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Moments of a Probability Distribution

Let µ be a probability distribution on Rd .

For I = (i1, . . . , id) ∈ Zd
≥0, the I-th moment of µ is

mI(µ) :=

∫
Rd

w i1
1 w i2

2 . . .w
id
d dµP .

Questions from statistics:

Can we recover µ from its moments?

How many moments do we need? Which ones?

Algorithms?

Caution: The moments are not independent of each other.

Our goal: Study the dependencies among the moments!
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Moment Varieties

Let F be a family of probability distributions on Rd .

Let A ⊂ Zd
≥0 be a finite subset.

We define the moment map:

mF ,A : F −→ R|A|,
µ 7−→ (mI(µ))I∈A

We assume: 0 ∈ A  mF ,A : F −→ P|A|−1

Moment variety

MA(F) := immF ,A ⊂ P|A|−1

II - XXI
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Moment Varieties of Polytopes
Let P ⊂ Rd be a polytope with n vertices.
We assume: P is full-dimensional and simplicial
(i.e., every face of P is a simplex).

Let µP be the uniform probability distribution on P.
For I ∈ Zd

≥0, the I-th moment of P is mI(P) := mI(µP).

Let P be a combinatorial type of full-dimensional, simplicial polytopes
in Rd with n vertices.
Let A ⊂ Zd

≥0 be a finite subset with 0 ∈ A.
Moment map

mP,A :
(
Rd
)n
99K P|A|−1,

P 7−→ (mI(P))I∈A

Moment variety

MA(P) := immP,A ⊂ P|A|−1
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Example: Line Segments

Let P = [a, b] ⊂ R1

⇒ mi (P) = mi (a, b) =
1

b − a

∫ b

a
w i dw =

1

i + 1

bi+1 − ai+1

b − a

=
1

i + 1

(
ai + ai−1b + ai−2b2 + . . .+ bi

)

⇒ m�,{0,1,...,r} : R2 99K Pr ,
(a, b) 7−→ (m0(a, b) : m1(a, b) : . . . : mr (a, b))

M{0,1,...,r}(�) is a surface in Pr

IV - XXI



Example: Line Segments

Let P = [a, b] ⊂ R1

⇒ mi (P) = mi (a, b) =
1

b − a

∫ b

a
w i dw =

1

i + 1

bi+1 − ai+1

b − a

=
1

i + 1

(
ai + ai−1b + ai−2b2 + . . .+ bi

)
⇒ m�,{0,1,...,r} : R2 99K Pr ,

(a, b) 7−→ (m0(a, b) : m1(a, b) : . . . : mr (a, b))

M{0,1,...,r}(�) is a surface in Pr

IV - XXI



Example: Line Segments

Let P = [a, b] ⊂ R1

⇒ mi (P) = mi (a, b) =
1

b − a

∫ b

a
w i dw =

1

i + 1

bi+1 − ai+1

b − a

=
1

i + 1

(
ai + ai−1b + ai−2b2 + . . .+ bi

)
⇒ m�,{0,1,...,r} : R2 99K Pr ,

(a, b) 7−→ (m0(a, b) : m1(a, b) : . . . : mr (a, b))

M{0,1,...,r}(�) is a surface in Pr

IV - XXI



Example: Line Segments

Moment surface M{0,1,2,3}(�) ⊂ P3 in affine chart {m0 = 1}

Defined by 2m3
1 − 3m0m1m2 + m2

0m3 = 0

Singular along {m0 = m1 = 0}
Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0

V - XXI



Example: Line Segments

Moment surface M{0,1,2,3}(�) ⊂ P3 in affine chart {m0 = 1}

Defined by 2m3
1 − 3m0m1m2 + m2

0m3 = 0

Singular along {m0 = m1 = 0}

Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0

V - XXI



Example: Line Segments

Moment surface M{0,1,2,3}(�) ⊂ P3 in affine chart {m0 = 1}

Defined by 2m3
1 − 3m0m1m2 + m2

0m3 = 0

Singular along {m0 = m1 = 0}
Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0

V - XXI



Example: Line Segments

The moment surface M{0,1,...,r}(�) ⊂ Pr

has degree
(r

2

)
and its prime ideal is generated by the 3× 3 minors of 0 m0 2m1 3m2 4m3 · · · (r − 1)mr−2

m0 2m1 3m2 4m3 5m4 · · · r mr−1

2m1 3m2 4m3 5m4 6m5 · · · (r + 1)mr

 .

