## Moment Varieties of Measures on Polytopes

joint with Boris Shapiro (Stockholms universitet) and Bernd Sturmfels (UC Berkeley / MPI MiS Leipzig)

May 15, 2019

# Moments of a Polytope

- Let  $P \subset \mathbb{R}^d$  be a full-dimensional polytope.
- $\mu_P$ : uniform probability distribution on P
- moments

$$m_{i_1 i_2 \dots i_d}(P) \ := \ \int_{\mathbb{R}^d} w_1^{i_1} w_2^{i_2} \dots w_d^{i_d} \, \mathrm{d} \mu_P \quad \text{ for } i_1, i_2, \dots, i_d \in \mathbb{Z}_{\geq 0}$$

# Moments of a Polytope

- Let  $P \subset \mathbb{R}^d$  be a full-dimensional polytope.
- $\mu_P$ : uniform probability distribution on P
- moments

$$m_{i_1 i_2 \dots i_d}(P) := \int_{\mathbb{R}^d} w_1^{i_1} w_2^{i_2} \dots w_d^{i_d} d\mu_P \quad \text{ for } i_1, i_2, \dots, i_d \in \mathbb{Z}_{\geq 0}$$

### Known:

The list of all moments  $(m_{\mathcal{I}}(P) \mid \mathcal{I} \in \mathbb{Z}_{\geq 0}^d)$  uniquely encodes P.

 $\rightsquigarrow$  Can recover P from its moments.

# Moments of a Polytope

- Let  $P \subset \mathbb{R}^d$  be a full-dimensional polytope.
- $\mu_P$ : uniform probability distribution on P
- moments

$$m_{i_1 i_2 \dots i_d}(P) \ := \ \int_{\mathbb{R}^d} w_1^{i_1} w_2^{i_2} \dots w_d^{i_d} \, \mathrm{d} \mu_P \quad \text{ for } i_1, i_2, \dots, i_d \in \mathbb{Z}_{\geq 0}$$

### Known:

The list of all moments  $(m_{\mathcal{I}}(P) \mid \mathcal{I} \in \mathbb{Z}_{\geq 0}^d)$  uniquely encodes P.

Caution: The moments are not independent of each other.

### **Our Goal:**

Study the dependencies among the moments!



ullet We assume:  $P\subset\mathbb{R}^d$  is full-dimensional, simplicial, and has n vertices

- ullet We assume:  $P \subset \mathbb{R}^d$  is full-dimensional, simplicial, and has n vertices
- ullet We can vary the vertices of P locally without changing the combinatorial type  ${\mathcal P}$  of P
  - $\rightsquigarrow m_{\mathcal{I}}(P)$  is a locally defined function of the vertex coordinates

- ullet We assume:  $P \subset \mathbb{R}^d$  is full-dimensional, simplicial, and has n vertices
- $\bullet$  We can vary the vertices of P locally without changing the combinatorial type  $\mathcal P$  of P
  - $\rightsquigarrow m_{\mathcal{I}}(P)$  is a locally defined function of the vertex coordinates
  - $\leadsto$  For every combinatorial type  $\mathcal P$  and every finite subset  $\mathcal A\subset\mathbb Z^d_{\geq 0}$ , we have a rational function

$$m_{\mathcal{P},\mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n}\longrightarrow\mathbb{R}^{|\mathcal{A}|},$$

$$P\longmapsto\left(m_{\mathcal{I}}(P)\right)_{\mathcal{I}\in\mathcal{A}}$$

- ullet We assume:  $P\subset\mathbb{R}^d$  is full-dimensional, simplicial, and has n vertices
- ullet We can vary the vertices of P locally without changing the combinatorial type  ${\cal P}$  of P
  - $\rightsquigarrow m_{\mathcal{I}}(P)$  is a locally defined function of the vertex coordinates
  - ightharpoonup For every combinatorial type  $\mathcal P$  and every finite subset  $\mathcal A\subset\mathbb Z^d_{\geq 0}$ , we have a rational function

$$m_{\mathcal{P},\mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n}\longrightarrow\mathbb{R}^{|\mathcal{A}|},\ P\longmapsto\left(m_{\mathcal{I}}(P)\right)_{\mathcal{I}\in\mathcal{A}}$$

ullet We assume:  $0\in\mathcal{A}\leadsto m_{\mathcal{P},\mathcal{A}}:\mathbb{C}^{d imes n}\dashrightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$ 

