Minimal Problems in Computer Vision

Kathlén Kohn
University of Oslo

joint work with Timothy Duff (Georgia Tech),
Anton Leykin (Georgia Tech) & Tomas Pajdla (CTU in Prague)
Structure from Motion
Reconstruct 3D scenes and camera poses from 2D images

Rome in a Day: S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, S. Seitz, R. Szeliski
Structure from Motion
Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images
- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses
Structure from Motion
Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images
- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses
Structure from Motion
Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

We use calibrated perspective cameras:

A camera is a matrix $C = [R \mid t]$, where $R \in SO(3)$ and $t \in \mathbb{R}^3$.
Structure from Motion
Reconstruct 3D scenes and camera poses from 2D images

- **Step 1**: Identify common points and lines on given images

- **Step 2**: Reconstruct coordinates of 3D points and lines as well as camera poses

We use calibrated perspective cameras:
A camera is a matrix $C = [R \mid t]$, where $R \in \text{SO}(3)$ and $t \in \mathbb{R}^3$. Taking a picture of a point $x \in \mathbb{P}^3$: $x \mapsto Cx$
5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.
5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C} on generic input images.
(Given 2 images, a solution is 5 points in 3D and 2 camera poses.)
Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has **20 solutions** over \mathbb{C} on generic input images. (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

\Rightarrow Since $0 < 20 < \infty$, the 5-Point-Problem is a **minimal** problem!
Another minimal problem

- Given: 3 images of 3 points on a line, 1 attached line and 1 free line
- Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses
Another minimal problem

- Given: 3 images of 3 points on a line, 1 attached line and 1 free line
- Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

This problem has 40 solutions over \mathbb{C} on generic input images.
(solution = 3 camera poses and 3D coordinates of points and lines)

⇒ It is a minimal problem!
A **Point-Line-Problem (PLP)** consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.
Minimal Problems

A **Point-Line-Problem (PLP)** consists of
- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Definition

A PLP $(m, p, \ell, \mathcal{I})$ is **minimal** if, given m generic 2D-arrangements each consisting of p points and ℓ lines satisfying the incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}.

(solution = m camera poses and 3D coordinates of p points and ℓ lines satisfying the incidences \mathcal{I})
Minimal Problems

A **Point-Line-Problem (PLP)** consists of
- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Definition

A PLP $(m, p, \ell, \mathcal{I})$ is **minimal** if, given m generic 2D-arrangements each consisting of p points and ℓ lines satisfying the incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}. (solution $= m$ camera poses and 3D coordinates of p points and ℓ lines satisfying the incidences \mathcal{I})

Can we list all minimal PLPs?
How many solutions do they have?
Minimal PLPs

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l^f l^a_\alpha$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1021, 1013, 1005</td>
<td></td>
<td>> 450k*</td>
</tr>
<tr>
<td>5</td>
<td>2011, 2003, 2003</td>
<td></td>
<td>11306, 26240, 11008</td>
</tr>
<tr>
<td>4</td>
<td>1030, 1022, 1014</td>
<td></td>
<td>3040, 4524, 1728</td>
</tr>
<tr>
<td>3</td>
<td>2102</td>
<td></td>
<td>544</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l^f l^a_\alpha$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2102, 1040</td>
<td></td>
<td>544</td>
</tr>
<tr>
<td>3</td>
<td>1032, 1024, 1016</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>3</td>
<td>2021, 2013, 2005</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>3</td>
<td>2013, 2005, 2013</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>3</td>
<td>2005, 2013, 2013</td>
<td></td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l^f l^a_\alpha$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3002, 3002</td>
<td></td>
<td>312</td>
</tr>
<tr>
<td>3</td>
<td>2111, 2103, 2103</td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>3</td>
<td>2103, 2103, 2103</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>3100, 2201, 5000</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>2</td>
<td>4100, 3200, 3200</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>3200, 3200, 2300</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

VI - XII
Joint camera map

(3D-arrangement of p points and ℓ lines satisfying incidences I, $\text{cam}_1, \ldots, \text{cam}_m$)

Lemma
If a PLP is minimal, then $\dim(X) + \dim(C) = \dim(Y)$.

