Minimal Problems in Computer Vision

Kathlén Kohn University of Oslo

joint work with Timothy Duff (Georgia Tech), Anton Leykin (Georgia Tech) & Tomas Pajdla (CTU in Prague)

Reconstruct 3D scenes and camera poses from 2D images

Rome in a Day: S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, S. Seitz, R. Szeliski

- XII

Reconstruct 3D scenes and camera poses from 2D images

• Step 1: Identify common points and lines on given images

 Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

• Step 1: Identify common points and lines on given images

 Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

Step 1: Identify common points and lines on given images

 Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

We use calibrated perspective cameras: a camera is a matrix $C = [R \mid t]$, where $R \in SO(3)$ and $t \in \mathbb{R}^3$.

I - XII

Reconstruct 3D scenes and camera poses from 2D images

Step 1: Identify common points and lines on given images

 Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

We use calibrated perspective cameras: a camera is a matrix $C = [R \mid t]$, where $R \in SO(3)$ and $t \in \mathbb{R}^3$. Taking a picture of a point $x \in \mathbb{P}^3$: $x \mapsto Cx$

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C} on generic input images. (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C} on generic input images. (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

 \Rightarrow Since $0 < 20 < \infty$, the 5-Point-Problem is a minimal problem!

Another minimal problem

Given: 3 images of 3 points on a line, 1 attached line and 1 free line
Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

Another minimal problem

Given: 3 images of 3 points on a line, 1 attached line and 1 free line
Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

This problem has 40 solutions over \mathbb{C} on generic input images. (solution = 3 camera poses and 3D coordinates of points and lines)

 \Rightarrow It is a minimal problem!

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number \overline{m} of cameras,
- a number p of points,
- \blacklozenge a number ℓ of lines,
- \blacklozenge a set $\mathcal I$ of incidences between points and lines.

Minimal Problems

A Point-Line-Problem (PLP) consists of

- ♦ a number *m* of cameras,
- a number p of points,
- \blacklozenge a number ℓ of lines,
- \blacklozenge a set ${\mathcal I}$ of incidences between points and lines.

Definition

A PLP $(m, p, \ell, \mathcal{I})$ is **minimal** if, given *m* generic 2D-arrangements each consisting of *p* points and ℓ lines satisfying the incidences \mathcal{I} , it has a positive and finite number of solutions over \mathbb{C} . (solution = *m* camera poses and 3D coordinates of *p* points and ℓ lines

satisfying the incidences ${\cal I}$)

Minimal Problems

A Point-Line-Problem (PLP) consists of

- ♦ a number *m* of cameras,
- a number p of points,
- \blacklozenge a number ℓ of lines,
- \blacklozenge a set $\mathcal I$ of incidences between points and lines.

Definition

A PLP $(m, p, \ell, \mathcal{I})$ is **minimal** if, given *m* generic 2D-arrangements each consisting of *p* points and ℓ lines satisfying the incidences \mathcal{I} , it has a positive and finite number of solutions over \mathbb{C} .

(solution = m camera poses and 3D coordinates of p points and ℓ lines satisfying the incidences I)

> Can we list all minimal PLPs? How many solutions do they have?

Minimal PLPs

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	1021_{1}	1013_{3}	1005_{5}	2011_{1}	2003_{2}	2003_{3}	1030_{0}	1022_{2}	1014_{4}	1006_{6}	3001_{1}	2110_{0}	2102_{1}
(p,l,\mathcal{I})	\bullet	\times	$ \mathbb{X} $	• /•	† X	×	•	\times	\times	*	•••	•••	•
Minimal	Υ	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ
Degree	$> 450k^{*}$			11306^{*}	26240^*	11008^{*}	3040^*	4524^*			1728^{*}	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_1	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p,l,\mathcal{I})	•×	•	$\parallel \mid$			\mathbb{X}	•_•		•	\mathbf{k}	€_¥	•*	•••
Minimal	Y	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	3002_{1}	3002_{2}	2111_{1}	2103_{1}	2103_{2}	2103_{3}	3100_{0}	2201_{1}	5000_{2}	4100_{3}	3200_{3}	3200_{4}	2300_{5}
(p,l,\mathcal{I})	†• †			∤∕ ۲		\mathbf{A}	•••	••\ •	•••		•••	•••	•••*
Minimal	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Ν	Ν
Degree	312	224	40	144	144	144	64		20	16	12		