- ullet We assume:  $P\subset\mathbb{R}^d$  is full-dimensional, simplicial, and has n vertices
- ullet We can vary the vertices of P locally without changing the combinatorial type  ${\cal P}$  of P
  - $\rightsquigarrow m_{\mathcal{I}}(P)$  is a locally defined function of the vertex coordinates
  - $\leadsto$  For every combinatorial type  $\mathcal P$  and every finite subset  $\mathcal A\subset\mathbb Z^d_{\geq 0}$ , we have a rational function

$$m_{\mathcal{P},\mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n}\longrightarrow\mathbb{R}^{|\mathcal{A}|},$$

$$P\longmapsto\left(m_{\mathcal{I}}(P)\right)_{\mathcal{I}\in\mathcal{A}}$$

- ullet We assume:  $0\in\mathcal{A}\leadsto m_{\mathcal{P},\mathcal{A}}:\mathbb{C}^{d\times n}\dashrightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$
- Moment variety

$$\mathcal{M}_{\mathcal{A}}(\mathcal{P}) := \overline{m_{\mathcal{P},\mathcal{A}}\left(\mathbb{C}^{d imes n}
ight)} \subset \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$$

• Let  $P = [a, b] \subset \mathbb{R}^1$ 

$$\Rightarrow m_i(P) = m_i(a,b) = \frac{1}{b-a} \int_a^b w^i \, dw = \frac{1}{i+1} \frac{b^{i+1} - a^{i+1}}{b-a}$$
$$= \frac{1}{i+1} \left( a^i + a^{i-1}b + a^{i-2}b^2 + \ldots + b^i \right)$$

• Let  $P = [a, b] \subset \mathbb{R}^1$ 

$$\Rightarrow m_i(P) = m_i(a,b) = \frac{1}{b-a} \int_a^b w^i dw = \frac{1}{i+1} \frac{b^{i+1} - a^{i+1}}{b-a}$$
$$= \frac{1}{i+1} \left( a^i + a^{i-1}b + a^{i-2}b^2 + \dots + b^i \right)$$

$$\Rightarrow m_{\mathsf{LineSegments},\{0,1,...,r\}} : \mathbb{C}^2 \dashrightarrow \mathbb{P}^r,$$

$$(a,b) \longmapsto (m_0(a,b) : m_1(a,b) : ... : m_r(a,b))$$

• Let  $P = [a, b] \subset \mathbb{R}^1$ 

$$\Rightarrow m_{i}(P) = m_{i}(a,b) = \frac{1}{b-a} \int_{a}^{b} w^{i} dw = \frac{1}{i+1} \frac{b^{i+1} - a^{i+1}}{b-a}$$
$$= \frac{1}{i+1} \left( a^{i} + a^{i-1}b + a^{i-2}b^{2} + \dots + b^{i} \right)$$

$$\Rightarrow m_{\mathsf{LineSegments},\{0,1,...,r\}} : \mathbb{C}^2 \dashrightarrow \mathbb{P}^r,$$

$$(a,b) \longmapsto (m_0(a,b) : m_1(a,b) : \dots : m_r(a,b))$$

ullet  $\mathcal{M}_{\{0,1,\ldots,r\}}(\mathsf{LineSegments})$  is a surface in  $\mathbb{P}^r$ 





Moment surface  $\mathcal{M}_{\{0,1,2,3\}}(\mathsf{LineSegments}) \subset \mathbb{P}^3$  in affine chart  $\{m_0=1\}$ 

• Defined by  $2m_1^3 - 3m_0m_1m_2 + m_0^2m_3 = 0$ 







Moment surface  $\mathcal{M}_{\{0,1,2,3\}}(\mathsf{LineSegments}) \subset \mathbb{P}^3$  in affine chart  $\{m_0=1\}$ 

- Defined by  $2m_1^3 3m_0m_1m_2 + m_0^2m_3 = 0$
- Singular along  $\{m_0 = m_1 = 0\}$



Moment surface  $\mathcal{M}_{\{0,1,2,3\}}(\mathsf{LineSegments}) \subset \mathbb{P}^3$  in affine chart  $\{m_0=1\}$ 

- Defined by  $2m_1^3 3m_0m_1m_2 + m_0^2m_3 = 0$
- Singular along  $\{m_0 = m_1 = 0\}$
- ◆ Contains twisted cubic curve (in red) corresponding to degenerate line segments [a, a] of length 0