VII - XII
Joint camera map

(3D-arrangement, $\text{cam}_1, \ldots, \text{cam}_m) \mapsto (2D-\text{arr}_1, \ldots, 2D-\text{arr}_m)

of p points and ℓ lines satisfying incidences \mathcal{I}
Joint camera map

$$\mathcal{X} \times C \rightarrow \mathcal{Y}$$

(3D-arrangement of p points and ℓ lines satisfying incidences I)

$$\mathcal{X} = \{ (X_1, \ldots, X_p, L_1, \ldots, L_\ell) \in (\mathbb{P}^3)^p \times (\text{Grass}(1, 3))^\ell \}$$

$$\mathcal{Y} = \{ (x_1, \ldots, x_m, l_1, \ldots, l_m) \in (\mathbb{P}^2)^{mp \times m\ell} \}$$

$$C = \{ [R_1|t_1], \ldots, [R_m|t_m] \}$$

Lemma: If a PLP is minimal, then

$$\dim(\mathcal{X}) + \dim(C) = \dim(\mathcal{Y})$$
Joint camera map
\[\mathcal{X} \times C \longrightarrow Y \]
where \(\mathcal{X} \) is the 3D-arrangement of points and \(C \) is the set of cameras \(\text{cam}_1, \ldots, \text{cam}_m \) mapping to \((2D-\text{arr}_1, \ldots, 2D-\text{arr}_m) \) in the 2D-arrangement.

- \(\mathbb{P}^n \) is the \(n \)-dimensional projective space.
- \(\mathbb{G}_{1,n} = \{ \text{lines in } \mathbb{P}^n \} \) is the Grassmannian of lines in \(\mathbb{P}^n \).
- \(\mathcal{X} = \{ (X_1, \ldots, X_p, L_1, \ldots, L_\ell) \in (\mathbb{P}^3)^p \times (\mathbb{G}_{1,3})^\ell \mid \forall (i,j) \in \mathcal{I} : X_i \in L_j \} \)

Lemma
If a PLP is minimal, then \(\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(Y) \).
Joint camera map

\[\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y} \]

(3D-arrangement, \(\text{cam}_1, \ldots, \text{cam}_m \)) \rightarrow (2D-arr_1, \ldots, 2D-arr_m)

of \(p \) points and \(\ell \) lines satisfying incidences \(\mathcal{I} \)

- \(\mathbb{P}^n = n \)-dimensional projective space
- \(\mathbb{G}_{1,n} = \{ \text{lines in } \mathbb{P}^n \} = \text{Grassmannian of lines in } \mathbb{P}^n \)
- \(\mathcal{X} = \{(X_1, \ldots, X_p, L_1, \ldots, L_\ell) \in (\mathbb{P}^3)^p \times (\mathbb{G}_{1,3})^\ell \mid \forall (i, j) \in \mathcal{I} : X_i \in L_j\} \)
- \(\mathcal{Y} = \left\{(x_{1,1}, \ldots, x_{m,p}, l_{1,1}, \ldots, l_{m,\ell}) \in (\mathbb{P}^2)^{mp} \times (\mathbb{G}_{1,2})^{m\ell} \mid \forall (i, j) \in \mathcal{I} : x_{k,i} \in l_{k,j}\right\} \)

Lemma
If a PLP is minimal, then \(\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y}) \).
Joint camera map

$$\mathcal{X} \times C \longrightarrow \mathcal{Y}$$

(3D-arrangement, cam$_1$, \ldots, cam$_m$) \mapsto (2D-arr$_1$, \ldots, 2D-arr$_m$)