VI - XII

 $(3D-arrangement , cam_1, \ldots, cam_m)$ of p points and ℓ lines satisfying incidences $\mathcal I$

(3D-arrangement of p points and ℓ lines satisfying incidences \mathcal{I}

 $(3D-arrangement , cam_1, \dots, cam_m) \mapsto (2D-arr_1, \dots, 2D-arr_m)$

C

(3D-arrangement of p points and ℓ lines satisfying incidences \mathcal{I}

X

 $(3D-arrangement , cam_1, \dots, cam_m) \mapsto (2D-arr_1, \dots, 2D-arr_m)$

 \mathcal{Y}

of p points and ℓ lines satisfying incidences \mathcal{I}

X C \mathcal{Y} $(3D-arrangement , cam_1, \dots, cam_m) \mapsto (2D-arr_1, \dots, 2D-arr_m)$

• $\mathbb{P}^n = n$ -dimensional projective space • $\mathbb{G}_{1,n} = \{ \text{lines in } \mathbb{P}^n \} = \text{Grassmannian of lines in } \mathbb{P}^n$ $\bullet \ \mathcal{X} = \{ (X_1, \dots, \overline{X_p}, L_1, \dots, L_\ell) \in (\mathbb{P}^3)^p \times (\mathbb{G}_{1,3})^\ell \mid \forall (\overline{i, j}) \in \mathcal{I} : X_i \in L_i \}$

of p points and ℓ lines satisfying incidences \mathcal{I}

 $\begin{array}{cccc} \mathcal{X} & \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ (\text{3D-arrangement} & , & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (\text{2D-arr}_1, \dots, \text{2D-arr}_m) \end{array}$

• $\mathbb{P}^n = n$ -dimensional projective space • $\mathbb{G}_{1,n} = \{ \text{lines in } \mathbb{P}^n \} = \text{Grassmannian of lines in } \mathbb{P}^n$ • $\mathcal{X} = \{(X_1, \dots, \overline{X_p}, L_1, \dots, L_\ell) \in (\mathbb{P}^3)^p \times (\mathbb{G}_{1,3})^\ell \mid \forall (\overline{i, j}) \in \mathcal{I} : X_i \in L_i\}$ $\bullet \mathcal{Y} = \left\{ \begin{array}{c} (x_{1,1}, \dots, x_{m,p}, \mathbf{l}_{1,1}, \dots, \mathbf{l}_{m,\ell}) \\ \in (\mathbb{P}^2)^{mp} \times (\mathbb{G}_{1,2})^{m\ell} \end{array} \middle| \begin{array}{c} \forall k = 1, \dots, \overline{m} \\ \forall (i,j) \in \mathcal{I} : x_{k,i} \in \mathbf{l}_{k,i} \end{array} \right\}$

of p points and ℓ lines satisfying incidences \mathcal{I}

 $\begin{array}{cccc} \mathcal{X} & \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ (\text{3D-arrangement} & , & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (\text{2D-arr}_1, \dots, \text{2D-arr}_m) \end{array}$

• $\mathbb{P}^n = n$ -dimensional projective space • $\mathbb{G}_{1,n} = \{ \text{lines in } \mathbb{P}^n \} = \text{Grassmannian of lines in } \mathbb{P}^n$ • $\mathcal{X} = \{ (X_1, \dots, \overline{X_p}, L_1, \dots, L_\ell) \in (\mathbb{P}^3)^p \times (\mathbb{G}_{1,3})^\ell \mid \forall (i, j) \in \mathcal{I} : X_i \in L_i \}$ $\bullet \ \mathcal{Y} = \left\{ \begin{array}{c|c} (x_{1,1}, \dots, x_{m,p}, \mathbf{l}_{1,1}, \dots, \mathbf{l}_{m,\ell}) \\ \in (\mathbb{P}^2)^{mp} \times (\mathbb{G}_{1,2})^{m\ell} \end{array} \middle| \begin{array}{c} \forall k = 1, \dots, m \\ \forall (i,j) \in \mathcal{I} : x_{k,i} \in \mathbf{l}_{k,i} \end{array} \right\}$ • $C = \left\{ ([R_1|t_1], \dots [R_m|t_m]) \mid \forall i = 1, \dots, m : R_i \in SO(3), t_i \in \mathbb{R}^3, R_1 = I_3, t_1 = 0, t_{2,1} = 1 \right\}$

