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2-view triangulation

Given

F = fundamental matrix of camera pair and

(x̃ , ỹ) ∈ R2 × R2 noisy image points,

we aim to solve

min
x1,x2,y1,y2

(x1 − x̃1)2 + (x2 − x̃2)2 + (y1 − ỹ1)2 + (y2 − ỹ2)2,

[x1, x2, 1]F [y1, y2, 1]> = 0

This optimization problem has 6 complex critical points generically.
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Weighted triangulation

Can we find λ1, λ2, λ3, λ4 > 0 such that

min
x1,x2,y1,y2

λ1(x1 − x̃1)2 + λ2(x2 − x̃2)2 + λ3(y1 − ỹ1)2 + λ4(y2 − ỹ2)2,

[x1, x2, 1]F [y1, y2, 1]> = 0

has less critical points?

Yes! We can bring it from 6 down to 2 :)
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Step 1: Coordinate change

General idea: Diagonalize the constraint by translating and rotating.

Concretely, find t ∈ R4 and R ∈ SO(4) such that in the new coordinates
z = R([x1, x2, y1, y2]> − t), the constraint [x1, x2, 1]F [y1, y2, 1]> is of the
form q1z

2
1 + q2z

2
2 + q3z

2
3 + q4z

2
4 .

General Proposition: Translation and rotation yield an equivalent
Euclidean-distance minimization problem, with the same optimal value and
the same number of critical points.

min
z1,...,z4

(z1 − z̃1)2 + (z2 − z̃2)2 + (z3 − z̃3)2 + (z4 − z̃4)2,

q1z
2
1 + q2z

2
2 + q3z

2
3 + q4z

2
4 = 0.

Exercise: In our case, (q1, q2, q3, q4) = (a1,−a1, a2,−a2),
where a1, a2 ≥ 0 are the singular values of the top-left 2× 2 block in F .
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Step 2: Align weights with diagonal constraint

Theorem The number of critical points of

min
z1,...,z4

λ1(z1 − z̃1)2 + λ2(z2 − z̃2)2 + λ3(z3 − z̃3)2 + λ4(z4 − z̃4)2,

a1z
2
1 − a1z

2
2 + a2z

2
3 − a2z

2
4 = 0

is generically

2 if λ = (µa1, νa1, µa2, νa2) for some µ, ν > 0,

4 if (λ1, λ3) = µ(a1, a2) for µ > 0 or (λ2, λ4) = ν(a1, a2) for ν > 0,

6 otherwise.

We can solve weighted 2-view triangulation in closed form!

What is the optimal choice of µ and ν?
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Step 3: Least deviation from unweighted problem

Let λ = (a1, νa1, a1, νa2).
For every ν > 0, let z(ν) be the global minimum of the weighted problem.

Which z(ν) minimizes the original objective
∑

(zi (ν)− z̃i )
2 ?

Theorem: There is a unique such ν:

ν =
(z̃2

2 + z̃2
4 )(a1z̃

2
1 + a2z̃

2
3 )

(z̃2
1 + z̃2

3 )(a1z̃2
2 + a2z̃2

4 )
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experiments
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3-view triangulation?

The analogous problem for camera triples (P1,P2,P3) given noisy image
points (x̃ , ỹ , z̃) ∈ R2 × R2 × R2 is

min
x1,x2,y1,y2,z1,z2

(x1 − x̃1)2 +(x2 − x̃2)2 +(y1 − ỹ1)2 +(y2 − ỹ2)2 +(z1 − z̃1)2 +(z2 − z̃2)2,

(x1, x2, 1) ≡ P1X

(y1, y2, 1) ≡ P2X

(z1, z2, 1) ≡ P3X

for some X ∈ P3.

It has 47 critical points generically.

Can you find weights λ1, . . . , λ6 > 0 such that the generic number of critical points
is as low as possible? How low can it even get?
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Point-Line Minimal Problems for SfM

joint with Kim Kiehn, Albin Ahlbäck
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Fundamental Research Questions

Miraldo et al ECCV 2018

1. Can we list all minimal problems?
2. How many solutions do they have?

We do not only want to work with points, 

but also with lines and their incidences!



