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Moments of a Polytope

¢ Let P c R? be a full-dimensional polytope.
o up: uniform probability distribution on P

¢ moments

i i P .
m;l,-Z.‘.;d(P) = /Rd W11W22 S de d/,Lp for i, in,...,iq € ZZO

Known:
The list of all moments (mz(P) | Z € Zdzo) uniquely encodes P.

~>Can recover P from its moments.
Caution: The moments are not independent of each other.

Our Goal:
Study the dependencies among the moments!
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Moment Varieties

o We assume: P C R? is full-dimensional, simplicial, and has n vertices
& We can vary the vertices of P locally without changing the
combinatorial type P of P

~» mz(P) is a locally defined function of the vertex coordinates

~> For every combinatorial type P and every finite subset A C Z‘;O,
we have a rational function

mp.a (Rd>" > RMI,
Pr—s{mall)) - 4
- . dxn A1
¢ We assume: 0 € A~ mp 4:C - P¢
¢ Moment variety

M(P) := mp_4 (CIxm) c P



Example: Line Segments

o Let P—|ab] = RE

1 b : 1 pitl— g+l
= m;(Py = _niEet)— b—a/ w'dw = T

= i—|1—1 (ai+ai_1b+ai_2b2+...—|—bi)




Example: Line Segments

* LetP:[a,b]CRl

e T pitl _ i+l
jmi(P):mi(a’b):b_a/WdWZi+1 "

o iJlrl (' +a b ATl .. + b')

= Ml ineSegments,{0,1,...,r} e 2%
(a,b) — (mg(a, b) : m(a, b) i ..&: m.(a; b))



Example: Line Segments

o Let P—|ab] = RE

1 B 1 pitl _ i+l
= m;(P} = niiEeD— b—a/ w'dw = T T

= i—|1—1 (ai+ai_1b+ai_2b2+...—|—bi)

L2 r
= My ineSegments,{0,1,...,r} ol )

(a, b) — (mg(a, b) : my(a,b): ...: m(a,b))

¢ Myo,,.. ry(LineSegments) is a surface in P"
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Example: Line Segments

Moment surface Mg 5 3)(LineSegments) C P3 in affine chart {mg = 1}

o Defined by Zmi’ — 3mgmymy + mgm3 =0

# Singular along {mg = m; = 0}

+ Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0



Example: Line Segments

The moment surface Myq ;1 . ,3(LineSegments) C P"

o has degree (5)

o and its prime ideal is generated by the 3 x 3 minors of

0] mo 2m1 3m2
mo 2 mq 3 myp 4m3
2m; 3mpy 4msz 5my

¢ These cubics form a Grobner basis.

4m3
5m4
6m5

(r—1)m,_s
rmr_1

(r +13m;
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One-Dimensional Moments

Let P be any combinatorial type of simplicial polytopes in RY with n vertices,
and let A =400, - IR0 0 oo (- Oas () )

Theorem (K., Shapiro, Sturmfels)
M A(P) has degree (" "T91) and its prime ideal is generated by the
maximal minors of the Hankel matrix

Co 1 it Cn Gl 85¢ Cr+d—n
ol € v Cnyl Cpy2 o Crpd—ntl
b
Cne GRSl s e Conat = ConI-l Crid
where g =c1=... =cy—1 =0and ¢ciy g = (dj') mig..o fori=0715""" r.

These minors form a reduced Grobner basis with respect to any antidiagonal
term order, with initial monomial ideal (m,_q, Mp_gs1,..., my_p)" L.
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Example: Triangles

Let A be as shown on the right. .

The moment variety M 4(A) C P? has
dimension 6 and degree 30.

Its ideal is homogeneous with respect to the natural Z3-grading given by
degree(mj,;,) = (1, i1, i2).

The Z3-degrees of the minimal generators of its prime ideal are
(4,2,3),(4,3,2),(4,2,4),(4,3,3),(4,3,3),(4,4,2),(4,3,4),(4,4,3),(6,6,6).

