Project Group “DynaSearch”
Final Presentation
Table of Contents

1. **Introduction**

2. **Objective Function Search in P2P Networks**
 - Introduction
 - Algorithms
 - Experimental Results
 - Further Results & Conclusion

3. **Network Creation Processes**
 - Network Creation under Dynamic Communication Interests
 - Node Swap Processes
 - Shortcut Process
 - Open Problems
Introduction

Objective Function Search in P2P Networks

Network Creation Processes
Our Work in the CRC 901

1. Big software from small pieces – Search for pieces that
 - Maximize some objective function or
 - Fulfill certain properties

2. Communicating entities with varying interests
 - Adapt network to these interests
Objective Function Search in P2P Networks

Introduction
Motivation

- Data items have several attributes
- Scenario: User specifies what is important to him
- Does not know which items exist
- Wants best possible result
Formal Definition

General:
- Data items in $[0,1)^d$
- Request is function $f : [0,1)^d \rightarrow \mathbb{R}$

For now:
- $d = 2$
- f is linear: $f(x, y) := a_1 x + a_2 y$
Example

\[f(x, y) = 7x + 4y \]
First Idea

- Move sweep line through coordinate space
- Start at best corner
- Result is first item found

What do we need?
- Manage coordinate space in p2p system
- Efficient way of searching
Basic P2P System

- Use Content Addressable Network (CAN)
- Manages data items in \([0, 1)^d\) coordinate space
- Each node responsible for section of space
CAN Example

2-dimensional CAN with 5 nodes

node B’s virtual coordinate zone
How to search?

- Many data items \Rightarrow Result at corner
- Few data items \Rightarrow Large empty sections
- Want to skip empty sections quickly

\Rightarrow Meta structure with containment information
Hierarchy Meta Structure

- Create tree structure with containment information
- Root node responsible for whole coordinate space
- Partition recursively
- Node knows whether some child contains data item
Need to make some assumptions about network structure:

\[f(x, y) = x \]
Introduce *c-balance*:

- \(s \) := shortest side length of any CAN-area
- \(\ell \) := longest side length of any CAN-area
- \(c := \frac{\ell^2}{s^2} \)
Objective Function Search in P2P Networks

Algorithms
Algorithm **FindMax**

Basic Idea

- **Approach**
 1. Start at root of hierarchy
 2. If area contains data item: search child areas; else: skip area

- **Technique**
 1. Sequentially process areas
 2. Best areas are processed first
 3. Areas with higher hierarchy level are preferred
Algorithm FindMax

Initial scenario and Step 1
Algorithm **FindMax**

Illustration

```
(0, 0)
(1, 1)
```

Step 2
Algorithm **FindMax**

Illustration

![Diagram of the FindMax algorithm showing points (0,0), (1,0), (0,1), and (1,1), with a focus on the grid step 3. The diagram shows the algorithm's progression through the grid with highlighted points and lines indicating the search process.](image-url)
Algorithm **FindMax**

Illustration

Step 4
Algorithm **FindMax**

Illustration

![Diagram showing the algorithm FindMax with points (0, 0) and (1, 1) highlighted.](image)

Step 5
Algorithm **FindMax**

Illustration

![Diagram showing the FindMax algorithm with points at (0, 0) and (1, 1).](image-url)

Step 6
Algorithm **FindMax**

Illustration

Step 7
Algorithm **FindMax**

Illustration

Step 8
Algorithm **FindMax**

Illustration

![Algorithm Illustration](image_url)

Step 9
Algorithm **FindMax**

Illustration

Step 10
Algorithm **FindMax**

Illustration

- **Step 11**
Algorithm **FindMax**

Illustration

For comparison only: Optimality proven
Scenario: n node c-balanced CAN, linear objective function

- Message count: $O(c^{3/2} \cdot \sqrt{n})$
- Response time: $O(c^{3/2} \cdot \sqrt{n})$

Technique:
- Line ℓ_p through optimal result p
- Algorithm contacts non-empty areas intersecting ℓ_p
- Upper bound number of intersecting areas using balance factor c
Algorithm **FindMax**

Analysis – Results & Techniques

\[
d = 4 \cdot \sqrt{\frac{2c}{n}}
\]
Algorithm **ParaMax**

Basic Idea

1. Lower bound function value of result
2. Multiple iterations; each time increase lower bound
3. Later iterations process areas deeper in the hierarchy
4. Process areas in parallel
Algorithm **ParaMax**