of p points and ℓ lines satisfying incidences \mathcal{I}

- $\mathbb{P}^n = n$-dimensional projective space
- $G_{1,n} = \{ \text{lines in } \mathbb{P}^n \} = \text{Grassmannian of lines in } \mathbb{P}^n$
- $\mathcal{X} = \{ (X_1, \ldots, X_p, L_1, \ldots, L_\ell) \in (\mathbb{P}^3)^p \times (G_{1,3})^\ell \mid \forall (i, j) \in \mathcal{I} : X_i \in L_j \}$
- $\mathcal{Y} = \left\{ (x_{1,1}, \ldots, x_{m,p}, l_{1,1}, \ldots, l_{m,\ell}) \in (\mathbb{P}^2)^{mp} \times (G_{1,2})^{m\ell} \mid \forall k = 1, \ldots, m \right. \left. \forall (i, j) \in \mathcal{I} : x_{k,i} \in l_{k,j} \right\}$
- $C = \left\{ ([R_1|t_1], \ldots, [R_m|t_m]) \mid \forall i = 1, \ldots, m : R_i \in \text{SO}(3), t_i \in \mathbb{R}^3, \right. \left. R_1 = I_3, t_1 = 0, t_{2,1} = 1 \right\}$

Lemma

If a PLP is minimal, then $\dim(\mathcal{X}) + \dim(C) = \dim(\mathcal{Y})$.
Joint camera map

\[
\begin{align*}
\mathcal{X} \times \mathcal{C} & \to \mathcal{Y} \\
(3\text{-}arr, \text{ cam}_1, \ldots, \text{ cam}_m) & \mapsto (2\text{-}arr_1, \ldots, 2\text{-}arr_m)
\end{align*}
\]

of \(p\) points and \(\ell\) lines satisfying incidences \(I\)

- \(\mathbb{P}^n = n\)-dimensional projective space
- \(\mathbb{G}_{1,n} = \{\text{lines in } \mathbb{P}^n\} = \text{Grassmannian of lines in } \mathbb{P}^n\)
- \(\mathcal{X} = \{(X_1, \ldots, X_p, L_1, \ldots, L_\ell) \in (\mathbb{P}^3)^p \times (\mathbb{G}_{1,3})^\ell | \forall (i, j) \in I : X_i \in L_j\}\)
- \(\mathcal{Y} = \left\{(x_{1,1}, \ldots, x_{m,p}, l_{1,1}, \ldots, l_{m,\ell}) \in (\mathbb{P}^2)^{mp} \times (\mathbb{G}_{1,2})^{m\ell} | \forall (i, j) \in I : x_{k,i} \in l_{k,j}\right\}\)
- \(\mathcal{C} = \left\{([R_1|t_1], \ldots, [R_m|t_m]) | \forall i = 1, \ldots, m : R_i \in \text{SO}(3), t_i \in \mathbb{R}^3,\right.\left.\begin{align*}
R_1 &= I_3, \quad t_1 = 0, \quad t_{2,1} = 1
\end{align*}\right\}\)

Lemma

If a PLP is minimal, then \(\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y})\).
Algebraic varieties

Definition
A \textit{variety} is the common zero set of a system of polynomial equations.

A variety looks like a manifold \textit{almost everywhere}:
Algebraic varieties

Definition
A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition
A variety is irreducible if it is not the union of two proper subvarieties.
Algebraic varieties

Definition
A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition
A variety is irreducible if it is not the union of two proper subvarieties. The dimension of an irreducible variety is its local dimension as a manifold.
Algebraic varieties

Definition
A **variety** is the common zero set of a system of polynomial equations.

A variety looks like a manifold *almost everywhere*:

![Variety diagrams](image)

Definition
A variety is **irreducible** if it is not the union of two proper subvarieties. The **dimension** of an irreducible variety is its local dimension as a manifold.

\(\mathcal{X}, \mathcal{C} \) and \(\mathcal{Y} \) are irreducible varieties!
Deriving the big table

\[\mathcal{X} \times \mathcal{C} \longrightarrow \mathcal{Y} \]

(3D-arrangement of \(p \) points and \(\ell \) lines with incidences \(\mathcal{I} \))

Lemma

If a PLP is minimal, then \(\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y}) \).
Deriving the big table

\[\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y} \]

(3D-arrangement \(\text{cam}_1, \ldots, \text{cam}_m \)) \(\mapsto \) (2D-arr\(_1\), \ldots, 2D-arr\(_m\))

of \(p \) points and \(\ell \) lines with incidences \(I \)

Lemma

If a PLP is minimal, then \(\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y}) \).

