Computing the Chow Variety of Quadratic Space Curves

Peter Bürgisser ${ }^{1}$, Kathlén Kohn ${ }^{1}$, Pierre Lairez ${ }^{1}$, Bernd Sturmfels ${ }^{1,2}$

${ }^{1}$ Institute of Mathematics, Technische Universität Berlin
${ }^{2}$ Department of Mathematics, University of California, Berkeley

$$
2015-11-12
$$

Section 1

Problem Description

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

General question: How to parameterize subvarieties of \mathbb{P}^{n-1} with fixed degree and dimension?

Chow Variety

- $X \subseteq \mathbb{P}^{3}$ subvariety of dimension 1
- Grassmannian $G(2,4)$: Lines in \mathbb{P}^{3}

Chow Variety

- $X \subseteq \mathbb{P}^{3}$ subvariety of dimension 1
- Grassmannian $G(2,4)$: Lines in \mathbb{P}^{3}
$L \in G(2,4)$

■ $X \subseteq \mathbb{P}^{3}$ subvariety of dimension 1

- Grassmannian $G(2,4)$: Lines in \mathbb{P}^{3}
$\Rightarrow\{L \in G(2,4) \mid X \cap L \neq \varnothing\}$ is hypersurface in $G(2,4)$

Chow Variety

- $X \subseteq \mathbb{P}^{3}$ subvariety of dimension 1
- Grassmannian $G(2,4)$: Lines in \mathbb{P}^{3}
$\Rightarrow\{L \in G(2,4) \mid X \cap L \neq \varnothing\}$ is hypersurface in $G(2,4)$
$\Rightarrow\{L \in G(2,4) \mid X \cap L \neq \varnothing\}$ is defined by single polynomial in Plücker coordinates, called Chow form

Chow Variety

- $X \subseteq \mathbb{P}^{3}$ subvariety of dimension 1
- Grassmannian $G(2,4)$: Lines in \mathbb{P}^{3}
$\Rightarrow\{L \in G(2,4) \mid X \cap L \neq \varnothing\}$ is hypersurface in $G(2,4)$
$\Rightarrow\{L \in G(2,4) \mid X \cap L \neq \varnothing\}$ is defined by single polynomial in Plücker coordinates, called Chow form
\Rightarrow Goal: Which polynomials in Plücker coordinates are Chow forms?
- $X \subseteq \mathbb{P}^{3}$ subvariety of dimension 1
- Grassmannian $G(2,4)$: Lines in \mathbb{P}^{3}
$\Rightarrow\{L \in G(2,4) \mid X \cap L \neq \varnothing\}$ is hypersurface in $G(2,4)$
$\Rightarrow\{L \in G(2,4) \mid X \cap L \neq \varnothing\}$ is defined by single polynomial in Plücker coordinates, called Chow form
\Rightarrow Goal: Which polynomials in Plücker coordinates are Chow forms?
- Chow variety $G(2,2,4)$: Chow forms of 1-dimensional subvarieties of degree 2 in \mathbb{P}^{3}

Chow variety $G(2,2,4)$: Chow forms of 1-dimensional subvarieties of degree 2 in \mathbb{P}^{3}
$G(2,2,4)$ has 2 irreducible components, corresponding to:

- planar quadrics
- pairs of lines
$\Rightarrow G(2,2,4)=V\left(P_{\text {ChowConic }}\right) \cup V\left(P_{\text {ChowLines }}\right)$

Chow variety $G(2,2,4)$: Chow forms of 1-dimensional subvarieties of degree 2 in \mathbb{P}^{3}
$G(2,2,4)$ has 2 irreducible components, corresponding to:

- planar quadrics
- pairs of lines
$\Rightarrow G(2,2,4)=V\left(P_{\text {ChowConic }}\right) \cup V\left(P_{\text {ChowLines }}\right)$

Wanted: $I_{G(2,2,4)}=P_{\text {ChowConic }} \cap P_{\text {ChowLines }}$

How to find $I_{G(2,2,4)}$

- Our point of departure: Book by Gel'fand, Kapranov, Zelevinsky

■ They describe equations that discriminate Chow forms among all hypersurfaces in the Grassmannian