Illustration

Max depth: Level 0
Algorithm \textbf{ParaMax}

Illustration

Max depth: Level 1
Algorithm **ParaMax**

Illustration

Max depth: Level 2

Max depth: Level 2
Algorithm **ParaMax**

Illustration

Max depth: Level 3
Algorithm **ParaMax**

Illustration

For comparison only: Optimality proven
Algorithm **ParaMax**

Analysis – Results & Techniques

- **Scenario:** n node c-balanced CAN, linear objective function
- **Message count:** $O(\sqrt{c \cdot n})$
- **Response time:** $O((\log c)^2 + (\log n)^2)$
- **Techniques:**
 - For each hierarchy level: stripes of contacted areas from that level
 - Upper bound number of areas in each stripe using balance factor c
Objective Function Search in P2P Networks

Experimental Results
Experimental Results

- Setting: 1000 Nodes, 100 Data Items, 1000 Requests, 25 runs
- Analyze the balance factor c
- Analyze the influence of different scaling factors:
 - Request angle
 - Number nodes
Balance Factor

Balance factor by number nodes

- **Balance**
 - Balance factor by number nodes

- **4 \cdot \log(n)** reference plot
- **Balance Factors**

Network Creation Processes

- **Objective Function Search in P2P Networks**
- **Introduction**
- **Algorithms**
- **Experimental Results**
- **Further Results & Conclusion**
Influence of Request Angle

Performance of **FINDMAX** by request angle
Scaling of Response Time

Response time by number nodes
Scaling of Message Count / Number Nodes

Message count of FINDMAX by number nodes
Scaling of Message Count / Number Nodes

Message count of \textsc{ParaMax} by number nodes
Objective Function Search in P2P Networks

Further Results & Conclusion
Further Results

- Algorithms can be applied to higher dimensions
 - Bad scaling of worst cases
- Work for convex functions with minor modifications
 - Similar performance in experiments
 - No theoretical results
Conclusion

- Good first approach to function search
- Tree structure leads to balance problems
- Balance factor (of network) does not matter
- Theoretical worst cases on algorithm behavior happen in practice
Outlook

- Observe: Possible results are from convex hull of data items
- Approach: Construct meta structure managing convex hull
Network Creation Processes

Network Creation under Dynamic Communication Interests
Network Creation Games

Classical notion:

- n agents
- A strategy for every agent
- Costs for every agent depending on strategy
- Nash Equilibria
Network Creation Games

Classical notion:
- n agents
- A strategy for every agent
- Costs for every agent depending on strategy
- Nash Equilibria

Recent development:
1. One-shot games with direct equilibria
2. Investigate convergence of processes
3. Our contribution: investigate sequence of processes
Definition

A *network creation process* on a node set V consists of:

1. **Initial undirected graph** G_0

![Diagram of a network creation process with nodes 1, 2, 3, and 4 connected in a specific order. The node 1 is connected to 2 and 4, node 2 is connected to 3, and node 4 is connected to 3. The arrows indicate the direction of the network creation process.**
A network creation process on a node set V consists of:

1. Initial undirected graph G_0
2. Set of undirected friendships F

 $F(v)$ denotes the friends of $v \in V$
A network creation process on a node set V consists of:

1. Initial undirected graph G_0
2. Set of undirected friendships F
 $F(v)$ denotes the friends of $v \in V$
3. Costs of $v \in V$ in G: $c_G(v) = \sum_{u \in F(v)} d_G(u, v)$ or $c_G(v) = \max_{u \in F(v)} d_G(u, v)$
Definition

A network creation process on a node set \(V \) consists of:

1. Initial undirected graph \(G_0 \)
2. Set of undirected friendships \(F \)
 \(F(v) \) denotes the friends of \(v \in V \)
3. Costs of \(v \in V \) in \(G \): \(c_G(v) = \sum_{u \in F(v)} d_G(u, v) \) or \(c_G(v) = \max_{u \in F(v)} d_G(u, v) \)
4. Game operation: How nodes can transform the current graph, e.g., a node can swap position with one of its neighbors
Network Creation Processes

Definition

A network creation process on a node set V consists of:

1. Initial undirected graph G_0
2. Set of undirected friendships F

 $F(v)$ denotes the friends of $v \in V$
3. Costs of $v \in V$ in G: $c_G(v) = \sum_{u \in F(v)} d_G(u, v)$ or $c_G(v) = \max_{u \in F(v)} d_G(u, v)$
4. Game operation: How nodes can transform the current graph, e.g., a node can swap position with one of its neighbors
5. Strategy: Which operations a node is allowed to perform, e.g., a node can perform a swap iff its costs decrease

1 can swap with 2, but not with 4
Network Creation Processes

Definition

A *network creation process* on a node set V consists of:

1. Initial undirected graph G_0
2. Set of undirected friendships F

 $F(v)$ denotes the friends of $v \in V$
3. Costs of $v \in V$ in G: $c_G(v) = \sum_{u \in F(v)} d_G(u, v)$ or $c_G(v) = \max_{u \in F(v)} d_G(u, v)$
4. Game operation: How nodes can transform the current graph, e.g., a node can swap position with one of its neighbors
5. Strategy: Which operations a node is allowed to perform, e.g., a node can perform a swap iff its costs decrease
6. Move policy: Node order to perform operations
Reachable Network Creation Processes

Idea: Communication interests can vary
⇒ Observe influence of simple dynamics
Reachable Network Creation Processes

Idea: Communication interests can vary
⇒ Observe influence of simple dynamics

Definition

A network creation process is \textit{reachable} if it can be built up by

- starting with the empty friendship set, and
- adding exactly one new friendship every time a Nash equilibrium is reached.

reachable

not reachable
Equilibria

Definition

Consider a network creation process.

- A graph is a *Nash equilibrium* (NE) if no node can perform a game operation according to the strategy.

- A graph is an *operation equilibrium* (OE) if
 - it is a Nash equilibrium, and
 - it can be reached from the initial graph according to the game operation.

- A graph is a *process equilibrium* (PE) if
 - it is an operation equilibrium, and
 - it can be reached from the initial graph according to the strategy and the move policy.

G_0: NE, no OE:

OE, no PE:

PE:
Network Creation Processes

Node Swap Processes
Convergence: SNSP

Definition

A network creation process is a *Selfish Node Swap Process (SNSP)* if

- game operation: a node can swap with one of its neighbors
- strategy: a node can perform exactly those swaps that decrease its costs
Convergence: SNSP

Definition

A network creation process is a *Selfish Node Swap Process (SNSP)* if
- game operation: a node can swap with one of its neighbors
- strategy: a node can perform exactly those swaps that decrease its costs

Theorem

For any connected graph $G = (V, E)$ with diameter ≥ 2, there is a reachable SNSP with G as initial graph and the maximum cost function for which no OE exists. This also holds for the average cost function.*
Convergence: WPNSP

Definition

A network creation process is a *Weak Pairwise Node Swap Process (WPNSP)* if

- game operation: a node can swap with one of its neighbors
- strategy: a node can perform exactly those swaps that decrease its own costs and do not increase the costs of the swap partner
Convergence: WPNSP

Definition
A network creation process is a *Weak Pairwise Node Swap Process (WPNSP)* if

- game operation: a node can swap with one of its neighbors
- strategy: a node can perform exactly those swaps that decrease its own costs and do not increase the costs of the swap partner

Definition
A move policy is *improving* if it always chooses one of the nodes that can perform a game operation according to the strategy.
Consider a WPNSP with initial graph G, set of friendships F, the average cost function and an improving move policy. Then it reaches a PE after at most $|F| (\text{diam}(G) - 1)$ steps.
Convergence: WPNSP – AVE

Theorem

Consider a WPNSP with initial graph G, set of friendships F, the average cost function and an improving move policy. Then it reaches a PE after at most $|F|(\text{diam}(G) - 1)$ steps.

Lemma

For every $d \in \mathbb{N}$, $d \geq 3$, there is a reachable WPNSP with initial graph G with diameter $\Theta(d)$, $\Theta(d)$ friendships F, the average cost function and an improving move policy that reaches a PE in $\Theta(|F|(\text{diam}(G) - 1))$ steps.
Convergence: WPNSP – AVE

Lemma

For every $d \in \mathbb{N}, d \geq 3$, there is a reachable WPNSP with initial graph G with diameter $\Theta(d)$, $\Theta(d)$ friendships F, the average cost function and an improving move policy that reaches a PE in $\Theta(|F|\text{diam}(G) - 1)$ steps.
Lemma