Theorem

- If \(m > 6 \), then \(\dim(\mathcal{X}) + \dim(\mathcal{C}) \neq \dim(\mathcal{Y}) \).
Deriving the big table

\[\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y} \]

(3D-arrangement, \(\text{cam}_1, \ldots, \text{cam}_m \)) \[\rightarrow\] (2D-arr\(_1\), \ldots, 2D-arr\(_m\))

of \(p \) points and \(\ell \) lines with incidences \(\mathcal{I} \)

Lemma

If a PLP is minimal, then \(\dim(\mathcal{X}') + \dim(\mathcal{C}) = \dim(\mathcal{Y}) \).

Theorem

- If \(m > 6 \), then \(\dim(\mathcal{X}') + \dim(\mathcal{C}) \neq \dim(\mathcal{Y}) \).
- There are exactly 39 PLPs with \(\dim(\mathcal{X}') + \dim(\mathcal{C}) = \dim(\mathcal{Y}) \):

<table>
<thead>
<tr>
<th>(m) views</th>
<th>(p \times \text{proj})</th>
<th>(\mathcal{I})</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1021(_t)</td>
<td>Y</td>
<td>> 450(_k)</td>
</tr>
<tr>
<td>1013(_t)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005(_t)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011(_t)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003(_t)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014(_t)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006(_t)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001(_t)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3101(_t)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3201(_t)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3201(_t)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3201(_t)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y: Yellow, N: Green, \# represents a specific number.
Deriving the big table

\[\mathcal{X} \times C \rightarrow Y \]

(3D-arrangement, \(\text{cam}_1, \ldots, \text{cam}_m \)) \(\mapsto \) (2D-arr\(_1\), \ldots, 2D-arr\(_m\))

Lemma

A PLP with \(\dim(\mathcal{X}) + \dim(C) = \dim(Y) \) is minimal if and only if its joint camera map \(\mathcal{X} \times C \rightarrow Y \) is dominant.
Deriving the big table

\(\mathcal{X} \times \mathcal{C} \longrightarrow \mathcal{Y} \)

(3D-arrangement of \(p \) points and \(\ell \) lines satisfying incidences \(\mathcal{I} \))

Lemma

A PLP with \(\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y}) \) is minimal if and only if its joint camera map \(\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y} \) is dominant.

Definition

A map \(\varphi : A \rightarrow B \) is **surjective** if for every \(b \in B \) there is an \(a \in A \) such that \(\varphi(a) = b \).

Definition

A map \(\varphi : A \rightarrow B \) is **dominant** if for almost every \(b \in B \) there is an \(a \in A \) such that \(\varphi(a) = b \).
Deriving the big table

\[X \times \mathcal{C} \rightarrow Y \]

of \(p \) points and \(\ell \) lines
satisfying incidences \(I \)

Lemma

A PLP with \(\dim(X) + \dim(C) = \dim(Y) \) is minimal if and only if its joint camera map \(X \times C \rightarrow Y \) is dominant.

Definition

A map \(\varphi : A \rightarrow B \) is **surjective** if for every \(b \in B \) there is an \(a \in A \) such that \(\varphi(a) = b \).

Definition

A map \(\varphi : A \rightarrow B \) is **dominant** if for almost every \(b \in B \) there is an \(a \in A \) such that \(\varphi(a) = b \).

Fact

A map \(\varphi : A \rightarrow B \) between irreducible varieties \(A \) and \(B \) is dominant if and only if for almost every \(a \in A \) the differential \(D_a \varphi : T_a A \rightarrow T_{\varphi(a)} B \) is surjective.
Deriving the big table

\[
\begin{align*}
\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y} \\
(3D\text{-arrangement of } p \text{ points and } \ell \text{ lines}) & \mapsto (2D\text{-arr}_1, \ldots, 2D\text{-arr}_m)
\end{align*}
\]

Lemma

A PLP with \(\dim(\mathcal{X}) + \dim(\mathcal{C}) = \dim(\mathcal{Y}) \) is minimal if and only if its joint camera map \(\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y} \) is dominant.