The moment surface  $\mathcal{M}_{\{0,1,\ldots,r\}}(\mathsf{LineSegments}) \subset \mathbb{P}^r$ 

- has degree  $\binom{r}{2}$
- ullet and its prime ideal is generated by the 3 imes 3 minors of

$$\begin{pmatrix} 0 & m_0 & 2m_1 & 3m_2 & 4m_3 & \cdots & (r-1)m_{r-2} \\ m_0 & 2m_1 & 3m_2 & 4m_3 & 5m_4 & \cdots & r & m_{r-1} \\ 2m_1 & 3m_2 & 4m_3 & 5m_4 & 6m_5 & \cdots & (r+1)m_r \end{pmatrix}.$$

These cubics form a Gröbner basis.

### **One-Dimensional Moments**

Let  $\mathcal{P}$  be any combinatorial type of simplicial polytopes in  $\mathbb{R}^d$  with n vertices, and let  $\mathcal{A} = \{(0,0,\ldots,0),(1,0,\ldots,0),\ldots,(r,0,\ldots,0)\}.$ 

## **One-Dimensional Moments**

Let  $\mathcal{P}$  be any combinatorial type of simplicial polytopes in  $\mathbb{R}^d$  with n vertices, and let  $\mathcal{A} = \{(0,0,\ldots,0),(1,0,\ldots,0),\ldots,(r,0,\ldots,0)\}.$ 

### Theorem (K., Shapiro, Sturmfels)

 $\mathcal{M}_{\mathcal{A}}(\mathcal{P})$  has degree  $\binom{r-n+d+1}{n}$  and its prime ideal is generated by the maximal minors of the Hankel matrix

$$\begin{pmatrix} c_0 & c_1 & \cdots & c_n & c_{n+1} & \cdots & c_{r+d-n} \\ c_1 & c_2 & \cdots & c_{n+1} & c_{n+2} & \cdots & c_{r+d-n+1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ c_n & c_{n+1} & \cdots & c_{2n} & c_{2n+1} & \cdots & c_{r+d} \end{pmatrix},$$

where 
$$c_0=c_1=\ldots=c_{d-1}=0$$
 and  $c_{i+d}={d+i\choose d}m_{i0\ldots 0}$  for  $i=0,1,\ldots,r$ .

These minors form a reduced Gröbner basis with respect to any antidiagonal term order, with initial monomial ideal  $\langle m_{n-d}, m_{n-d+1}, \dots, m_{r-n} \rangle^{n+1}$ .



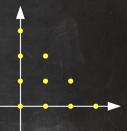
Let  $\mathcal{A}$  be as shown on the right.

The moment variety  $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^9$  has dimension 6 and degree 30.



Let  $\mathcal{A}$  be as shown on the right.

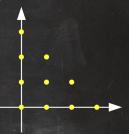
The moment variety  $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^9$  has dimension 6 and degree 30.



Its ideal is homogeneous with respect to the natural  $\mathbb{Z}^3$ -grading given by  $\operatorname{degree}(m_{i_1i_2})=(1,i_1,i_2).$ 

Let A be as shown on the right.

The moment variety  $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^9$  has dimension 6 and degree 30.

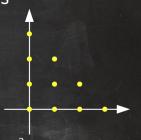


Its ideal is homogeneous with respect to the natural  $\mathbb{Z}^3$ -grading given by  $\operatorname{degree}(m_{i_1i_2})=(1,i_1,i_2).$ 

The  $\mathbb{Z}^3$ -degrees of the minimal generators of its prime ideal are (4,2,3),(4,3,2),(4,2,4),(4,3,3),(4,3,3),(4,4,2),(4,3,4),(4,4,3),(6,6,6).

Let A be as shown on the right.

The moment variety  $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^9$  has dimension 6 and degree 30.



Its ideal is homogeneous with respect to the natural  $\mathbb{Z}^3$ -grading given by  $\operatorname{degree}(m_{i_1i_2})=(1,i_1,i_2).$ 

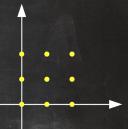
The  $\mathbb{Z}^3$ -degrees of the minimal generators of its prime ideal are (4,2,3),(4,3,2),(4,2,4),(4,3,3),(4,3,3),(4,4,2),(4,3,4),(4,4,3),(6,6,6).