of p points and ℓ lines satisfying incidences \mathcal{I}

 $\mathcal{X} imes \mathcal{X} imes \mathcal{C} o \mathcal{Y}$ (3D-arrangement , cam₁,..., cam_m) \mapsto (2D-arr₁,..., 2D-arr_m)

• $\mathbb{P}^n = n$ -dimensional projective space • $\mathbb{G}_{1,n} = \{ \text{lines in } \mathbb{P}^n \} = \text{Grassmannian of lines in } \mathbb{P}^n$ • $\mathcal{X} = \{ (X_1, \dots, \overline{X_p}, L_1, \dots, L_\ell) \in (\mathbb{P}^3)^p \times (\mathbb{G}_{1,3})^\ell \mid \forall (i, j) \in \mathcal{I} : X_i \in L_i \}$ $\bullet \ \mathcal{Y} = \left\{ \begin{array}{c|c} (x_{1,1}, \dots, x_{m,p}, \mathbf{l}_{1,1}, \dots, \mathbf{l}_{m,\ell}) \\ \in (\mathbb{P}^2)^{mp} \times (\mathbb{G}_{1,2})^{m\ell} \end{array} \middle| \begin{array}{c} \forall k = 1, \dots, m \\ \forall (i,j) \in \mathcal{I} : x_{k,i} \in \mathbf{l}_{k,i} \end{array} \right\}$ • $C = \left\{ ([R_1|t_1], \dots [R_m|t_m]) \middle| \begin{array}{c} \forall i = 1, \dots, m : R_i \in \mathrm{SO}(3), t_i \in \mathbb{R}^3, \\ R_1 = I_3, t_1 = 0, t_{2,1} = 1 \end{array} \right\}$

Lemma

If a PLP is minimal, then $\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y})$.

Definition A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition A **variety** is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

A variety is **irreducible** if it is not the union of two proper subvarieties.

VIII - XII

Definition

A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition

A variety is **irreducible** if it is not the union of two proper subvarieties. The **dimension** of an irreducible variety is its local dimension as a manifold.

VIII - XII

Definition

A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition

A variety is **irreducible** if it is not the union of two proper subvarieties. The **dimension** of an irreducible variety is its local dimension as a manifold.

 \mathcal{X}, \mathcal{C} and \mathcal{Y} are irreducible varieties!

 $\begin{array}{cccc} \mathcal{X} & \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ (\text{3D-arrangement} & , & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (\text{2D-arr}_1, \dots, \text{2D-arr}_m) \\ \text{of } p \text{ points and } \ell \text{ lines} \\ \text{with incidences } \mathcal{I} \end{array}$

Lemma

If a PLP is minimal, then $\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y})$.

 $\begin{array}{cccc} \mathcal{X} & \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ (3D\text{-arrangement} & , & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (2D\text{-arr}_1, \dots, 2D\text{-arr}_m) \\ \text{of } p \text{ points and } \ell \text{ lines} \\ \text{with incidences } \mathcal{I} \end{array}$

Lemma

If a PLP is minimal, then $\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y})$.

Theorem

• If m > 6, then dim $(\mathcal{X}) + \dim(\mathcal{C}) \neq \dim(\mathcal{Y})$.

 $\begin{array}{cccc} \mathcal{X} & \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ (\text{3D-arrangement} & , & \operatorname{cam}_1, \dots, \operatorname{cam}_m) & \longmapsto & (\text{2D-arr}_1, \dots, \text{2D-arr}_m) \\ \text{of } p \text{ points and } \ell \text{ lines} \\ & \text{with incidences } \mathcal{I} \end{array}$

Lemma

If a PLP is minimal, then $\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y})$.