Definition

A map \(\varphi : A \rightarrow B \) is **surjective** if for every \(b \in B \) there is an \(a \in A \) such that \(\varphi(a) = b \).

Definition

A map \(\varphi : A \rightarrow B \) is **dominant** if for almost every \(b \in B \) there is an \(a \in A \) such that \(\varphi(a) = b \).

Fact

A map \(\varphi : A \rightarrow B \) between irreducible varieties \(A \) and \(B \) is dominant if and only if for almost every \(a \in A \) the differential \(D_a \varphi : T_a A \rightarrow T_{\varphi(a)} B \) is surjective.

Can check this computationally! It is only linear algebra!
For $m \in \{2, 3\}$: compute number of solutions with Gröbner bases (standard technique in algebraic geometry).

For $m \in \{4, 5, 6\}$: compute number of solutions with homotopy continuation and monodromy (state-of-the-art method in numerical algebraic geometry).

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l l^a$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1021_1</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>1013_3</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>1005_5</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>2011_1</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>2003_2</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>2003_3</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>1030_0</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>1022_2</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>1014_4</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>1006_6</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>3001_1</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>2110_0</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>2102_1</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l l^a$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11306*</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>26240*</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>11008*</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>3040*</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>4524*</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>1728*</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>32*</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>544*</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l l^a$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2102_2</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>1040_0</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>1032_2</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>1024_4</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>1016_6</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>1008_8</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2021_1</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2013_2</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2013_3</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2005_3</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2005_4</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>3010_0</td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l l^a$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3002_1</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>3002_2</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2111_1</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2103_1</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2103_2</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2103_3</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>3100_0</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>2201_1</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>5000_2</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>4100_3</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>3200_3</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>3200_4</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>2300_5</td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

XI - XII
For $m \in \{2, 3\}$: compute number of solutions with **Gröbner bases** (standard technique in algebraic geometry)

<table>
<thead>
<tr>
<th>m views</th>
<th>$p^f p^d l^f l^a_\alpha$</th>
<th>(p, l, I)</th>
<th>Minimal Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10211 10133 10055 20111 20032 20033 10300 10222 10144 10066 30011 21100 21021</td>
<td>Y N N Y Y Y Y N N Y Y Y Y</td>
<td>>450k^*</td>
</tr>
<tr>
<td>4</td>
<td>21022 10400 10322 10244 10166 10088 20211 20132 20133 20053 20054 20055 30100</td>
<td>Y Y Y Y N N N Y Y Y Y Y</td>
<td>544*</td>
</tr>
<tr>
<td>3</td>
<td>30021 30022 21111 21031 21032 21033 31000 22011 50002 41003 32003 32004 23005</td>
<td>Y Y Y Y Y N Y Y Y Y N N</td>
<td>312 224 40 144 144 144 64 20 16 12</td>
</tr>
</tbody>
</table>
For $m \in \{2, 3\}$: compute number of solutions with Gr"obner bases (standard technique in algebraic geometry)

For $m \in \{4, 5, 6\}$: compute number of solutions with homotopy continuation and monodromy (state-of-the-art method in numerical algebraic geometry)
Monodromy

Pick random \((X_0, C_0)\) \(\in X \times C\)

Set \(Y = \Phi(X_0, C_0)\)

Pick \(Y' \in Y\) along a random path from \(Y\) to \(Y'\)

Track the solution \((X_0, C_0)\) for \(Y\) to a solution \((X', C'_0)\) for \(Y'\) via homotopy continuation

Along a random path from \(Y'\) to \(Y\)

Track the solution \((X', C'_0)\) for \(Y'\) to a solution \((X_1, C_1)\) for \(Y\) via homotopy continuation

Keep on circulating between \(Y\) and \(Y'\) until no more solutions for \(Y\) are found
Monodromy