These cubics even form a Gröbner basis.
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One-Dimensional Moments

Let P be any combinatorial type of simplicial polytopes in Rd with n vertices,
and let A = {(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (r , 0, . . . , 0)}.

Theorem (K., Shapiro, Sturmfels)
MA(P) has degree

(r−n+d+1
n

)
and its prime ideal is generated by the

maximal minors of the Hankel matrix
c0 c1 · · · cn cn+1 · · · cr+d−n
c1 c2 · · · cn+1 cn+2 · · · cr+d−n+1
...

...
...

...
...

cn cn+1 · · · c2n c2n+1 · · · cr+d

 ,

where c0 = c1 = . . . = cd−1 = 0 and ci+d =
(d+i

d

)
mi for i = 0, 1, . . . , r .

These minors form a reduced Gröbner basis with respect to any antidiagonal
term order, with initial monomial ideal 〈mn−d ,mn−d+1, . . . ,mr−n〉n+1.
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Example: Triangles

Let A be as shown on the right.

The moment variety MA(4) ⊂ P9 has
dimension 6 and degree 30.

Its ideal is homogeneous with respect to the natural Z3-grading given by
degree(mi1i2) = (1, i1, i2).

The Z3-degrees of the minimal generators of its prime ideal are
(4, 2, 3), (4, 3, 2), (4, 2, 4), (4, 3, 3), (4, 3, 3), (4, 4, 2), (4, 3, 4), (4, 4, 3), (6, 6, 6).

The ideal generator of degree (4, 2, 3) equals

3m02m
2
10m01 − 6m11m10m

2
01 + 3m20m

3
01 −m03m

2
10m00 + 4m2

11m01m00 + m21m02m
2
00

− 4m20m02m01m00 + 2m12m10m01m00 −m21m
2
01m00 + m03m20m

2
00 − 2m12m11m

2
00.
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Example: Quadrilaterals

Let A be as shown on the right.

MA(�) = P8

m�,A : C2×4 99K P8 is generically 80-to-1.

The dihedral group of order 8 acts on each fiber.
 Each fiber consists of 10 “quadrilaterals”.
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Example: Quadrilaterals

Let A := {I ∈ Z2
≥0 | |I | ≤ 3}.

Can we compute the moment hypersurface
MA(�) ⊂ P9?

Using monodromy methods from numerical algebraic geometry, we compute
that its defining equation has Z3-degree (18, 12, 12).

Lemma:
The defining equation of MA(�) is invariant under the natural action of the
affine group Aff2.

Goal:

Compute the invariant ring R[mI | I ∈ A]Aff2

Express the defining equation of MA(�) in these invariants.

X - XXI



Example: Quadrilaterals

Let A := {I ∈ Z2
≥0 | |I | ≤ 3}.

Can we compute the moment hypersurface
MA(�) ⊂ P9?

Using monodromy methods from numerical algebraic geometry, we compute
that its defining equation has Z3-degree (18, 12, 12).

Lemma:
The defining equation of MA(�) is invariant under the natural action of the
affine group Aff2.

Goal:

Compute the invariant ring R[mI | I ∈ A]Aff2

Express the defining equation of MA(�) in these invariants.

X - XXI



Example: Quadrilaterals

Let A := {I ∈ Z2
≥0 | |I | ≤ 3}.

Can we compute the moment hypersurface
MA(�) ⊂ P9?

Using monodromy methods from numerical algebraic geometry, we compute
that its defining equation has Z3-degree (18, 12, 12).

Lemma:
The defining equation of MA(�) is invariant under the natural action of the
affine group Aff2.

Goal:

Compute the invariant ring R[mI | I ∈ A]Aff2

Express the defining equation of MA(�) in these invariants.

X - XXI



Example: Quadrilaterals

Let A := {I ∈ Z2
≥0 | |I | ≤ 3}.

Can we compute the moment hypersurface
MA(�) ⊂ P9?

