Der Komplex der nicht-chromatischen Skalen

Ernst Ulrich Deuker, Kathlén Kohn

6. März 2018

Intuition

Sprache

Malerei

Musik

26 Buchstaben/8 Satzelemente (Substantive, Verben, Adjektive...)

Sätze

3 Primärfarben (gelb, blau, rot, plus schwarz, weiss)

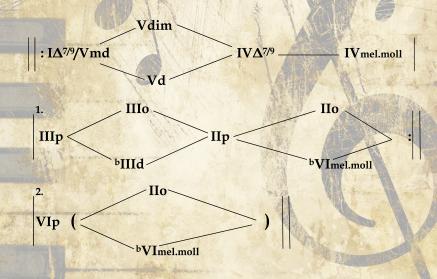
57 nichtchromatische Skalen

Bilder

Mischskalen, chromatische Durch-

gänge

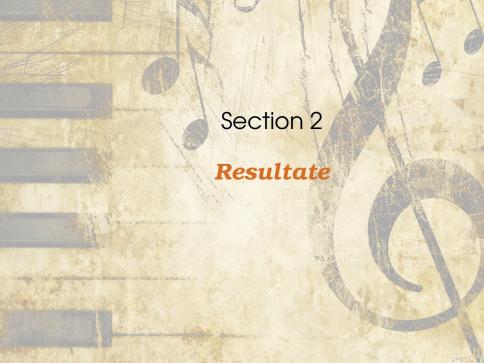
Melodien

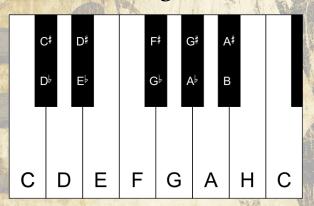

Musikalische Praxis

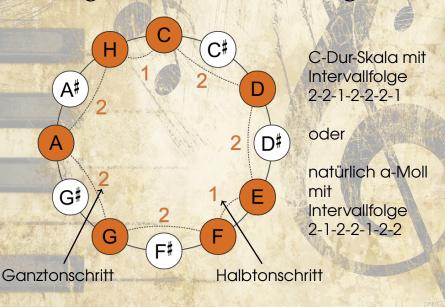
Pentatonik-Basisform:

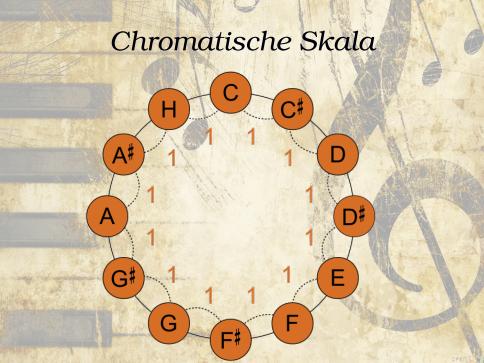
I PIII IN A PAIL

ACDEG


Four (Miles Davis)


Besa Me Mucho (Velasquez)

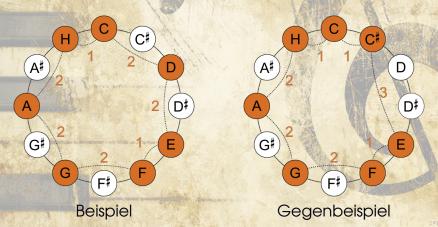

Tonsystem



Definition

Eine Skala ist eine Teilmenge von $\{C, C\sharp, D, D\sharp, E, F, F\sharp, G, G\sharp, A, A\sharp, H\}.$

Zyklische Tonordnung



Nicht-Chromatische Skalen

Definition

Eine Skala heißt **nicht-chromatisch**, falls ihre Intervallfolge keine 2 aufeinanderfolgenden Halbtonschritte enthält.

Simplizialkomplex

Die Menge aller nicht-chromatischen Skalen ist ein Simplizialkomplex.
Diesen bezeichnen mit KNC.

Erinnerung

Ein Simplizialkomplex ist eine Menge K von Mengen, sodass: $\forall S \in K \ \forall T \subset S : T \in K$.

Simplizialkomplex

Die Menge aller nicht-chromatischen Skalen ist ein Simplizialkomplex. Diesen bezeichnen mit \mathcal{K}_{NC} .