1 Find coisotropic hypersurfaces
2 Find Chow forms among coisotropic hypersurfaces

How to find $I_{G(2,2,4)}$

- Our point of departure: Book by Gel'fand, Kapranov, Zelevinsky

■ They describe equations that discriminate Chow forms among all hypersurfaces in the Grassmannian
1 Find coisotropic hypersurfaces
2 Find Chow forms among coisotropic hypersurfaces
■ Here:

- Check and refine equations from Gel'fand, Kapranov, Zelevinsky
- Explicit computational solution for $G(2,2,4)$
- Our point of departure: Book by Gel'fand, Kapranov, Zelevinsky

■ They describe equations that discriminate Chow forms among all hypersurfaces in the Grassmannian
1 Find coisotropic hypersurfaces
2 Find Chow forms among coisotropic hypersurfaces
■ Here:

- Check and refine equations from Gel'fand, Kapranov, Zelevinsky
- Explicit computational solution for $G(2,2,4)$:

Chow forms are quadrics in the Plücker coordinates of $G(2,4)$

Section 2

Coisotropic Quadrics

Quadrics in $G(2,4)$

■ Represent points in $G(2,4)$ by Plücker coordinates $\boldsymbol{p}=\left(p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}\right)$:

- For a line in $\mathbb{P}^{3}, p_{i j}$ is $i j$-minor of a 2×4-matrix whose rows span the line
- Plücker relation: $\mathcal{R}:=p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}$

Quadrics in $G(2,4)$

- Represent points in $G(2,4)$ by Plücker coordinates

$$
\boldsymbol{p}=\left(p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}\right):
$$

- For a line in $\mathbb{P}^{3}, p_{i j}$ is $i j$-minor of a 2×4-matrix whose rows span the line
- Plücker relation: $\mathcal{R}:=p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}$
- Write quadrics in $G(2,4)$ as

$$
Q(\boldsymbol{p})=\boldsymbol{p} \cdot\left(\begin{array}{llllll}
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
c_{1} & c_{6} & c_{7} & c_{8} & c_{9} & c_{10} \\
c_{2} & c_{7} & c_{11} & c_{12} & c_{13} & c_{14} \\
c_{3} & c_{8} & c_{12} & c_{15} & c_{16} & c_{17} \\
c_{4} & c_{9} & c_{13} & c_{16} & c_{18} & c_{19} \\
c_{5} & c_{10} & c_{14} & c_{17} & c_{19} & c_{20}
\end{array}\right) \cdot \boldsymbol{p}^{T}
$$

- $Q(\boldsymbol{p}) \in V:=\mathbb{C}[\boldsymbol{p}]_{2} / \mathbb{C} \mathcal{R}$
- Represent points in $G(2,4)$ by Plücker coordinates

$$
\boldsymbol{p}=\left(p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}\right):
$$

- For a line in $\mathbb{P}^{3}, p_{i j}$ is $i j$-minor of a 2×4-matrix whose rows span the line
- Plücker relation: $\mathcal{R}:=p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}$
- Write quadrics in $G(2,4)$ as

$$
Q(\boldsymbol{p})=\boldsymbol{p} \cdot\left(\begin{array}{llllll}
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
c_{1} & c_{6} & c_{7} & c_{8} & c_{9} & c_{10} \\
c_{2} & c_{7} & c_{11} & c_{12} & c_{13} & c_{14} \\
c_{3} & c_{8} & c_{12} & c_{15} & c_{16} & c_{17} \\
c_{4} & c_{9} & c_{13} & c_{16} & c_{18} & c_{19} \\
c_{5} & c_{10} & c_{14} & c_{17} & c_{19} & c_{20}
\end{array}\right) \cdot \boldsymbol{p}^{T}
$$

- $Q(\boldsymbol{p}) \in V:=\mathbb{C}[\boldsymbol{p}]_{2} / \mathbb{C} \mathcal{R}$
- $\boldsymbol{c}=\left(c_{0}, c_{1}, \ldots, c_{20}\right)$ homogeneous coordinates on $\mathbb{P}^{19}=\mathbb{P}(V)$
$\Rightarrow G(2,2,4) \subseteq \mathbb{P}^{19}$

Coisotropic Ideal

- Irreducible hypersurface $Z \subseteq G(2,4)$ is coisotropic if it is
- the Chow form of a quadratic space curve, OR
- the Hurwitz form of a quadric surface, i.e., all lines tangent to surface

Coisotropic Ideal

- Irreducible hypersurface $Z \subseteq G(2,4)$ is coisotropic if it is
- the Chow form of a quadratic space curve, OR
- the Hurwitz form of a quadric surface, i.e., all lines tangent to surface