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.

Mobile User



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.

The 5-point problem has 20 solutions.



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.

This problem has 312 solutions
  (counted over the complex numbers).

First solver for 
such a high-
degree problem 
based on state-of-
the-art algorithms 
from numerical 
algebraic 
geometry:

TRPLP – Trifocal 
Relative Pose from 
Lines at Points, 
Fabbri et. al., 
CVPR 2020



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.

We measure the complexity of each 

minimal problem by computing its 
number of solutions 
(counted over the complex numbers).



What about projective cameras?

Theorem (K. Kiehn, A. Ahlbäck, K. Kohn): For projective cameras, all
minimal problems involving points and lines are:
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Problem Subproblem Constraints Problem Subproblem Constraints

(4,1,1,2)

m = 3

(4,1,0,2)

1 point on free line
with 0 in one coordi-
nate

(3,1,2,1)

m = 5

(3,1,0,0)

1 point on each free
line with 0 in one co-
ordinate

(4,0,1,4)

m = 3

(4,0,0,4)

1 point on free line
with 0 in one coordi-
nate

(3,1,2,1)

m = 5

(3,1,0,0)

1 point on each free
line with 0 in one co-
ordinate

(3,1,3,1)

m = 3

(3,1,0,0)

1 point on each free
line with 0 in one co-
ordinate

(3,1,1,3)

m = 5

(3,1,0,1)

1 point on each un-
used (free and adja-
cent) line with 0 in
one coordinate

(3,1,3,1)

m = 3

(3,1,0,0)

1 point on each free
line with 0 in one co-
ordinate

(3,0,3,0)

m = 6

(3,0,0,0)

1 point on each free
line with 0 in one co-
ordinate

(3,1,1,5)

m = 3

(3,1,0,5)

1 point on free line
with 0 in one coordi-
nate

(3,0,1,4)

m = 6

(3,0,0,1)

1 point on each un-
used (free and adja-
cent) line with 0 in
one coordinate

(4,1,1,1)

m = 4

(4,1,0,0)

1 point on each un-
used (free and adja-
cent) line with 0 in
one coordinate

(2,1,3,1)

m = 6

(2,1,0,1)

1 point on each free
line with 0 in one co-
ordinate

(3,0,1,5)

m = 4

(3,0,0,1)

1 point on each un-
used (free and adja-
cent) line with 0 in
one coordinate

(2,0,2,4)

m = 7

(2,0,1,0)

1 point on each un-
used (free and adja-
cent) line with 0 in
one coordinate

(4,0,1,2)

m = 5

(4,0,0,0)

1 point on each un-
used (free and adja-
cent) line with 0 in
one coordinate

(2,0,1,6)

m = 7

(2,0,0,2)

1 point on each un-
used (free and adja-
cent) line with 0 in
one coordinate

Table 6: List of non-minimal subproblems with overconstraint subsystems after elimination of the given subproblem. More
details can be found in Example C.1 which is the first entry of this table.
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m (p f , pd , l f , l a ), algebraic degree

(0,0,9,0), 363636 (1,0,4,7), 666 (1,0,5,5), 232323 (1,0,6,3), 232323 (1,0,7,1), 151515 (2,0,0,12), 444 (2,0,1,10), 666 (2,0,1,10), 161616 (2,0,2,8), 444

(2,0,2,8), 121212 (2,0,2,8), 161616 (2,0,3,6), 222 (2,0,3,6), 999 (2,0,3,6), 151515 (2,0,3,6), 171717 (2,0,4,4), 999 (2,0,4,4), 121212 (2,0,4,4), 131313

(2,0,5,2), 888 (2,0,5,2), 999 (2,0,6,0), 777 (3,0,0,9), 444 (3,0,0,9), 444 (3,0,0,9), 444 (3,0,0,9), 101010 (3,0,0,9), 101010 (3,0,0,9), 121212