The ideal generator of degree (4, 2, 3) equals

$$3m_{02}m_{10}^2m_{01} - 6m_{11}m_{10}m_{01}^2 + 3m_{20}m_{01}^3 - m_{03}m_{10}^2m_{00} + 4m_{11}^2m_{01}m_{00} + m_{21}m_{02}m_{00}^2 - 4m_{20}m_{02}m_{01}m_{00} + 2m_{12}m_{10}m_{01}m_{00} - m_{21}m_{01}^2m_{00} + m_{03}m_{20}m_{00}^2 - 2m_{12}m_{11}m_{00}^2.$$

Let A be as shown on the right.

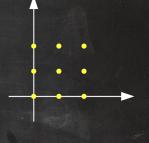
$$\mathcal{M}_{\mathcal{A}}(\square) = \mathbb{P}^8$$



Let A be as shown on the right.

$$\mathcal{M}_{\mathcal{A}}(\square) = \mathbb{P}^8$$

 $m_{\square,\mathcal{A}}:\mathbb{C}^{2\times 4} \dashrightarrow \mathbb{P}^8$  is generically 80-to-1.



Let A be as shown on the right.

$$\mathcal{M}_{\mathcal{A}}(\square) = \mathbb{P}^8$$

$$m_{\square,\mathcal{A}}:\mathbb{C}^{2\times 4}\dashrightarrow \mathbb{P}^8$$
 is generically 80-to-1.

The dihedral group of order 8 acts on each fiber.

 $\leadsto$  Each fiber consists of 10 "quadrilaterals".

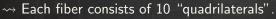


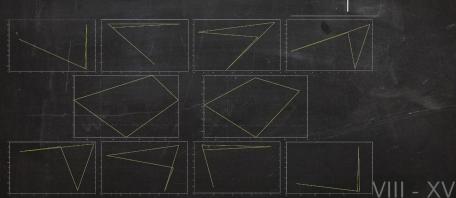
Let A be as shown on the right.

$$\mathcal{M}_{\mathcal{A}}(\square) = \mathbb{P}^8$$

$$m_{\square,\mathcal{A}}:\mathbb{C}^{2\times 4}\dashrightarrow \mathbb{P}^8$$
 is generically 80-to-1.

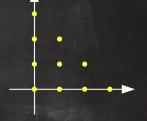
The dihedral group of order 8 acts on each fiber.





Let 
$$\mathcal{A}:=\{\mathcal{I}\in\mathbb{Z}^2_{\geq 0}\mid |\mathcal{I}|\leq 3\}.$$

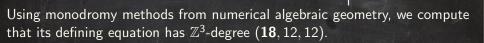
Can we compute the moment hypersurface  $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^9$ ?



Let 
$$\mathcal{A} := \{ \mathcal{I} \in \mathbb{Z}^2_{>0} \mid |\mathcal{I}| \leq 3 \}.$$

Can we compute the moment hypersurface

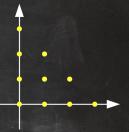
$$\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^9$$
?



Let 
$$\mathcal{A} := \{ \mathcal{I} \in \mathbb{Z}^2_{>0} \mid |\mathcal{I}| \leq 3 \}.$$

Can we compute the moment hypersurface

$$\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^9$$
?



Using monodromy methods from numerical algebraic geometry, we compute that its defining equation has  $\mathbb{Z}^3$ -degree (18, 12, 12).

#### Lemma:

The defining equation of  $\mathcal{M}_{\mathcal{A}}(\square)$  is invariant under the natural action of the affine group  $\mathrm{Aff}_2$ .

Let 
$$\mathcal{A} := \{ \mathcal{I} \in \mathbb{Z}^2_{>0} \mid |\mathcal{I}| \leq 3 \}.$$

Can we compute the moment hypersurface

Can we compute the moment hypersurface 
$$\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^9$$
?

Using monodromy methods from numerical algebraic geometry, we comp

Using monodromy methods from numerical algebraic geometry, we compute that its defining equation has  $\mathbb{Z}^3$ -degree (18, 12, 12).

### Lemma:

The defining equation of  $\mathcal{M}_{\mathcal{A}}(\square)$  is invariant under the natural action of the affine group Aff<sub>2</sub>.

### Goal:

- lacktriangle Compute the invariant ring  $\mathbb{R}[m_{\mathcal{I}} \mid \mathcal{I} \in \mathcal{A}]^{\mathrm{Aff}_2}$
- Express the defining equation of  $\mathcal{M}_A(\square)$  in these invariants.