■ $\{Q(\boldsymbol{p})=0\}$ coisotropic iff there exist $s, t \in \mathbb{C}$ such that

$$
\frac{\partial Q}{\partial p_{01}} \cdot \frac{\partial Q}{\partial p_{23}}-\frac{\partial Q}{\partial p_{02}} \cdot \frac{\partial Q}{\partial p_{13}}+\frac{\partial Q}{\partial p_{03}} \cdot \frac{\partial Q}{\partial p_{12}}=s \cdot Q+t \cdot \mathcal{R}
$$

for $\mathcal{R}:=p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12} \quad$ [Cayley, 1860]

Coisotropic Ideal

- Irreducible hypersurface $Z \subseteq G(2,4)$ is coisotropic if it is
- the Chow form of a quadratic space curve, OR
- the Hurwitz form of a quadric surface, i.e., all lines tangent to surface

■ $\{Q(\boldsymbol{p})=0\}$ coisotropic iff there exist $s, t \in \mathbb{C}$ such that

$$
\frac{\partial Q}{\partial p_{01}} \cdot \frac{\partial Q}{\partial p_{23}}-\frac{\partial Q}{\partial p_{02}} \cdot \frac{\partial Q}{\partial p_{13}}+\frac{\partial Q}{\partial p_{03}} \cdot \frac{\partial Q}{\partial p_{12}}=s \cdot Q+t \cdot \mathcal{R}
$$

for $\mathcal{R}:=p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12} \quad$ [Cayley, 1860]
\leadsto coisotropic ideal $I_{\text {Coiso }}$

- $V\left(I_{\text {Coiso }}\right) \subseteq \mathbb{P}^{19}$ represents all coisotropic hypersurfaces in $G(2,4)$ of degree 2

Coisotropic Ideal

Proposition (Bürgisser, K., Lairez, Sturmfels)
$I_{\text {Coiso }}$ is intersection of 3 prime ideals and thus radical:

$$
I_{\text {Coiso }}=P_{\text {Hurwitz }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}
$$

- $V\left(P_{\text {Hurwitz }}\right)$: Hurwitz forms of quadric surfaces in \mathbb{P}^{3}
- $V\left(P_{\text {ChowLines }}\right)$: Chow forms of pairs of lines in \mathbb{P}^{3}
- $V\left(P_{\text {Squares }}\right)$: quadrics that are squares modulo Plücker relation

Coisotropic Ideal

Proposition (Bürgisser, K., Lairez, Sturmfels)
$I_{\text {Coiso }}$ is intersection of 3 prime ideals and thus radical:

$$
I_{\text {Coiso }}=P_{\text {Hurwitz }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}
$$

- $V\left(P_{\text {Hurwitz }}\right)$: Hurwitz forms of quadric surfaces in \mathbb{P}^{3}
- $V\left(P_{\text {ChowLines }}\right)$: Chow forms of pairs of lines in \mathbb{P}^{3}
- $V\left(P_{\text {Squares }}\right)$: quadrics that are squares modulo Plücker relation
- Geometric perspective: $P_{\text {Squares }}$ extraneous
\Rightarrow correct ideal for coisotropic variety:

$$
P_{\text {Hurwitz }} \cap P_{\text {ChowLines }}=\left(I_{\text {Coiso }}: P_{\text {Squares }}\right)
$$

Coisotropic Ideal

Proposition (Bürgisser, K., Lairez, Sturmfels)
$I_{\text {Coiso }}$ is intersection of 3 prime ideals and thus radical:

$$
I_{\text {Coiso }}=P_{\text {Hurwitz }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}
$$

	I	$P_{\text {Hurwitz }}$	$P_{\text {ChowLines }}$	$P_{\text {Squares }}$
codimension	10	10	11	14
degree	92	92	140	32
minimally generated	175 cubics	20 quadrics	265 cubics	84 quadrics

