The Complex of Non-Chromatic Scales

Kathlén Kohn

Ernst Ulrich Deuker

tonal musical language as a tool for free musical speech

intuitive starting points for the spontaneous inventor of melodies (improviser)

cyclic scales

A scale is a subset of the cyclically ordered set {C,C[#],D,D[#],E,F,F[#],G,G[#],A,A[#],B}.

cyclic interval sequence

chromatic scale

non-chromatic scales

A scale is called **non-chromatic** if its interval sequence does not contain two consecutive semitones.

maximal non-chromatic scales

A non-chromatic scale is **maximal** if it is not contained in any other non-chromatic scale.

Which scales are maximal non-chromatic scales?

The non-chromatic scales form a simplicial complex.

A **simplicial complex** on a ground set *G* is a set *K* of consisting of finite subsets of *G* such that: for every set *M* in *K* and every subset *T* of *M*, we have that *T* is also in *K*.

Example:

- G = { 0, 1, 2 }
- K1 = { {0,1}, {2} } is not a simplicial complex
- K2 = { {0,1}, {0}, {1}, {2}, Ø } is a simplicial complex

The **f-vector** of a simplicial complex *K* is the list $(f_{-1}, f_0, f_1, f_2, ...)$ where f_n denotes the number of *n*-dimensional simplices in *K*.

f-1	<i>f</i> ₀	<i>f</i> ₁	f_2	<i>f</i> ₃
1	17	34	23=5+ <mark>8</mark> +10	7= <mark>2</mark> +5

The non-chromatic scales form a simplicial complex.

f-vector:	f -1	f ₀	<i>f</i> 1	f ₂	<i>f</i> ₃	f ₄	f 5	f ₆	f ₇	
#scales	1	12	66	208	399	456	282	72	3	
#notes	0	1	2	3	4	5	6	7	8	

Obs.: There is no non-chromatic scale with 9 or more notes.

A set *M* in a simplicial complex *K* is a facet of *K* if there is no other set in *K* that contains *M*.

5 2-dimensional facets2 3-dimensional facets1 4-dimensional facet

The non-chromatic scales form a simplicial complex. Its facets are the maximal non-chromatic scales!

The non-chromatic scales form a simplicial complex.

f-vector:									
#scales	1	12	66	208	399	456	282	72	3
#notes	0	1	2	3	4	5	6	7	8

57 facets:

#notes	name	#scales
8	diminished	3
7	melodic (classical) major	12
7	melodic minor	12
7	harmonic minor	12
7	harmonic major	12
6	whole-tone	2
6	half-tone / augmented	4

counting holes

Which properties of spaces are preserved under continuous deformations? (such as bending or stretching)

number of "holes" !

has no holes --

counting holes

 \bigcirc

solid object: no holes

3

1

 $(\mathbf{0}$

(2)

three 1-dimensional holes

2

3

1

hollow object: one 2-dimensional hole 2

3

non-chromatic holes

The non-chromatic scales form a simplicial complex. It has three 5-dimensional holes.

- The boundary of each hole is formed by hexatonics (= scales with 6 notes).
- From the topological point of view, these hexatonics form a 5-dimensional sphere (= boundary of a 6-dimensional ball).

1-dimensional sphere

2-dimensional ball

The 4 triangles on the boundary of a tetrahedron form a topological 2-dimensional sphere.

non-chromatic holes

Messiaen's 9-note scale contains 27 non-chromatic hexatonics.

These hexatonics form the boundary of one hole!

non-chromatic holes

A#

G#

Α

G

G

B

G

A#

G[#]

A#

G[#]

G

G

D

E

D

Ε

D

F

D[#]

\$#

There are 4 Messiaen scales:

But the simplicial complex of nonchromatic scales has only 3 holes!

Intuitive reason: One can only "see" 3 holes simultaneously.

Mathematical reason: The 4 Messiaen spheres are linearly dependent. Any 3 of them are linearly independent.

arrangement of non-chromatic holes

The intersection of 2 Messiaenspheres is a maximal non-chromatic scale:

57 facets:

#notes	name	#scales
8	diminished	3
7	melodic (classical) major	12
7	melodic minor	12
7	harmonic minor	12
7	harmonic major	12
6	whole-tone	2
6	half-tone / augmented	4

where are the facets with 7 or 8 notes?

3

3

They sit on the "outside" of the holes!

We can remove them from the simplicial complex using **collapses** without changing the topology.

3

summary

The non-chromatic scales form a simplicial complex.

f-vector:									
#scales	1	12	66	208	399	456	282	72	3
#notes	0	1	2	3	4	5	6	7	8

57 facets:

#notes	name	#scale
8	diminished	3
7	melodic (classical) major	12
7	melodic minor	12
7	harmonic minor	12
7	harmonic major	12
6	whole-tone	2
6	half-tone / augmented	4

Simplicial homology:

Reduction via collapses = getting rid of scales bigger than hexatonics without changing the topology

 $H_5 = Q^3$ → 3 "holes" with remaining hexatonic scales on boundary $H_n = \{0\}$ for $n \neq 5$

extensions of 10 basic pentatonic forms