{19} \\ c_5 & c_{10} & c_{14} & c_{17} & c_{19} & c_{20} \end{pmatrix} \cdot \mathbf{p}^T$$

• $Q(\mathbf{p}) \in V := \mathbb{C}[\mathbf{p}]_2/\mathbb{C}\mathcal{R}$

- \blacksquare Represent points in G(2,4) by Plücker coordinates $\mathbf{p} = (p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23})$:
 - For a line in \mathbb{P}^3 , p_{ij} is ij-minor of a 2×4 -matrix whose rows span the line
 - ♦ Plücker relation: $\mathcal{R} := p_{01}p_{23} p_{02}p_{13} + p_{03}p_{12}$
- Write quadrics in G(2,4) as

$$Q(\boldsymbol{p}) = \boldsymbol{p} \cdot \begin{pmatrix} c_0 & c_1 & c_2 & c_3 & c_4 & c_5 \\ c_1 & c_6 & c_7 & c_8 & c_9 & c_{10} \\ c_2 & c_7 & c_{11} & c_{12} & c_{13} & c_{14} \\ c_3 & c_8 & c_{12} & c_{15} & c_{16} & c_{17} \\ c_4 & c_9 & c_{13} & c_{16} & c_{18} & c_{19} \\ c_5 & c_{10} & c_{14} & c_{17} & c_{19} & c_{20} \end{pmatrix} \cdot \boldsymbol{p}^T$$

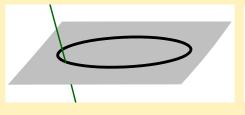
- $Q(\mathbf{p}) \in V := \mathbb{C}[\mathbf{p}]_2/\mathbb{C}\mathcal{R}$ $\mathbf{c} = (c_0, c_1, \dots, c_{20})$ homogeneous coordinates on $\mathbb{P}^{19} = \mathbb{P}(V)$

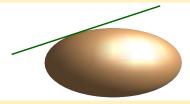
$$\Rightarrow G(2,2,4) \subseteq \mathbb{P}^{19}$$

Problem Description

Oisotropic Quadrics

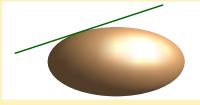
- Irreducible hypersurface $Z \subseteq G(2,4)$ is coisotropic if it is
 - ♦ the Chow form of a quadratic space curve, OR
 - ◆ the Hurwitz form of a quadric surface, i.e., all lines tangent to surface





Chow Forms

- Irreducible hypersurface $Z \subseteq G(2,4)$ is coisotropic if it is
 - ♦ the Chow form of a quadratic space curve, OR
 - the Hurwitz form of a quadric surface, i.e., all lines tangent to surface

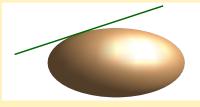


 $\{Q(p)=0\}$ coisotropic iff there exist $s,t\in\mathbb{C}$ such that

$$\frac{\partial Q}{\partial p_{01}} \cdot \frac{\partial Q}{\partial p_{23}} - \frac{\partial Q}{\partial p_{02}} \cdot \frac{\partial Q}{\partial p_{13}} + \frac{\partial Q}{\partial p_{03}} \cdot \frac{\partial Q}{\partial p_{12}} = s \cdot Q + t \cdot \mathcal{R}$$

for $\mathcal{R} := p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12}$ [Cayley, 1860]

- Irreducible hypersurface $Z \subseteq G(2,4)$ is coisotropic if it is
 - ♦ the Chow form of a quadratic space curve, OR
 - the Hurwitz form of a quadric surface, i.e., all lines tangent to surface



 $\{Q(p)=0\}$ coisotropic iff there exist $s,t\in\mathbb{C}$ such that

$$\frac{\partial Q}{\partial p_{01}} \cdot \frac{\partial Q}{\partial p_{23}} - \frac{\partial Q}{\partial p_{02}} \cdot \frac{\partial Q}{\partial p_{13}} + \frac{\partial Q}{\partial p_{03}} \cdot \frac{\partial Q}{\partial p_{12}} = s \cdot Q + t \cdot \mathcal{R}$$

for $\mathcal{R} := p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12}$ [Cayley, 1860]