Section 3

Chow Forms

$$
G(2,2,4)=V\left(P_{\text {ChowConic }}\right) \cup V\left(P_{\text {ChowLines }}\right)
$$

$$
V\left(I_{\text {Coiso }}\right) \supseteq G(2,2,4)=V\left(P_{\text {ChowConic }}\right) \cup V\left(P_{\text {ChowLines }}\right)
$$

$$
V\left(I_{\text {Coiso }}\right) \supseteq G(2,2,4)=V\left(P_{\text {ChowConic }}\right) \cup V\left(P_{\text {ChowLines }}\right)
$$

$$
I_{\text {Coiso }}=P_{\text {Hurwitz }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}
$$

$$
V\left(I_{\text {Coiso }}\right) \supseteq G(2,2,4)=V\left(P_{\text {ChowConic }}\right) \cup V\left(P_{\text {ChowLines }}\right)
$$

$$
I_{\text {Coiso }}=P_{\text {Hurwitz }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}
$$

$\Rightarrow P_{\text {ChowConic }}$ missing from this decomposition?

$$
V\left(I_{\text {Coiso }}\right) \supseteq G(2,2,4)=V\left(P_{\text {ChowConic }}\right) \cup V\left(P_{\text {ChowLines }}\right)
$$

$$
I_{\text {Coiso }}=P_{\text {Hurwitz }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}
$$

$\Rightarrow P_{\text {ChowConic }}$ missing from this decomposition?
Proposition (Bürgisser, K., Lairez, Sturmfels)
$P_{\text {Hurwitz }} \subseteq P_{\text {ChowConic }}$ and thus $V\left(P_{\text {ChowConic }}\right) \subseteq V\left(P_{\text {Hurwitz }}\right)$

Squarefree coisotropic quadric Q is a Chow form iff certain differential forms vanish modulo Q [Gel'fand, Kapranov, Zelevinsky]
$\leadsto I_{G(2,2,4)}$
$\Rightarrow V\left(I_{G(2,2,4)}\right)$ equals $G(2,2,4)$ up to non-reduced surfaces

Squarefree coisotropic quadric Q is a Chow form iff certain differential forms vanish modulo Q [Gel'fand, Kapranov, Zelevinsky]
$\leadsto I_{G(2,2,4)}$
$\Rightarrow V\left(I_{G(2,2,4)}\right)$ equals $G(2,2,4)$ up to non-reduced surfaces
Proposition (Bürgisser, K., Lairez, Sturmfels)
Let $\mathfrak{m}:=\left\langle c_{0}, c_{1}, \ldots, c_{20}\right\rangle$ be the irrelevant ideal, then
$\sqrt{I_{G(2,2,4)}}=\left(I_{G(2,2,4)}: \mathfrak{m}\right)=P_{\text {ChowConic }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}$

Squarefree coisotropic quadric Q is a Chow form iff certain differential forms vanish modulo Q [Gel'fand, Kapranov, Zelevinsky]
$\leadsto I_{G(2,2,4)}$
$\Rightarrow V\left(I_{G(2,2,4)}\right)$ equals $G(2,2,4)$ up to non-reduced surfaces
Proposition (Bürgisser, K., Lairez, Sturmfels)
Let $\mathfrak{m}:=\left\langle c_{0}, c_{1}, \ldots, c_{20}\right\rangle$ be the irrelevant ideal, then

$$
\sqrt{I_{G(2,2,4)}}=\left(I_{G(2,2,4)}: \mathfrak{m}\right)=P_{\text {ChowConic }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}
$$

Recall: $\quad I_{\text {Coiso }}=P_{\text {Hurwitz }} \cap P_{\text {ChowLines }} \cap P_{\text {Squares }}$

$$
P_{\text {Hurwitz }} \subseteq P_{\text {ChowConic }}
$$

■ Compute ideals of Chow varieties with higher degree and/or dimension
■ Which Chow forms are Hurwitz forms, and which Hurwitz forms are Chow forms?

- Compute volume of ε-tubes around coisotropic hypersurfaces

■ Generalize Cayley's differential characterization of coisotropy

$$
\frac{\partial Q}{\partial p_{01}} \cdot \frac{\partial Q}{\partial p_{23}}-\frac{\partial Q}{\partial p_{02}} \cdot \frac{\partial Q}{\partial p_{13}}+\frac{\partial Q}{\partial p_{03}} \cdot \frac{\partial Q}{\partial p_{12}}=s \cdot Q+t \cdot \mathcal{R}
$$

from $G(2,4)$ to $G(2, n)$

- Catanese, 2014: Hypersurface $Z \subseteq G(2,4)$ coisotropic iff Z selfdual \Rightarrow Generalize to $G(2, n)$

Thank you!

For our computations, check www3.math.tu-berlin.de/algebra/static/pluecker/