Theorem

If m > 6, then dim(X) + dim(C) ≠ dim(Y).
There are exactly 39 PLPs with dim(X) + dim(C) = dim(Y):

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{f}p^{d}l^{f}l^{s}_{\alpha}$			1005_{5}		2003_{2}	2003_{3}	1030_{0}	1022_{2}	1014_{4}	1006_{6}	3001_{1}	2110_{0}	2102_{1}
(p, l, I)	\mathbf{M}	\times	*	••	tХ	•*	•	XII	st	*	•••	•••	•\†
Minimal													
Degree	$> 450k^*$			11306^{*}	26240^{*}	11008^{*}	3040^{*}	4524^{*}			1728^{*}	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{f}p^{d}l^{f}l^{a}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_1	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p, l, I)	×	•	\mathbb{X}	*	₩	▓	•7	ŕ	•*	¥*	€-¥	•*	••
Minimal													
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{f}p^{d}l^{f}l^{a}_{\alpha}$	3002_{1}	3002_{2}		2103_{1}	2103_{2}	2103_{3}	3100_{0}	2201_{1}	5000_{2}	4100_{3}	3200_{3}	3200_{4}	2300_{5}
(p, l, I)	†• †	\checkmark	\sim	ł/†	₩.	*	•••	•1	•••	\mathbf{X}	•••	•••	
Minimal													
Degree	312	224	40	144	144	144	64		20	16	12		

IX - XII

(3D-arrangement of p points and ℓ lines satisfying incidences \mathcal{I}

X

 $\begin{array}{cccc} \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ \text{,} & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (\mathsf{2D}\text{-}\mathsf{arr}_1, \dots, \mathsf{2D}\text{-}\mathsf{arr}_m) \end{array}$

Lemma

A PLP with dim (\mathcal{X}) + dim (\mathcal{C}) = dim (\mathcal{Y}) is minimal if and only if its joint camera map $\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y}$ is dominant.

(3D-arrangement of p points and ℓ lines satisfying incidences \mathcal{I}

X

 $\begin{array}{cccc} \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ \text{,} & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (\mathsf{2D}\text{-}\mathsf{arr}_1, \dots, \mathsf{2D}\text{-}\mathsf{arr}_m) \end{array}$

Lemma

A PLP with dim (\mathcal{X}) + dim (\mathcal{C}) = dim (\mathcal{Y}) is minimal if and only if its joint camera map $\mathcal{X} \times \mathcal{C} \to \mathcal{Y}$ is dominant.

Definition

A map $\varphi : A \to B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

Definition

A map $\varphi : A \to B$ is **dominant** if for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

(3D-arrangement of p points and ℓ lines satisfying incidences \mathcal{I}

X

Lemma

A PLP with dim (\mathcal{X}) + dim (\mathcal{C}) = dim (\mathcal{Y}) is minimal if and only if its joint camera map $\mathcal{X} \times \mathcal{C} \to \mathcal{Y}$ is dominant.

Definition

A map $\varphi : A \to B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$. Definition

, $\operatorname{cam}_1, \ldots, \operatorname{cam}_m$) \mapsto (2D-arr₁, ..., 2D-arr_m)

A map $\varphi : A \to B$ is **dominant** if for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

 \mathcal{Y}

Fact A map $\varphi : A \to B$ between irreducible varieties A and B is dominant if and only if for almost every $a \in A$ the differential $D_a \varphi : T_a A \to T_{\varphi(a)} B$ is surjective.

(3D-arrangement of p points and ℓ lines satisfying incidences \mathcal{I}

X

 $\begin{array}{cccc} \times & \mathcal{C} & \longrightarrow & \mathcal{Y} \\ \text{,} & \mathsf{cam}_1, \dots, \mathsf{cam}_m) & \longmapsto & (\mathsf{2D}\text{-}\mathsf{arr}_1, \dots, \mathsf{2D}\text{-}\mathsf{arr}_m) \end{array}$

Lemma

A PLP with dim (\mathcal{X}) + dim (\mathcal{C}) = dim (\mathcal{Y}) is minimal if and only if its joint camera map $\mathcal{X} \times \mathcal{C} \to \mathcal{Y}$ is dominant.