Using monodromy methods from numerical algebraic geometry, we compute
that its defining equation has Z3-degree (18, 12, 12).

Lemma:
The defining equation of MA(�) is invariant under the natural action of the
affine group Aff2.

Goal:

Compute the invariant ring R[mI | I ∈ A]Aff2

Express the defining equation of MA(�) in these invariants.

X - XXI



The Affine Group

Affd := GLd(R)nRd

acts on Rd via (A, b).x := Ax + b.

The combinatorial type of a polytope in Rd stays invariant under this
action.

The action induces an action on monomials and hence an action on
moments:

(A, b).mI =
∑

J:|J|≤|I |

νIJ(A, b) ·mJ ,

where νIJ(A, b) is the coefficient of the monomial xJ in the expansion of
(Ax + b)I

Example (d = 1):
Aff1 acts on R1 via (a, b).x := ax + b
It acts on moments via (a, b).mi =

∑i
j=0

(i
j

)
ajbi−jmj
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The Invariant Ring of the Affine Group

Aff1 acts on R1 via (a, b).x := ax + b
It acts on moments via (a, b).mi =

∑i
j=0

(i
j

)
ajbi−jmj

Lemma:
The invariant ring R[m0,m1,m2,m3]Aff1 is generated by

m0

m0m2 −m2
1

m2
0m3 − 3m0m1m2 + 2m3

1

m2
0m

2
3 − 6m0m1m2m3 + 4m0m

3
2 + 4m3

1m3 − 3m2
1m

2
2
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Example: Line Segments

Moment surface M{0,1,2,3}(LineSegments) ⊂ P3 in affine chart {m0 = 1}

Defined by 2m3
1 − 3m0m1m2 + m2

0m3 = 0

Singular along {m0 = m1 = 0}
Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0
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The Invariant Ring of the Affine Group

Proposition:
The invariant ring R[m00,m01,m10,m02,m11,m20,m03,m12,m21,m30]Aff2 is
generated by:

affine invariant m00 s t h g j
Z3-degree (1, 0, 0) (4, 4, 4) (6, 6, 6) (3, 2, 2) (8, 6, 6) (12, 9, 9)
# terms 1 25 103 5 168 892

XIV - XXI



Back to Quadrilaterals

Let A := {I ∈ Z2
≥0 | |I | ≤ 3}.

The defining equation of the moment hypersurface
MA(�) ⊂ P9 has Z3-degree (18, 12, 12).

It is an Aff2-invariant.

It can be expressed in the 6 six fundamental affine
invariants m00, s, t, h, g , j .

We use the moments of various random quadrilaterals to interpolate.

The hypersurface MA(�) ⊂ P9 is defined by

2125764 h6 + 5484996m2
00h

4s − 1574640m00gh
3 + 364500m3

00h
3t

+3458700m4
00h

2s2 − 2041200m3
00ghs + 472500m5

00hst − 122500m6
00s

3 + 291600m2
00g

2

−135000m4
00gt + 15625m6

00t
2.

This polynomial has 5100 terms in the mi1i2 .
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The moments of order ≤ 3 of probability measures on the triangle 4 ⊂ R2

whose densities are linear functions

form a hypersurface in P9 of Z3-degree
(52, 36, 36):

12288754756878336m16s9 − 125913170530271232h2m14s8 − 11555266180939776hm15s7t − 423695444226048m16s6t2

−242587475329941504h4m12s7 − 67888179490848768h3m13s6t − 2253544388296704h2m14s5t2 + 92156256976896hm15s4t3

+4239929831616m16s3t4 − 2425179321925632ghm13s7 + 767341894828032gm14s6t − 1302706722212675584h6m10s6

−108262506929061888h5m11s5t + 673312350928896h4m12s4t2 + 535497484271616h3m13s3t3 + 31959518257152h2m14s2t4

+440798423040hm15st5 + 195936798885543936gh3m11s6 − 410140620619776gh2m12s5t − 412398826108747776gh6m8s3t

−2360537593675776ghm13s4t2 − 89805332054016gm14s3t3 − 486870353365172224h8m8s5 + 6819936693387264h7m9s4t

+29422733985054720h6m10s3t2 + 2782917213290496h5m11s2t3 + 58246341746688h4m12st4 − 587731230720h3m13t5

+3602104581095424g2m12s6 − 157746980481662976gh5m9s5 − 79828890012352512gh4m10s4t − 10700934975848448gh3m11s3t2

−668738492301312gh2m12s2t3 − 10448555212800ghm13st4 + 275499014400gm14t5 + 1321196639636946944h10m6s4

+814698134331457536h9m7s3t + 92179893357379584h8m8s2t2 + 2541749079638016h7m9st3 − 13792092880896h6m10t4
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Back to Quadrilaterals

Every partition λ of 10 could possibly yield a moment
hypersurface Mλ(�) ⊂ P9.