- Pick random \((X_0, C_0) \in \mathcal{X} \times \mathcal{C}\)
- Set \(Y = \Phi(X_0, C_0)\)
- Pick \(Y' \in \mathcal{Y}\)
Monodromy

- Pick random \((X_0, C_0) \in \mathcal{X} \times \mathcal{C}\)
- Set \(Y = \Phi(X_0, C_0)\)
- Pick \(Y' \in \mathcal{Y}\)
- Along a random path from \(Y\) to \(Y'\) track the solution \((X_0, C_0)\) for \(Y\) to a solution \((X'_0, C'_0)\) for \(Y'\) via **homotopy continuation**
Monodromy

- Pick random \((X_0, C_0) \in X \times C\)
- Set \(Y = \Phi(X_0, C_0)\)
- Pick \(Y' \in \mathcal{Y}\)
- Along a random path from \(Y\) to \(Y'\), track the solution \((X_0, C_0)\) for \(Y\) to a solution \((X'_0, C'_0)\) for \(Y'\) via **homotopy continuation**
- Along a random path from \(Y'\) to \(Y\), track the solution \((X'_0, C'_0)\) for \(Y'\) to a solution \((X_1, C_1)\) for \(Y\) via **homotopy continuation**
Monodromy

- Pick random \((X_0, C_0) \in X \times C\)
- Set \(Y = \Phi(X_0, C_0)\)
- Pick \(Y' \in Y\)
- Along a random path from \(Y\) to \(Y'\) track the solution \((X_0, C_0)\) for \(Y\) to a solution \((X'_0, C'_0)\) for \(Y'\) via **homotopy continuation**
- Along a random path from \(Y'\) to \(Y\) track the solution \((X'_0, C'_0)\) for \(Y'\) to a solution \((X_1, C_1)\) for \(Y\) via **homotopy continuation**
- Keep on circulating between \(Y\) and \(Y'\) until no more solutions for \(Y\) are found
Monodromy

- Pick random \((X_0, C_0) \in \mathcal{X} \times \mathcal{C}\)
- Set \(Y = \Phi(X_0, C_0)\)
- Pick \(Y' \in \mathcal{Y}\)
- Along a random path from \(Y\) to \(Y'\) track the solution \((X_0, C_0)\) for \(Y\) to a solution \((X'_0, C'_0)\) for \(Y'\) via **homotopy continuation**
- Along a random path from \(Y'\) to \(Y\) track the solution \((X'_0, C'_0)\) for \(Y'\) to a solution \((X_1, C_1)\) for \(Y\) via **homotopy continuation**
- Keep on circulating between \(Y\) and \(Y'\) until no more solutions for \(Y\) are found
Monodromy

- Pick random \((X_0, C_0) \in \mathcal{X} \times \mathcal{C}\)
- Set \(Y = \Phi(X_0, C_0)\)
- Pick \(Y' \in \mathcal{Y}\)
- Along a random path from \(Y\) to \(Y'\)
 track the solution \((X_0, C_0)\) for \(Y\)
 to a solution \((X'_0, C'_0)\) for \(Y'\)
 via **homotopy continuation**
- Along a random path from \(Y'\) to \(Y\)
 track the solution \((X'_0, C'_0)\) for \(Y'\)
 to a solution \((X_1, C_1)\) for \(Y\)
 via **homotopy continuation**
- Keep on circulating between \(Y\) and \(Y'\)
 until no more solutions for \(Y\) are found
Pick random \((X_0, C_0) \in X \times C\)

Set \(Y = \Phi(X_0, C_0)\)

Pick \(Y' \in \mathcal{Y}\)

Along a random path from \(Y\) to \(Y'\) track the solution \((X_0, C_0)\) for \(Y\) to a solution \((X'_0, C'_0)\) for \(Y'\) via **homotopy continuation**

Along a random path from \(Y'\) to \(Y\) track the solution \((X'_0, C'_0)\) for \(Y'\) to a solution \((X_1, C_1)\) for \(Y\) via **homotopy continuation**

Keep on circulating between \(Y\) and \(Y'\) until no more solutions for \(Y\) are found
Thanks for your attention!