Definition

A map $\varphi : A \to B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

Definition

A map $\varphi : A \to B$ is **dominant** if for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a) = b$.

X - XII

Fact A map $\varphi : A \to B$ between irreducible varieties A and B is dominant if and only if for almost every $a \in A$ the differential $D_a \varphi : T_a A \to T_{\varphi(a)} B$ is surjective.

Can check this computationally! It is only linear algebra!

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	1021_{1}	1013_{3}	1005_{5}	2011_{1}	2003_{2}	2003_{3}	1030_{0}	1022_{2}	1014_{4}	1006_{6}	3001_{1}	2110_{0}	2102_{1}
(p,l,\mathcal{I})	\bullet	\times	*	•_•	\uparrow X		•	\times	\times	*	•••	•••	••
Minimal	Υ	Ν	Ν	Y	Υ	Y	Y	Υ	Ν	Ν	Y	Y	Υ
Degree	$> 450k^{*}$			11306^*	26240^*	11008^*	3040^*	4524^{*}			1728^{*}	32^{*}	544^*
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_{1}	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p,l,\mathcal{I})	•	•	$\parallel \mid $			*	•_•		•	¥/¥	€_¥	•*	••
Minimal	Υ	Y	Υ	Υ	Ν	Ν	Υ	Υ	Y	Υ	Υ	Υ	Υ
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{lpha}$	3002_{1}	3002_{2}	2111_{1}	2103_{1}	2103_{2}	2103_{3}	3100_0	2201_{1}	5000_{2}	4100_3	3200_3	3200_{4}	2300_{5}
(p,l,\mathcal{I})	†• <i>†</i>		\mathbf{X}	\ / / †		\mathbf{A}	•••	••*	••• ••		•	•••	
Minimal	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Ν	Ν
Degree	312	224	40	144	144	144	64		20	16	12		

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	1021_{1}	1013_{3}	1005_{5}	2011_{1}	2003_{2}	2003_{3}	1030_{0}	1022_{2}	1014_{4}	1006_6	3001_{1}	2110_{0}	2102_{1}
(p,l,\mathcal{I})	+	\times	$ \mathbb{X} $	•_*	†X	×	•		\times	*	••	•••	•++
Minimal	Υ	Ν	Ν	Υ	Υ	Y	Y	Υ	Ν	Ν	Υ	Y	Y
Degree	$> 450k^{*}$			11306^{*}	26240^*	11008^*	3040^*	4524^{*}			1728^{*}	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_4	1016_{6}	1008_{8}	2021_{1}	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_0
(p,l,\mathcal{I})	•	•	$\parallel \times$	\times		*	•/•	Ĩ. Ĩ	•*	× X	€_¥	•**	•••
Minimal	Υ	Y	Υ	Υ	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Degree	544^{*}	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	3002_{1}	3002_{2}	2111_{1}	2103_{1}	2103_{2}	2103_3	3100_0	2201_{1}	5000_{2}	4100_3	3200_{3}	3200_4	2300_{5}
(p,l,\mathcal{I})	†• †			∤∕ †		\mathbf{A}	•••	••\ •	•••		•••	•••	•••**
Minimal	Y	Y	Υ	Y	Y	Υ	Y	Ν	Y	Υ	Y	Ν	Ν
Degree	312	224	40	144	144	144	64		20	16	12		

 ◆ For m ∈ {2,3} : compute number of solutions with Gröbner bases (standard technique in algebraic geometry)