There is a reachable WPNSP with the maximum cost function that has no PE even if its move policy is arbitrarily changed.
Convergence: SPNSP

Definition

A network creation process is a *Strong Pairwise Node Swap Process (SPNSP)* if

- game operation: a node can swap with one of its neighbors
- strategy: a node can perform exactly those swaps that decrease its own costs as well as the costs of the swap partner
Convergence: SPNSP

Definition

A network creation process is a *Strong Pairwise Node Swap Process (SPNSP)* if

- game operation: a node can swap with one of its neighbors
- strategy: a node can perform exactly those swaps that decrease its own costs as well as the costs of the swap partner

Theorem

Every SPNSP with the maximum cost function and an improving move policy reaches always a PE.
Overview

<table>
<thead>
<tr>
<th></th>
<th>SNSP</th>
<th>WPNSP</th>
<th>SPNSP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVE</td>
<td>MAX</td>
<td>AVE</td>
</tr>
<tr>
<td>Existence of OE</td>
<td>no</td>
<td>yes</td>
<td>open</td>
</tr>
<tr>
<td>Existence of PE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Always convergence</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Convergence speed</td>
<td>∞</td>
<td>Θ(</td>
<td>F</td>
</tr>
</tbody>
</table>

$V_F := \{ v \in V \mid F(v) \neq \emptyset \}$
Quality of OE

Definition

Consider a network creation process on a node set V. The social costs of a graph G are $sc(G) = \sum_{v \in V} c_G(v)$. A graph G that can be reached from the initial graph according to the game operation is a social optimum if it has lowest social costs among all those graphs. The operational Price of Anarchy (oPoA) is $\max \{ sc(G) | G \text{ OE} \}$ and the operational Price of Stability (oPoS) is $\min \{ sc(G) | G \text{ OE} \}$, where H is a social optimum.
Quality of OE

Definition

Consider a network creation process on a node set V.

- The *social costs* of a graph G are $\text{sc}(G) := \sum_{v \in V} c_G(v)$.

- A graph G that can be reached from the initial graph according to the game operation is a *social optimum* if it has lowest social costs among all those graphs.
Quality of OE

Definition

Consider a network creation process on a node set V.

- The *social costs* of a graph G are $sc(G) := \sum_{v \in V} c_G(v)$.

- A graph G that can be reached from the initial graph according to the game operation is a *social optimum* if it has lowest social costs among all those graphs.

- The *operational Price of Anarchy (oPoA)* is

$$\frac{\max \{ sc(G) \mid G \text{ OE} \} }{ sc(H) },$$

and the *operational Price of Stability (oPoS)* is

$$\frac{\min \{ sc(G) \mid G \text{ OE} \} }{ sc(H) },$$

where H is a social optimum.
Overview

<table>
<thead>
<tr>
<th></th>
<th>SNSP</th>
<th>WPNSP</th>
<th>SPNSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE</td>
<td>no</td>
<td>yes</td>
<td>open</td>
</tr>
<tr>
<td>MAX</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Existence of OE</td>
<td>no</td>
<td>yes</td>
<td>open</td>
</tr>
<tr>
<td>Existence of PE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Always convergence</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Convergence speed</td>
<td>∞</td>
<td>$\Theta(</td>
<td>F</td>
</tr>
<tr>
<td>oPoA</td>
<td>$\Theta(\text{diam}(G))$</td>
<td>$\Theta(\text{diam}(G))$</td>
<td>$\Theta(\text{diam}(G))$</td>
</tr>
<tr>
<td>oPoS</td>
<td>$\Theta(\text{diam}(G))$</td>
<td>1</td>
<td>$\Theta(\text{diam}(G))$</td>
</tr>
</tbody>
</table>
Quality of OE: oPoA for WPNSPs

Theorem

1. Consider a WPNSP with initial graph G, a non-empty friendship set and the maximum or average cost function that has some OE. Then, $oPoA \leq \text{diam}(G)$.
Quality of OE: oPoA for WPNSPs

Theorem

1. Consider a WPNSP with initial graph G, a non-empty friendship set and the maximum or average cost function that has some OE. Then, $oPoA \leq \text{diam}(G)$.