## The Invariant Ring of the Affine Group

#### Theorem:

The invariant ring  $\mathbb{R}[m_{\mathcal{I}} \mid |\mathcal{I}| \leq r]^{\mathrm{Aff}_d}$  is isomorphic to the ring of **covariants** of a homogeneous polynomial of degree r in d+1 variables. This isomorphism maps the covariants of

$$f(m, u) = \sum_{\mathcal{I}: |\mathcal{I}| \leq r} {r \choose \mathcal{I}, r - |\mathcal{I}|} \cdot m_{\mathcal{I}} \cdot (u_1, u_2, \dots, u_d)^{\mathcal{I}} u_0^{r - |\mathcal{I}|}$$

to invariants of  $\mathrm{Aff}_d$  via  $u_0\mapsto 1$  and  $u_i\mapsto 0$  for  $i=1,2,\ldots,d$ .

## The Invariant Ring of the Affine Group

#### Theorem:

The invariant ring  $\mathbb{R}[m_{\mathcal{I}} \mid |\mathcal{I}| \leq r]^{\mathrm{Aff}_d}$  is isomorphic to the ring of **covariants** of a homogeneous polynomial of degree r in d+1 variables.

This isomorphism maps the covariants of

$$f(m, u) = \sum_{\mathcal{I}: |\mathcal{I}| \leq r} {r \choose \mathcal{I}, r - |\mathcal{I}|} \cdot m_{\mathcal{I}} \cdot (u_1, u_2, \dots, u_d)^{\mathcal{I}} u_0^{r - |\mathcal{I}|}$$

to invariants of  $\mathrm{Aff}_d$  via  $u_0\mapsto 1$  and  $u_i\mapsto 0$  for  $i=1,2,\ldots,d$ .

### Example (d = 1, r = 3):

The binary cubic  $f(m, u) = m_3 u_1^3 + 3 m_2 u_1^2 u_0 + 3 m_1 u_1 u_0^2 + m_0 u_0^3$  has the classically known covariants:

- f
- ♦ the Hessian of f
- the Jacobian of f and its Hessian
- its discriminant



# The Invariant Ring of the Affine Group

#### Theorem:

The invariant ring  $\mathbb{R}[m_{\mathcal{I}} \mid |\mathcal{I}| \leq r]^{\mathrm{Aff}_d}$  is isomorphic to the ring of **covariants** of a homogeneous polynomial of degree r in d+1 variables.

This isomorphism maps the covariants of

$$f(m, u) = \sum_{\mathcal{I}: |\mathcal{I}| \leq r} {r \choose \mathcal{I}, r - |\mathcal{I}|} \cdot m_{\mathcal{I}} \cdot (u_1, u_2, \dots, u_d)^{\mathcal{I}} u_0^{r - |\mathcal{I}|}$$

to invariants of Aff<sub>d</sub> via  $u_0 \mapsto 1$  and  $u_i \mapsto 0$  for i = 1, 2, ..., d.

### Example (d = 1, r = 3):

The binary cubic  $f(m, u) = m_3 u_1^3 + 3m_2 u_1^2 u_0 + 3m_1 u_1 u_0^2 + m_0 u_0^3$  has the classically known covariants: which yield invariants:

- f
- ◆ the Hessian of f
- $\bullet$  the Jacobian of f and its Hessian
- its discriminant

- → m<sub>0</sub>
- $\bullet m_0 m_2 m_1^2$
- $\bullet m_0^2 m_3 3m_0 m_1 m_2 + 2m_1^3$



Moment surface  $\mathcal{M}_{\{0,1,2,3\}}(\mathsf{LineSegments}) \subset \mathbb{P}^3$  in affine chart  $\{m_0=1\}$ 

- Defined by  $2m_1^3 3m_0m_1m_2 + m_0^2m_3 = 0$
- Singular along  $\{m_0 = \overline{m_1} = 0\}$
- ◆ Contains twisted cubic curve (in red) corresponding to degenerate line segments [a, a] of length 0



# Covariants of a Ternary Cubic

(d = 2, r = 3)

$$f(m, u) = m_{30}u_1^3 + 3m_{21}u_1^2u_2 + 3m_{20}u_1^2u_0 + 3m_{12}u_1u_2^2 + 6m_{11}u_1u_2u_0 + 3m_{10}u_1u_0^2 + m_{03}u_2^3 + 3m_{02}u_2^2u_0 + 3m_{01}u_2u_0^2 + m_{00}u_0^3$$