On the right: λ = 4 3 2 1

These partitions do not yield hypersurfaces:

λ λc dimMλ(�)

10 110 5
9 1 2 18 6
8 2 22 16 7
8 12 3 17 7
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Hypersurfaces Mλ(�) ⊂ P9
λ λc degMλ(�)

7 3 23 14 (5, 10, 0)
7 2 1 3 2 15 (5, 10, 0)
7 12 4 16 (5, 10, 0)
6 4 24 12 (27, 3, 36)

6 3 1 3 22 13 (51, 6, 54)
6 22 32 14 (96, 12, 90)

6 2 12 4 2 14 (136, 18, 126)
6 14 5 15 (480, 72, 424)
52 25 (33, 6, 39)

5 4 1 3 23 1 (36, 6, 36)
5 3 2 32 2 12 (42, 12, 36)
5 3 12 4 22 12 (60, 18, 48)
5 22 1 4 3 13 (72, 36, 42)
5 2 13 5 2 13 (139, 70, 72)
42 2 32 22 (42, 16, 32)
42 12 4 23 (60, 24, 42)
4 32 33 1 (47, 20, 34)

4 3 2 1 4 3 2 1 (18, 12, 12) XVIII - XXI



Generating Functions

Let 4d ⊂ Rd be the d-dimensional simplex.
We denote its vertices by xk = (xk1, xk2, . . . , xkd) for k = 1, 2, . . . , d + 1.

∑
I∈Zd

≥0

(
|I|+ d

I, d

)
·mI(4d) · tI =

d+1∏
k=1

1

1− 〈xk , t〉

Example (d = 1): 41 = [a, b] ⊂ R1

∞∑
i=0

(i + 1) ·mi · t i =
1

(1− at)(1− bt)
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Generating Functions
Let P ⊂ Rd be a simplicial polytope with vertices x1, x2, . . . , xn.
Let Σ be a triangulation of P that uses only these vertices.
We identify a simplex σ ∈ Σ with the set of vertices it uses.

∑
I∈Zd

≥0

(
|I|+ d

I, d

)
·mI(P) · tI =

1

vol(P)

∑
σ∈Σ

vol(σ)∏
k∈σ(1− 〈xk , t〉)

:=
AdP(t)∏n

k=1(1− 〈xk , t〉)

The numerator AdP(t)

is an inhomogeneous polynomial of degree n − d − 1 in t = (t1, . . . , td),

is called the adjoint of P,

was introduced by Joe Warren to study barycentric coordinates in
geometric modeling (ca. 1996),

is independent of the triangulation Σ of the polytope P.
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Generating Functions
Let P ⊂ Rd be a simplicial polytope with vertices x1, x2, . . . , xn.
Let Σ be a triangulation of P that uses only these vertices.
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Adjoints

The dual polytope P∗ is the set of points (t1, t2, . . . , td) for which all
linear factors 1− 〈xk , t〉 are non-negative.

P∗ has n facets.

Since P is simplicial, P∗ is simple
(i.e., every vertex lies on exactly d facets).

The residual subspace arrangement R(P∗) of P∗ consists of all
intersections of several hyperplanes which are not faces of P∗.

Proposition (K., Shapiro, Sturmfels)
The adjoint AdP vanishes on the residual subspace arrangement R(P∗).

Theorem (K. & Ranestad) Let P be a simplicial d-polytope with n vertices
such that the n hyperplanes defining P∗ form a simple hyperplane
arrangement. Then the adjoint AdP is the unique polynomial of degree
n − d − 1 with constant term 1 that vanishes on R(P∗).
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attention