The ideal generator of degree (4,2, 3) equals

2 2 3 2 2 2

3mgomiymo1 — 6my1migmy; + 3moomy; — mo3migMmog + 4mi; Mo1 Moo + Ma1 M2 My
2 2 2

— 4mo Moo Moy Mog + 2my2 My Mo Moo — M1 My Mog + M3 My Mgy — 2My2 My My,.
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Example: Quadrilaterals

Let A :=HT 72 [ | L= g -
Can we compute the moment hypersurface i
My (@) C P9?

Using monodromy methods from numerical algebraic geometry, we compute
that its defining equation has Z3-degree (18,12,12).

Lemma:
The defining equation of M 4(0) is invariant under the natural action of the

affine group Affs.

Goal:
o Compute the invariant ring R[mz | T € AJA2
# Express the defining equation of M 4(OJ) in these invariants.
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Theorem:
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Theorem:

The invariant ring R[mz | |Z| < r]*%¢ is isomorphic to the ring of covariants
of a homogeneous polynomial of degree r in d + 1 variables.
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7 =y
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The Invariant Ring of the Affine Group

Theorem:

The invariant ring R[mz | |Z| < r]*%¢ is isomorphic to the ring of covariants
of a homogeneous polynomial of degree r in d + 1 variables.

This isomorphism maps the covariants of

f(m, U) = Z ( ; r_ |I’> (ula uz,..., ud)Iu6_|I‘
Z\Z|I<r
to invariants of Affy via up—~ 1and u;—~0fori=1,2,...,d.

Example (d = 1,r = 3):
The binary cubic f(m, u) = mg,u1 4 3m2u1 ug + 3m1u1u0 b mou0 has the

classically known covariants: which yield invariants:
o f * Mo
o the Hessian of f momy — m%

mgm3 — 3mgomimy + 2m%
mgm3 — 6momymams + 4mom3 +

3 2700
4mimz — 3mim;

¢ the Jacobian of f and its Hessian

R ek g

¢ its discriminant



Example: Line Segments

Moment surface Mg 5 3)(LineSegments) C P3 in affine chart {mg = 1}

o Defined by Zm% — 3mgmymy + mgmg =0

# Singular along {mg = m; = 0}

+ Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0
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Covariants of a Ternary Cubic
(d=2,r=3)

f(m, U) = m3ouf 5 3m21U%U2 a4 3m20U%U0 aF 3m12u1u§ ar 6m11u1u2u0
+3mygur ug B m03u§ Ei= 3m02u§uo + 3mp; UQU(% ) mooug

has 6 fundamental covariants.

Replacing (uo, u1, u3) — (1,0, 0) yields six fundamental affine invariants:

affine invariant Moo s t h g J
73-degree (1,0,0) (4,4,4) (6,6,6) (3,2,2) (8,6,6) (12,9,9)
# terms il 25 (0K} 5 168 892
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Back to Quadrilaterals

Let A = {T e Z& il [ < 31

The defining equation of the moment hypersurface

M(O) C PP has Z3-degree (18,12,12). .

It is an Aff>-invariant. )

It can be expressed in the 6 six fundamental affine
invariants mgo, s, t, h, g, J.

\/

We use the moments of various random quadrilaterals to interpolate.

The hypersurface M 4(00) C P? is defined by

2125764 h® + 5484996 mZ,h*s — 1574640 moogh® + 364500 m3,h°t
+ 3458700 mgyh?s®> — 2041200mg,ghs + 472500mg,hst — 122500mys® + 291600m3,g>
—135000mgogt + 15625miyt>.

This polynomial has 5100 terms in the mj;,.
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The moments of order < 3 of probability measures on the triangle A C R?
whose densities are linear functions form a hypersurface in P° of Z3-degree
(52,36,36):

12288754756878336m'0s% — 125913170530271232h° m**s® — 11555266180939776hm'5s” t — 423605444226048m 0 s +2
—242587475329941504h* m?s” — 67888179490848768h° m3s0t — 2253544388206704h> m'*s° t? + 92156256976896hm °s* ¢
+4239929831616m'0s3t* — 2425179321925632ghm*3s” + 767341894828032gm *s®t — 1302706722212675584h° m'0s°
—108262506929061888h° m1s°t + 673312350928806h* m'2s*t? + 535497484271616h° m*3s3t> 4 31959518257152h% m14s? ¢4
+440798423040hm ™5 st® + 195036798885543936gh° m'1s® — 410140620619776gh® m'2s°t — 412398826108747776gh% mPs>t
—2360537593675776ghm™3s* t2 — 89805332054016gm™*s3t3 — 486870353365172224h m®s® + 6819936693387264h" m?s*t
+204227339850547201° m'0s3 2 + 2782917213290496h° m™ s> + 58246341746688h* m'%st* — 587731230720h° m*3t
+3602104581095424g2 m*?s® — 157746980481662976gh° m'