# Covariants of a Ternary Cubic

$$(d = 2, r = 3)$$

$$f(m, u) = m_{30}u_1^3 + 3m_{21}u_1^2u_2 + 3m_{20}u_1^2u_0 + 3m_{12}u_1u_2^2 + 6m_{11}u_1u_2u_0 + 3m_{10}u_1u_0^2 + m_{03}u_2^3 + 3m_{02}u_2^2u_0 + 3m_{01}u_2u_0^2 + m_{00}u_0^3$$

has 6 fundamental covariants.

Replacing  $(u_0, u_1, u_3) \mapsto (1, 0, 0)$  yields six fundamental affine invariants:

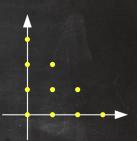
affine invariant 
$$m_{00}$$
 s t h g j  $\mathbb{Z}^3$ -degree  $(1,0,0)$   $(4,4,4)$   $(6,6,6)$   $(3,2,2)$   $(8,6,6)$   $(12,9,9)$  # terms 1 25 103 5 168 892



Let 
$$\mathcal{A} := \{ \mathcal{I} \in \mathbb{Z}^2_{>0} \mid |\mathcal{I}| \leq 3 \}.$$

The defining equation of the moment hypersurface  $\mathcal{M}_A(\square) \subset \mathbb{P}^9$  has  $\mathbb{Z}^3$ -degree  $(\mathbf{18}, 12, 12)$ .

It is an  $Aff_2$ -invariant.

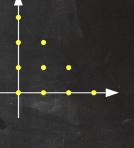


Let 
$$\mathcal{A} := \{ \mathcal{I} \in \mathbb{Z}^2_{>0} \mid |\mathcal{I}| \leq 3 \}.$$

The defining equation of the moment hypersurface  $\mathcal{M}_A(\square) \subset \mathbb{P}^9$  has  $\mathbb{Z}^3$ -degree (18, 12, 12).

It is an Aff<sub>2</sub>-invariant.

It can be expressed in the 6 six fundamental affine invariants  $m_{00}$ , s, t, h, g, j.

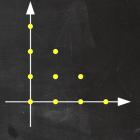


Let 
$$\mathcal{A} := \{ \mathcal{I} \in \mathbb{Z}^2_{\geq 0} \mid |\mathcal{I}| \leq 3 \}.$$

The defining equation of the moment hypersurface  $\mathcal{M}_A(\square) \subset \mathbb{P}^9$  has  $\mathbb{Z}^3$ -degree (18, 12, 12).

It is an Aff<sub>2</sub>-invariant.

It can be expressed in the 6 six fundamental affine invariants  $m_{00}$ , s, t, h, g, j.



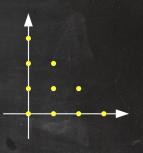
We use the moments of various random quadrilaterals to interpolate.

Let 
$$\mathcal{A} := \{ \mathcal{I} \in \mathbb{Z}^2_{>0} \mid |\mathcal{I}| \leq 3 \}.$$

The defining equation of the moment hypersurface  $\mathcal{M}_4(\square) \subset \mathbb{P}^9$  has  $\mathbb{Z}^3$ -degree (18, 12, 12).

It is an Aff<sub>2</sub>-invariant.

It can be expressed in the 6 six fundamental affine invariants  $m_{00}$ , s, t, h, g, j.



We use the moments of various random quadrilaterals to interpolate.

The hypersurface 
$$\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^9$$
 is defined by

$$2125764\,h^6\,+\,5484996\,m_{00}^2\,h^4s\,-\,1574640\,m_{00}gh^3\,+\,364500\,m_{00}^3\,h^3t\\ +\,3458700\,m_{00}^4\,h^2s^2\,-\,2041200\,m_{00}^3ghs\,+\,472500\,m_{00}^5\,hst\,-\,122500\,m_{00}^6s^3\,+\,291600\,m_{00}^2g^2\\ -\,135000\,m_{00}^4gt\,+\,15625\,m_{00}^6t^2.$$

This polynomial has 5100 terms in the  $m_{i_1 i_2}$ .