(3,0,1,7), 222 (3,0,1,7), 777 (3,0,1,7), 222 (3,0,1,7), 777 (3,0,1,7), 101010 (3,0,1,7), 111111 (3,0,2,5), 222 (3,0,2,5), 555 (3,0,2,5), 777

(3,0,2,5), 888 (3,0,2,5), 999 (3,0,3,3), 666 (3,0,3,3), 666 (3,0,3,3), 666 (3,0,4,1), 333 (2,1,0,10), 444 (2,1,0,10), 444 (2,1,0,10), 444

3

(2,1,0,10), 444 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,1,8), 222 (2,1,1,8), 777 (2,1,1,8), 101010 (2,1,1,8), 222

(2,1,1,8), 777 (2,1,1,8), 101010 (2,1,1,8), 101010 (2,1,1,8), 111111 (2,1,2,6), 222 (2,1,2,6), 555 (2,1,2,6), 555 (2,1,2,6), 555 (2,1,2,6), 555

(2,1,2,6), 555 (2,1,2,6), 555 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,4,2), 111 (2,1,4,2), 111 (2,1,5,0), 111

(4,0,0,6), 222 (4,0,0,6), 555 (4,0,0,6), 222 (4,0,0,6), 555 (4,0,0,6), 666 (4,0,0,6), 555 (4,0,0,6), 777 (4,0,1,4), 333 (4,0,1,4), 555

(4,0,1,4), 555 (4,0,1,4), 666 (4,0,2,2), 333 (4,0,2,2), 444 (4,0,3,0), 333 (3,1,0,7), 222 (3,1,0,7), 222 (3,1,0,7), 222 (3,1,0,7), 222

(3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 666 (3,1,0,7), 555

Table 7: Minimal problems with their associated degree.

19



m (p f , pd , l f , l a ), algebraic degree

(3,1,0,7), 666 (3,1,0,7), 666 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,1,5), 111

(3,1,1,5), 111 (3,1,1,5), 222 (3,1,1,5), 222 (3,1,1,5), 222 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333

(3,1,1,5), 444 (3,1,1,5), 444 (3,1,1,5), 444 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111

(3,1,2,3), 111 (5,0,0,3), 222 (5,0,0,3), 333 (5,0,0,3), 444 (5,0,1,1), 333 (4,1,0,4), 111 (4,1,0,4), 111 (4,1,0,4), 111 (4,1,0,4), 222

3 (4,1,0,4), 111 (4,1,0,4), 222 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 222 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 333

(4,1,1,2), 111 (4,1,1,2), 111 (4,1,1,2), 222 (4,1,1,2), 222 (4,1,2,0), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111

(3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111

(3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (6,0,0,0), 333

(5,1,0,1), 111 (5,1,0,1), 222 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 222 (4,2,0,2), 111

(4,2,0,2), 111 (4,2,1,0), 111

Table 8: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(1,0,3,6), 222 (1,0,4,4), 252525 (1,0,5,2), 303030 (1,0,6,0), 121212 (3,0,0,7), 222 (3,0,0,7), 222 (3,0,0,7), 888 (3,0,0,7), 101010 (3,0,1,5), 555

(3,0,1,5), 666 (3,0,1,5), 101010 (3,0,2,3), 444 (3,0,2,3), 666 (3,0,2,3), 777 (3,0,3,1), 333 (2,1,0,8), 222 (2,1,0,8), 999 (2,1,0,8), 222

4 (2,1,0,8), 999 (2,1,0,8), 999 (2,1,0,8), 101010 (2,1,1,6), 555 (2,1,1,6), 101010 (2,1,1,6), 555 (2,1,1,6), 101010 (2,1,1,6), 111111 (2,1,2,4), 333

(2,1,2,4), 333 (2,1,2,4), 333 (2,1,2,4), 333 (2,1,3,2), 111 (2,1,3,2), 111 (2,1,4,0), 111 (5,0,0,2), 222 (5,0,0,2), 333 (5,0,1,0), 222

(4,1,0,3), 111 (4,1,0,3), 222 (4,1,0,3), 222 (4,1,0,3), 222 (4,1,0,3), 333 (4,1,0,3), 333 (4,1,1,1), 111 (3,2,0,4), 111 (3,2,0,4), 111