—668738492301312gh° m'2s2 3

MgzsSet

mﬁs
+58678654946770944g2 h>m'%s® + 16167862146170880g2 hm'!s*t + 705486447968256g° m'%s> > — 1103687847816200192gh" m
+13931406950400gh°> m*! £

— 79828890012352512gh* m'%s*t — 10700934975848448gh°> m*! 53 2
— 10448555212800ghm*3st* + 275499014400gm**t> + 1321196639636946944h'0 m®s*
+814698134331457536h7 m’ s>t + 92179893357379584h° mPs?t2 + 2541749079638016h" m%st> — 13792092880896h° m'0 t*
2
t* — 44584171418419200gh° m

4

9

6
+7839053087502237696h12 m* s> + 1352219532013338624h' 1 m>s>t + 51427969540816896h° m®st? — 147941222252544h° m” ¢3
T A0 9 _5
—3265173504000g2m'2+* — 5301992678571900928gh° m

2 — 9685512225m™0¢% — 1132386035171328gh* m'0st3
+356552602772570112g2 h* m®s* + 65355404946702336g2 h> m?s3t + 5201278745444352g2 h2 m10s2+2
— 084505782412247040gh® m®s?t — 37440870596739072gh” m” st?
—33414364526542848g° hm?s* — 2441030167166976g° m'%s> t + 1297818789047435264g2 h® m®s® + 235088951956733952g2 h° m” s>
+8250658482290688g2 h* m®st? — 132090377011200g2h3m° 3 — 7123133303988682752gh'!

+ 99067782758400g% hm*! st
+260713381625856gh° m® 3 + 7163300458867617792h'* m?s? + 495888540219998208h'% m>st — 613682107121664h'2 m* t2

6
+2079004689432576gh° m° t2 + 1846757322198614016h'%s — 1263888616128512002> h>m’

— 506754841838616576gh'0 m* st
s3 — 17847573389770752g°% h® m
—469654673817600g°> hm°st? + 20639121408000g° m'0t> + 2504242435278176256g2 h° m*s? + 183620365983940608g2h m° st

852t
—184809114147225652hOmC t? — 2445243491429646336gh"> ms -+ 5610807836540928gh'2 m?t + 3143555283419136g* m® s>
—408993036765233152g>h° m®s®> — 26702361435045888g> h* m® st + 626206231756800g°>h>m’ t? + 1246806603479384064g2 h'0 m?s
—9737274975584256g2 h° m> t + 22822562857746432g* > m®s? + 1113255523123200g hm” st — 73383542784000g* m®t2
—200841218941026304g> h” m3s + 5822326385934336° hOm™*t — 12824703626379264g2h'2 + 32389413531025408g" h* m*s
—1484340697497600g* h> m®t + 15109648742375424g° h°m — 1055531162664960g° hm°s + 139156940390400g° m®t
—68785447433666565* h® m? + 1407374883553280g° h>m> — 109951162777600g° m*.
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Generating Functions

Let Ay C RY be the d-dimensional simplex.

We denote its vertices by xx = (Xk1, Xk2, - -, Xkq) for k =1,2,...

Z] + d _d+1 1
Z ( I.d >-mI(Ad)-tI— Hil—(xk,ﬂ

Zezg, k=1
Example (d = 1): A1 = [a,b] C R!

o0

. o 1
BlERE L e e

i=0

,d+1.
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PE R Adp
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Adjoints
Z p* it Adp @

Theorem (K., Ranestad)

If P is general enough, then Adp(t) is the unique polynomial of degree
n— d — 1 and constant term 1 that vanishes on the residual arrangement
Rp« of the dual polytope P*.

R p+ = set of all intersections of collections of facet hyperplanes of P*
that do not contain any face of P*




Thanks for your
attention