The moments of order  $\leq 3$  of probability measures on the triangle  $\triangle \subset \mathbb{R}^2$ whose densities are linear functions

The moments of order  $\leq 3$  of probability measures on the triangle  $\triangle \subset \mathbb{R}^2$  whose densities are linear functions form a hypersurface in  $\mathbb{P}^9$  of  $\mathbb{Z}^3$ -degree (52, 36, 36):

The moments of order  $\leq 3$  of probability measures on the triangle  $\triangle \subset \mathbb{R}^2$  whose densities are linear functions form a hypersurface in  $\mathbb{P}^9$  of  $\mathbb{Z}^3$ -degree (52, 36, 36):

```
12288754756878336m^{16}s^9 - 125913170530271232h^2m^{14}s^8 - 11555266180939776hm^{15}s^7t - 423695444226048m^{16}s^6t^2
  +4239929831616m^{16}s^3t^4-2425179321925632ghm^{13}s^7+767341894828032gm^{14}s^6t-1302706722212675584h^6m^{10}s^6
  -108262506929061888h^5m^{11}s^5t + 673312350928896h^4m^{12}s^4t^2 + 535497484271616h^3m^{13}s^3t^3 + 31959518257152h^2m^{14}s^2t^4
  +440798423040 hm^{15} st^5 + 195936798885543936 gh^3 m^{11} s^6 - 410140620619776 gh^2 m^{12} s^5 t - 412398826108747776 gh^6 m^8 s^3 t
   -2360537593675776ghm^{13}s^4t^2 - 89805332054016gm^{14}s^3t^3 - 486870353365172224h^8m^8s^5 + 6819936693387264h^7m^9s^4t^8
   +29422733985054720h^6m^{10}s^3t^2 + 2782917213290496h^5m^{11}s^2t^3 + 58246341746688h^4m^{12}st^4 - 587731230720h^3m^{13}t^5
+3602104581095424g^2m^{12}s^6 - 157746980481662976gh^5m^9s^5 - 79828890012352512gh^4m^{10}s^4t - 10700934975848448gh^3m^{11}s^3t^2
    +814698134331457536h^9m^7s^3t + 92179893357379584h^8m^8s^2t^2 + 2541749079638016h^7m^9st^3 - 13792092880896h^6m^{10}t^4
+58678654946770944g^2h^2m^{10}s^5 + 16167862146170880g^2hm^{11}s^4t + 705486447968256g^2m^{12}s^3t^2 - 1103687847816200192gh^7m^7s^4
     +13931406950400gh^3m^{11}t^4-44584171418419200gh^5m^9s^2t^2-9685512225m^{\bar{1}6}t^6-1132386035171328gh^4m^{10}st^3
 +7839053087502237696h^{12}m^4s^3+1352219532013338624h^{11}m^5s^2t+51427969540816896h^{10}m^6\underline{s}t^2-\underline{147941222525244}h^9m^7t^3
-3265173504000g^2m^{12}t^4 - 5301992678571900928gh^9m^5s^3 - 984505782412247040gh^8m^6s^2t - 37440870596739072gh^7m^7st^2
  +260713381625856gh^6m^8t^3+7163309458867617792h^{14}m^2s^2+495888540219998208h^{13}m^3\underline{st}-613682107121664h^{12}m^4t^2
-408993036765233152g^3h^5m^5s^2 - 26702361435045888g^3h^4m^6st + 626206231756800g^3h^3m^7t^2 + 1246806603479384064g^2h^{10}m^2s
   -299841218941026304g^3h^7m^3s + 5822326385934336g^3h^6m^4t - 12824703626379264g^2h^{12} + 32389413531025408g^4h^4m^4s
    -6878544743366656g^4h^6m^2 + 1407374883553280g^5h^3m^3 - 109951162777600g^6m^4.
```

(IV - XVII

Let  $\triangle_d \subset \mathbb{R}^d$  be the  $\overline{d}$ -dimensional simplex.

We denote its vertices by  $x_k = (x_{k1}, x_{k2}, \dots, x_{kd})$  for  $k = 1, 2, \dots, d + 1$ .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{>0}^d} \binom{|\mathcal{I}|+d}{\mathcal{I},d} \cdot m_{\mathcal{I}}(\triangle_d) \cdot t^{\mathcal{I}} =$$

Let  $\triangle_d \subset \mathbb{R}^d$  be the *d*-dimensional simplex.