(3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111

Table 9: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(1,0,3,5), 666 (1,0,4,3), 353535 (1,0,5,1), 202020 (4,0,0,4), 333 (4,0,0,4), 444 (4,0,0,4), 777 (4,0,1,2), 333 (4,0,2,0), 222 (3,1,0,5), 222

5

(3,1,0,5), 222 (3,1,0,5), 222 (3,1,0,5), 444 (3,1,0,5), 666 (3,1,0,5), 666 (3,1,0,5), 444 (3,1,0,5), 444 (3,1,0,5), 555 (3,1,1,3), 111

(3,1,1,3), 111 (3,1,1,3), 222 (3,1,1,3), 222

6 (3,0,0,6), 333 (3,0,0,6), 555 (3,0,0,6), 121212 (3,0,1,4), 555 (3,0,1,4), 888 (3,0,2,2), 333 (3,0,2,2), 444 (2,1,0,7), 555 (2,1,0,7), 555

(2,1,0,7), 101010 (2,1,0,7), 101010 (2,1,1,5), 777 (2,1,1,5), 777 (2,1,1,5), 101010 (2,1,2,3), 111 (2,1,2,3), 111 (2,1,2,3), 111

7

(2,0,0,8), 333 (2,0,1,6), 101010 (2,0,2,4), 999 (2,0,2,4), 202020 (2,0,3,2), 666 (2,0,3,2), 999 (2,0,4,0), 333

8

(1,0,3,4), 101010 (1,0,4,2), 383838 (1,0,5,0), 888

9

(0,0,6,0), 114114114

Table 10: Minimal problems with their associated degree.
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Is the number of solutions an accurate complexity measure?
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Galois width example

The Galois width of finding the roots of a univariate polynomial of degree n is{
3 , if n = 4
n , else

The roots of a general quartic can be expressed in terms of the roots of its
resolvent cubic and additional square roots thereof!
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Galois width of vision minimal problems

Let 2 projective cameras take pictures of 7 points:

Φ :
(
(PR3×4)2 × (P3)7

)
/PGL4 −→ (P2)7 × (P2)7

has generic fibers of size 3 and GaloisWidth(Φ) = 3.

Let 2 calibrated cameras take pictures of 5 points:

Φ :
(
(SO(3)× R3)2 × (P3)5

)
/G −→ (P2)5 × (P2)5,

where G = {
[
R t
0 λ

]
| R ∈ SO(3), t ∈ R3, λ ∈ R \ {0}},

has generic fibers of size 20 and GaloisWidth(Φ) = 10.
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Order-One Rolling Shutter Cameras

joint with Marvin Hahn, Orlando Marigliano, Tomas Pajdla

Highlight @ CVPR 2025 :)
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one of my long-term goals: algebra-geometry foundations of

rolling-shutter cameras:
take pictures by scanning across the scene, capturing the image row by row

(by Cmglee @ Wikipedia
https://creativecommons.org/licenses/by-sa/3.0/deed.en

changes: added black separating line)Algebraically:

The image of a line is typically a higher-degree curve.

A 3D point can appear more than once in the image.
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Rolling-Shutter Camera

Assume: rolling shutter parallel to y -axis on image plane:

ρ : P1 −→ (P2)∗,

(v : t) 7−→ (0 : 1 : 0) ∨ (v : 0 : t) ≡ (−t : 0 : v).
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Rolling-Shutter Camera

On the affine chart {(v : t) | t 6= 0} ⊂ P1, the camera’s position and
orientation at time v

t are

c( vt ) ∈ R3 and R( vt ) ∈ SO(3).

Assume: c is a rational map P1 99K P3.
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How to take a picture?

At time v
t , the camera only observes a plane, not the whole ambient 3-space.

It maps that rolling plane onto the rolling shutter via the linear map given by

A( vt ) := R( vt ) · [I3 | −c( vt )].

Hence, the rolling plane is the preimage of the rolling shutter under A:

σ( vt ) := (−t : 0 : v) · A( vt ) ∈ (P3)∗.
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How to take a picture?