 \rightarrow coisotropic ideal I_{Coiso}

■ $V(I_{\text{Coiso}}) \subseteq \mathbb{P}^{19}$ represents all coisotropic hypersurfaces in G(2,4) of degree 2

Problem Description

oisotropic Quadrics

Chow Forms

Proposition (Bürgisser, K., Lairez, Sturmfels)

 I_{Coiso} is intersection of 3 prime ideals and thus radical:

$$I_{\text{Coiso}} = P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

- $V(P_{\text{Hurwitz}})$: Hurwitz forms of quadric surfaces in \mathbb{P}^3
- $V(P_{\text{ChowLines}})$: Chow forms of pairs of lines in \mathbb{P}^3
- $lackbox{V}(P_{\mathrm{Squares}})$: quadrics that are squares modulo Plücker relation

Problem Description

Coisotropic Quadrics

how Forms

Proposition (Bürgisser, K., Lairez, Sturmfels)

 I_{Coiso} is intersection of 3 prime ideals and thus radical:

$$I_{\text{Coiso}} = P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

- $V(P_{\mathrm{Hurwitz}})$: Hurwitz forms of quadric surfaces in \mathbb{P}^3
- $V(P_{\text{ChowLines}})$: Chow forms of pairs of lines in \mathbb{P}^3
- $lackbox{V}(P_{
 m Squares})$: quadrics that are squares modulo Plücker relation
- Geometric perspective: P_{Squares} extraneous ⇒ correct ideal for coisotropic variety:

$$P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} = (I_{\text{Coiso}} : P_{\text{Squares}})$$

Problem Description

oisotropic Quadrics

Chow Forms

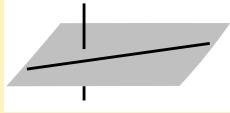
Proposition (Bürgisser, K., Lairez, Sturmfels)

 I_{Coiso} is intersection of 3 prime ideals and thus radical:

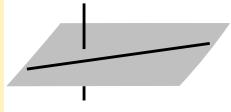
$$I_{\text{Coiso}} = P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

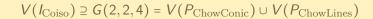
	1	$P_{ m Hurwitz}$	$P_{\mathrm{ChowLines}}$	$P_{ m Squares}$
codimension	10	10	11	14
degree	92	92	140	32
minimally generated	175 cubics	20 quadrics	265 cubics	84 quadrics

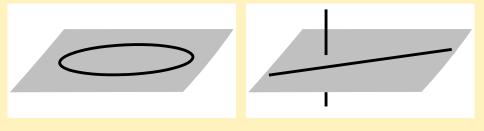
$$G(2,2,4) = V(P_{\text{ChowConic}}) \cup V(P_{\text{ChowLines}})$$



$$V(I_{\text{Coiso}}) \supseteq G(2,2,4) = V(P_{\text{ChowConic}}) \cup V(P_{\text{ChowLines}})$$

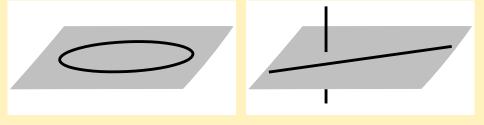






$$I_{\text{Coiso}} = P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

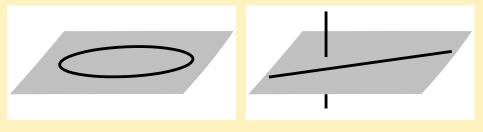
$$V(I_{\text{Coiso}}) \supseteq G(2,2,4) = V(P_{\text{ChowConic}}) \cup V(P_{\text{ChowLines}})$$



$$I_{\text{Coiso}} = P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

 $\Rightarrow P_{\text{ChowConic}}$ missing from this decomposition?

$$V(I_{\operatorname{Coiso}}) \supseteq G(2,2,4) = V(P_{\operatorname{ChowConic}}) \cup V(P_{\operatorname{ChowLines}})$$



$$I_{\text{Coiso}} = P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

 $\Rightarrow P_{\text{ChowConic}}$ missing from this decomposition?