2. For every $d \in \mathbb{N}$, $d \geq 4$, there is a reachable WPNSP with the average cost function and an initial graph with diameter $\Theta(d)$ such that $oPoA = \Theta(\text{diam}(G))$. This also holds for the maximum cost function.
Layered Graphs

Layers are cliques and the edges between neighboring layers build a perfect matching or a complete bipartite graph.
Overview

<table>
<thead>
<tr>
<th></th>
<th>SNSP</th>
<th></th>
<th>WPNSP</th>
<th></th>
<th>SPNSP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVE</td>
<td>MAX</td>
<td>AVE</td>
<td>MAX</td>
<td>AVE</td>
<td>MAX</td>
</tr>
<tr>
<td>Existence of OE</td>
<td>no</td>
<td></td>
<td>yes</td>
<td></td>
<td>open</td>
<td></td>
</tr>
<tr>
<td>Existence of PE</td>
<td>no</td>
<td></td>
<td>yes</td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Always convergence</td>
<td>no</td>
<td></td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Convergence speed</td>
<td>∞</td>
<td></td>
<td>∞</td>
<td></td>
<td>Θ(</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oPoA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General graphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layered graphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oPoS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NP-completeness

Definition

An OE G is *optimal* if $sc(G) = \min\{sc(H) \mid H \text{ OE}\}$.

Theorem

The problem of finding an optimal OE for a SNSP, WPNSP or SPNSP with the maximum or the average cost function is NP-complete. This also holds for the problem of finding a social optimum.
NP-completeness

Definition

An OE G is optimal if $sc(G) = \min\{sc(H) \mid H \text{ OE}\}$.

Theorem

The problem of finding an optimal OE for a SNSP, WPNSP or SPNSP with the maximum or the average cost function is NP-complete. This also holds for the problem of finding a social optimum.

- Reduction uses clique problem.
- There is a solutions where all friendships have distance 1 iff friendship graph is isomorphic to a subgraph of the initial graph.
 \Rightarrow Node swap processes are game theoretical version of subgraph problems.
Network Creation Processes

Shortcut Process
Definition

Consider a network creation process. A *shortcut* of node v is an undirected edge containing v that is not contained in the initial graph and that is owned by v.
Definition

Consider a network creation process. A \textit{shortcut} of node v is an undirected edge containing v that is not contained in the initial graph and that is owned by v.

Definition

A network creation process is a \textit{Shortcut Process (SCP)} if

- game operation: a node can choose a (new) shortcut
- strategy: a node can choose exactly those shortcuts that decrease its costs
Theoretical Results

Lemma

Consider an SCP, an initial graph with diameter 2 which is an OE and the maximum or average cost function. After starting a new process with an improving move policy by adding a new friendship, this process reaches a PE after at most 1 step.
Theoretical Results

Lemma

Consider an SCP, an initial graph with diameter 2 which is an OE and the maximum or average cost function. After starting a new process with an improving move policy by adding a new friendship, this process reaches a PE after at most 1 step.

Theorem

The problem of finding an optimal OE for an SCP is NP-complete for both the average and the maximum cost function.
Theoretical Results

Lemma

Consider an SCP, an initial graph with diameter 2 which is an OE and the maximum or average cost function. After starting a new process with an improving move policy by adding a new friendship, this process reaches a PE after at most 1 step.

Theorem

The problem of finding an optimal OE for an SCP is NP-complete for both the average and the maximum cost function.

Lemma

There is an algorithm that approximates social optima with factor < 2 for SCPs with the average cost function. This also holds for the maximum cost function.
Simulations

Instance: Sequence of SCPs with
- circle as initial graph,
- a new friendship every time a PE is reached,
- the empty friendship graph in the first SCP until the complete friendship graph in the last SCP,
- the strategy restricted such that every node has to perform a best move,
- cyclic move policy
Simulations

Instance: Sequence of SCPs with
- circle as initial graph,
- a new friendship every time a PE is reached,
- the empty friendship graph in the first SCP until the complete friendship graph in the last SCP,
- the strategy restricted such that every node has to perform a best move,
- cyclic move policy

Outcome: In every simulated sequence
- all processes reached a PE,
- a huge star was created,
- the social costs of every PE was at most 4 times the social costs of a social optimum.
Network Creation Processes

Open Problems
Open Problems

- Fill out Node Swap Table using only reachable examples.
- Proof analog results for SCPs.
- Find characterizations of initial graph or friendship set that imply better convergence behavior or better quality of equilibria (cf., layered graphs).
- Consider more complex dynamics of friendships (e.g., deletion).
- Examine dynamic friendships in other network creation games.