m views	6	6	6	5^{-1}	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	1021_{1}	1013_{3}	1005_{5}	2011_{1}	2003_{2}	2003_{3}	1030_{0}	1022_{2}	1014_4	1006_6	3001_{1}	2110_{0}	2102_{1}
(p,l,\mathcal{I})	\bullet	\times	*	•_•	† X	×	•	\mathbf{X}	\times	*	•••	•••	•++
Minimal	Υ	Ν	Ν	Υ	Υ	Y	Y	Y	Ν	Ν	Υ	Y	Y
Degree	$> 450k^{*}$			11306^{*}	26240^{*}	11008^*	3040^*	4524^{*}			1728^{*}	32^{*}	544^{*}
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	2102_{2}	1040_{0}	1032_{2}	1024_{4}	1016_{6}	1008_{8}	2021_{1}	2013_{2}	2013_{3}	2005_{3}	2005_{4}	2005_{5}	3010_{0}
(p,l,\mathcal{I})	•	•	$\parallel \times$	\times		\gg	•_•		•	× X	€_¥	•	•••
Minimal	Υ	Υ	Υ	Υ	Ν	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$	3002_{1}	3002_{2}	2111_{1}	2103_{1}	2103_{2}	2103_{3}	3100_0	2201_{1}	5000_{2}	4100_3	3200_{3}	3200_{4}	2300_5
(p,l,\mathcal{I})	†• <i>†</i>		\mathbf{X}	↓ / ↓	↓ ★•	\mathbf{A}	•••	••*	••• ••		•••	•••	
Minimal	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Ν	Ν
Degree	312	224	40	144	144	144	64		20	16	12		

 ◆ For m ∈ {2,3} : compute number of solutions with Gröbner bases (standard technique in algebraic geometry)

- Pick random $(X_0, C_0) \in \mathcal{X} \times \mathcal{C}$
- Set $Y = \Phi(X_0, C_0)$
- Pick $Y' \in \mathcal{Y}$
- Along a random path from Y to Y' track the solution (X₀, C₀) for Y to a solution (X'₀, C'₀) for Y' via homotopy continuation

- Pick random $(X_0, C_0) \in \mathcal{X} \times \mathcal{C}$
- Set $Y = \Phi(X_0, C_0)$
- Pick $Y' \in \mathcal{Y}$
- Along a random path from Y to Y' track the solution (X₀, C₀) for Y to a solution (X'₀, C'₀) for Y' via homotopy continuation
- Along a random path from Y' to Y track the solution (X'₀, C'₀) for Y' to a solution (X₁, C₁) for Y via homotopy continuation

- Pick random $(X_0, C_0) \in \mathcal{X} \times \mathcal{C}$
- Set $Y = \Phi(X_0, C_0)$
- Pick $Y' \in \mathcal{Y}$
- Along a random path from Y to Y' track the solution (X₀, C₀) for Y to a solution (X'₀, C'₀) for Y' via homotopy continuation
- Along a random path from Y' to Y track the solution (X'₀, C'₀) for Y' to a solution (X₁, C₁) for Y via homotopy continuation
- Keep on circulating between Y and Y' until no more solutions for Y are found

- Pick random $(X_0, C_0) \in \mathcal{X} \times \mathcal{C}$
- Set $Y = \Phi(X_0, C_0)$
- Pick $Y' \in \mathcal{Y}$
- Along a random path from Y to Y' track the solution (X₀, C₀) for Y to a solution (X'₀, C'₀) for Y' via homotopy continuation
- Along a random path from Y' to Y track the solution (X'₀, C'₀) for Y' to a solution (X₁, C₁) for Y via homotopy continuation
- Keep on circulating between Y and Y' until no more solutions for Y are found

- Pick random $(X_0, C_0) \in \mathcal{X} \times \mathcal{C}$
- Set $Y = \Phi(X_0, C_0)$
- Pick $Y' \in \mathcal{Y}$
- Along a random path from Y to Y' track the solution (X₀, C₀) for Y to a solution (X'₀, C'₀) for Y' via homotopy continuation
- Along a random path from Y' to Y track the solution (X'₀, C'₀) for Y' to a solution (X₁, C₁) for Y via homotopy continuation
- Keep on circulating between Y and Y' until no more solutions for Y are found

- Pick random $(X_0, C_0) \in \mathcal{X} \times \mathcal{C}$
- Set $Y = \Phi(X_0, C_0)$
- Pick $Y' \in \mathcal{Y}$
- Along a random path from Y to Y' track the solution (X₀, C₀) for Y to a solution (X'₀, C'₀) for Y' via homotopy continuation
- Along a random path from Y' to Y track the solution (X'₀, C'₀) for Y' to a solution (X₁, C₁) for Y via homotopy continuation
- Keep on circulating between Y and Y' until no more solutions for Y are found

Thanks for your attention!