Erinnerung

Ein Simplizialkomplex ist eine Menge K von Mengen, sodass: $\forall S \in K \ \forall T \subset S : T \in K$.

f-Vektor von KNC

$$(1, 12, 66, 208, 399, 456, 282, 72, 3)$$

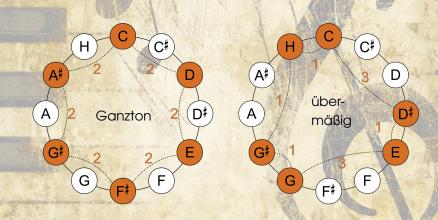
 $(f_{-1}, f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7)$

 $f_i = Anzahl der (i + 1)$ -elementigen Skalen in K_{NC}

Die Facetten von \mathcal{K}_{NC} sind die maximal nicht-chromatischen Skalen, d.h. die nicht-chromatischen Skalen, die nicht in anderen nicht-chromatischen Skalen enthalten sind.

Facetten

Die Facetten von \mathcal{K}_{NC} sind die **maximal nicht-chromatischen Skalen**, d.h. die nicht-chromatischen Skalen, die nicht in anderen nicht-chromatischen Skalen enthalten sind.


K_{NC} hat genau 57 Facetten:

Anzahl		Anzahl	
Töne	Intervallfolge	Skalen	Name
8	2-1-2-1-2-1	3	vermindert
7	2-2-1-2-2-1	12	Dur
7	2-1-2-2-2-1	12	melodisch Moll
7	2-1-2-2-1-3-1	12	harmonisch Moll
7	2-2-1-2-1-3-1	12	harmonisch Dur
6	2-2-2-2-2	2	Ganzton
6	1-3-1-3-1-3	4	übermäßig

Verminderte Skalen Н D

Dur & Moll C# A# A[‡] 3 harm. D# D# C-Dur Α C-Dur G# G# G G F# Н A# A[#] melod. harm. D# D# a-Moll a-Moll Ğ# G# G F#

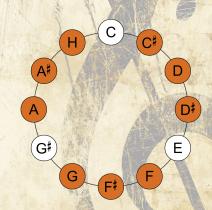
Ganzton- & übermäßige Skala

Topologie

(reduzierte) simpliziale Homologie von \mathcal{K}_{NC} über $\mathbb Q$

- \blacksquare H_n bezeichnet die n-te Homologiegruppe von \mathcal{K}_{NC} .
 - ◆ H_n ist ein ℚ-Vektorraum.
 - dim (H_n) "zählt" die *n*-dimensionalen "Löcher" von \mathcal{K}_{NC} .
 - $\dim(H_5) = 3$.
 - dim $(H_n) = 0$ für $n \neq 5$.

Topologie

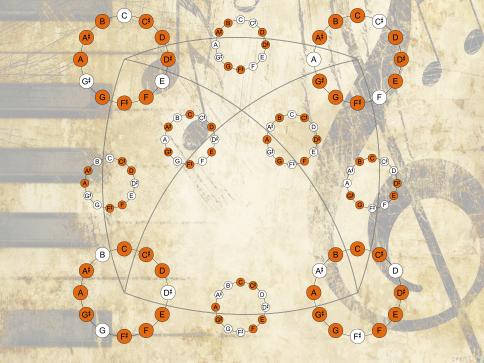

(reduzierte) simpliziale Homologie von \mathcal{K}_{NC} über $\mathbb Q$

- \blacksquare H_n bezeichnet die n-te Homologiegruppe von \mathcal{K}_{NC} .
 - H_n ist ein Q-Vektorraum.
 - lacktriangle dim (H_n) "zählt" die *n*-dimensionalen "Löcher" von \mathcal{K}_{NC} .
 - $\dim(H_5) = 3$.
 - dim $(H_n) = 0$ für $n \neq 5$.
- K_{NC} hat genau 3 "Löcher" der Dimension 5.
 - D.h. jedes Loch hat auf dem Rand Skalen mit 6 Tönen.
 - Diese Hexatoniken bilden einen Basisvektor von H₅.

Basis der Homologie

Messiaens Skala (rechts)

- hat 9 Töne
- enthält 27 nicht-chromatische Skalen mit 6 Tönen


Diese 27 Skalen bilden den Rand für ein Loch und damit einen Basisvektor von H_5 .


4 Messiaen-Skalen Α Ğ# Н A[#] D D# G#

Warum nur 3 Löcher?

- Die 4 Messiaen-Löcher sind linear abhängig.
- Je 3 davon erzeugen die Homologie.

Avoid Notes

Wir betrachten folgende gängige Akkordverbindung in C-Dur:

Akkordverbindung	D-7	G ⁷	$C\Delta^7$
potentielle Avoid Notes		C	ME
avoid-note-freie Skalen	C-Dur	Dd(9)	Ap(9)

Pentatonik-Basisform:

I bill IV V bVII A C D E G