Proposition (Bürgisser, K., Lairez, Sturmfels)

 $P_{\text{Hurwitz}} \subseteq P_{\text{ChowConic}}$ and thus $V(P_{\text{ChowConic}}) \subseteq V(P_{\text{Hurwitz}})$

 $I_{G(2,2,4)}$

Coisotropic Quadrics

how Forms

Squarefree coisotropic quadric Q is a Chow form iff certain differential forms vanish modulo Q [Gel'fand, Kapranov, Zelevinsky]

Squarefree coisotropic quadric Q is a Chow form iff certain differential forms vanish modulo Q [Gel'fand, Kapranov, Zelevinsky]

$$\sim I_{G(2,2,4)}$$

 $\Rightarrow V(I_{G(2,2,4)})$ equals G(2,2,4) up to non-reduced surfaces

Squarefree coisotropic quadric Q is a Chow form iff certain differential forms vanish modulo Q [Gel'fand, Kapranov, Zelevinsky]

 $\rightarrow I_{G(2,2,4)}$

 $\Rightarrow V(I_{G(2,2,4)})$ equals G(2,2,4) up to non-reduced surfaces

Proposition (Bürgisser, K., Lairez, Sturmfels)

Let $\mathfrak{m} := \langle c_0, c_1, \dots, c_{20} \rangle$ be the irrelevant ideal, then

$$\sqrt{I_{G(2,2,4)}} = (I_{G(2,2,4)} : \mathfrak{m}) = P_{\text{ChowConic}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

Squarefree coisotropic quadric Q is a Chow form iff certain differential forms vanish modulo Q [Gel'fand, Kapranov, Zelevinsky]

- $\rightarrow I_{G(2,2,4)}$
- $\Rightarrow V(I_{G(2,2,4)})$ equals G(2,2,4) up to non-reduced surfaces

Proposition (Bürgisser, K., Lairez, Sturmfels)

Let $\mathfrak{m} := \langle c_0, c_1, \dots, c_{20} \rangle$ be the irrelevant ideal, then

$$\sqrt{I_{G(2,2,4)}} = (I_{G(2,2,4)} : \mathfrak{m}) = P_{\text{ChowConic}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$$

Recall: $I_{\text{Coiso}} = P_{\text{Hurwitz}} \cap P_{\text{ChowLines}} \cap P_{\text{Squares}}$

 $P_{\text{Hurwitz}} \subseteq P_{\text{ChowConic}}$

Future Directions

Problem Description

oisotropic Quadrics

Chow Form

- Compute ideals of Chow varieties with higher degree and/or dimension
- Which Chow forms are Hurwitz forms, and which Hurwitz forms are Chow forms?
- Compute volume of ε -tubes around coisotropic hypersurfaces
- Generalize Cayley's differential characterization of coisotropy

$$\frac{\partial Q}{\partial p_{01}} \cdot \frac{\partial Q}{\partial p_{23}} - \frac{\partial Q}{\partial p_{02}} \cdot \frac{\partial Q}{\partial p_{13}} + \frac{\partial Q}{\partial p_{03}} \cdot \frac{\partial Q}{\partial p_{12}} = s \cdot Q + t \cdot \mathcal{R}$$

from G(2,4) to G(2,n)

■ Catanese, 2014: Hypersurface $Z \subseteq G(2,4)$ coisotropic iff Z selfdual \Rightarrow Generalize to G(2,n)

For our computations, check www3.math.tu-berlin.de/algebra/static/pluecker/