Image points are intersections of the rolling
shutter with lines parallel to the x-axis:

P1 −→ (P2)∗,

(u : s) 7−→ (1 : 0 : 0) ∨ (0 : u : s) ≡ (0 : −s : u)

We think of the image plane as P1 × P1 via the birational map

P1 × P1 99K P2,

((v : t), (u : s)) 7→ (sv : ut : st).
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How to take a picture?

The camera ray mapping to the image point ((v : t), (u : s)) ∈ P1 × P1 is the
point’s preimage under A( vt ):

Λ : P1 × P1 99K Gr(1,P3),

((v : t), (u : s)) 7→
(
(−t : 0 : v) · A( vt )

)︸ ︷︷ ︸
rolling plane σ(

v
t )

∩
(
(0 : −s : u) · A( vt )

)

Assume: Λ is rational
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Λ : P1 × P1 99K Gr(1,P3),

((v : t), (u : s)) 7→
(
(−t : 0 : v) · A( vt )

)︸ ︷︷ ︸
rolling plane σ(

v
t )

∩
(
(0 : −s : u) · A( vt )

)

The Zariski closure of the image of Λ is a surface L in Gr(1,P3), classically
called a line congruence.

Definition: The order of a line congruence L ⊂ Gr(1,P3
C) is the number of

lines on L that pass through a generic point in P3
C.

Observation: The number of times a generic point in P3
C is seen by a

rolling-shutter camera is

order(im(Λ)) · deg(Λ).

We call this the order of the camera.
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Order-One Cameras

For a rolling-shutter camera of order one,

1) the map Λ is birational onto its image L := im(Λ),
i.e., its inverse Λ−1 : L 99K P1 × P1 exists

2) and the congruence L has order one,
i.e., there is a map

Γ : P3 99K L

that assigns to X ∈ P3 the unique line on L passing through X .

Observation: The picture-taking map is Λ−1 ◦ Γ : P3 99K P1 × P1.
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Example: Global-Shutter Camera

(x, y, z)

(x/z, y/z, 1)

(0, 0, 1)

H

c

P3 99K P2,X 7→ AX

is a static rolling-shutter camera

of order one.

Congruence L = { all lines passing through camera center c := ker(A) }
Γ : P3 99K L,X 7→ c ∨ X

Λ−1 intersects lines on L with image plane H
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Order-One Cameras

Consider a rolling-shutter camera with
camera-center map c : P1 99K P3 and
rolling-planes map σ : P1 99K (P3)∗.

Theorem: The camera has order one if and only if

a) the intersection of all its rolling planes is a line K ,

b) the rolling-planes map σ : P1 99K K∨ is birational,

c) and the center locus C := im(c) is one of the following:

I. C is a curve with #(K ∩ C ) = deg(C )− 1 (counted with multiplicities).
II. C = K .

III. C is a point on K .

24 / 29
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Images of Lines
Recall: The picture-taking map is

P3 Γ
99K L Λ−1

99K P1 × P1 99K P2

Theorem: The image of a generic line L ⊂ P3 under an order-one RS
cameras is a curve of degree D that passes D − 1 times (counted with
multiplicity) through the point (0 : 1 : 0).

D = 4

Example: A order-one RS camera that moves along a line (with constant
speed) and does not rotate maps lines to conics through a fixed point.
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a point-line minimal problem of degre 28 for order-one RS cameras moving
along a line with constant speed and no rotation
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all complete-visibility point-line minimal problems for order-one RS cameras
moving along a line with constant speed and no rotation
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Now working one:

SfM & Triangulation of points & lines from
Higher Order Rolling Shutter Cameras

joint with Petr Hruby, . . .

28 / 29



Open PhD Position in my group on Algebraic Geometry in Neural
Network Theory !!!

machine learning algebraic geometry

sample complexity & expressivity dimension, degree, covering number

subnetworks & implicit bias singularities

identifiability & hidden symmetries fibers of the parametrization

optimization & gradient descent critical point theory, discriminants,
dynamical invariants
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