We denote its vertices by  $x_k = (x_{k1}, x_{k2}, \dots, x_{kd})$  for  $k = 1, 2, \dots, d + 1$ .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{>0}^d} \binom{|\mathcal{I}| + d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(\triangle_d) \cdot t^{\mathcal{I}} = \prod_{k=1}^{d+1} \frac{1}{1 - \langle x_k, t \rangle}$$

Let  $\triangle_d \subset \mathbb{R}^d$  be the *d*-dimensional simplex.

We denote its vertices by  $x_k = (x_{k1}, x_{k2}, \dots, x_{kd})$  for  $k = 1, 2, \dots, d + 1$ .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^d} \binom{|\mathcal{I}| + d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(\triangle_d) \cdot t^{\mathcal{I}} = \prod_{k=1}^{d+1} \frac{1}{1 - \langle x_k, t \rangle}$$

Example (d = 1):  $\triangle_1 = [a, b] \subset \mathbb{R}^1$ 

$$\sum_{i=0}^{\infty} (i+1) \cdot m_i \cdot t^i = \frac{1}{(1-at)(1-bt)}$$

Let  $P \subset \mathbb{R}^d$  be a simplicial polytope with vertices  $x_1, x_2, \dots, x_n$ .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^d} \binom{|\mathcal{I}| + d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}} = \frac{\mathrm{Ad}_{P}(t)}{\prod_{k=1}^n (1 - \langle x_k, t \rangle)}$$

Let  $P \subset \mathbb{R}^d$  be a simplicial polytope with vertices  $x_1, x_2, \dots, x_n$ .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{>0}^d} \binom{|\mathcal{I}| + d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}} = \frac{\mathrm{Ad}_{P}(t)}{\prod_{k=1}^n (1 - \langle x_k, t \rangle)}$$

The adjoint polynomial  $Ad_P(t)$  of P was introduced by Joe Warren in 1996 to define barycentric coordinates on P.

Let  $P \subset \mathbb{R}^d$  be a simplicial polytope with vertices  $x_1, x_2, \dots, x_n$ .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{>0}^d} \binom{|\mathcal{I}| + d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}} = \frac{\mathrm{Ad}_{P}(t)}{\prod_{k=1}^n (1 - \langle x_k, t \rangle)}$$

The adjoint polynomial  $Ad_P(t)$  of P was introduced by Joe Warren in 1996 to define barycentric coordinates on P.

#### Theorem (K., Ranestad)

If P is general enough, then  $Ad_P(t)$  is the unique polynomial of degree n-d-1 and constant term 1 that vanishes on the **residual arrangement**  $\mathcal{R}_{P^*}$  of the dual polytope  $P^*$ .

Let  $P \subset \mathbb{R}^d$  be a simplicial polytope with vertices  $x_1, x_2, \dots, x_n$ .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{>0}^d} \binom{|\mathcal{I}| + d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}} = \frac{\mathrm{Ad}_{P}(t)}{\prod_{k=1}^n (1 - \langle x_k, t \rangle)}$$

The adjoint polynomial  $Ad_P(t)$  of P was introduced by Joe Warren in 1996 to define barycentric coordinates on P.

#### Theorem (K., Ranestad)

If P is general enough, then  $Ad_P(t)$  is the unique polynomial of degree n-d-1 and constant term 1 that vanishes on the **residual arrangement**  $\mathcal{R}_{P^*}$  of the dual polytope  $P^*$ .

 $\mathcal{R}_{P^*}=$  set of all intersections of collections of facet hyperplanes of  $P^*$  that do not contain any face of  $P^*$ 





#### Theorem (K., Ranestad)

If P is general enough, then  $\mathrm{Ad}_P(t)$  is the unique polynomial of degree n-d-1 and constant term 1 that vanishes on the **residual arrangement**  $\mathcal{R}_{P^*}$  of the dual polytope  $P^*$ .

 $\mathcal{R}_{P^*}=$  set of all intersections of collections of facet hyperplanes of  $P^*$  that do not contain any face of  $P^*$ 



#### Theorem (K., Ranestad)

If P is general enough, then  $\mathrm{Ad}_P(t)$  is the unique polynomial of degree n-d-1 and constant term 1 that vanishes on the **residual arrangement**  $\mathcal{R}_{P^*}$  of the dual polytope  $P^*$ .

 $\mathcal{R}_{P^*}=$  set of all intersections of collections of facet hyperplanes of  $P^*$  that do not contain any face of  $P^*$ 

