# Project Group "DynaSearch" Intermediate Report: Results and Plans



## Table of Contents







# Introduction

# Project Group



## Our Work in the CRC 901

Big software from small pieces – Search for pieces that

- Maximize some objective function or
- Fulfill certain properties
- Ommunicating entities with varying interests
  - Adapt network to these interests

## Network Creation Games

## Scenario



• Node  $v \in V$  has friends  $\mathcal{F}(v) \subseteq V$ 



- Node  $v \in V$  has friends  $\mathcal{F}(v) \subseteq V$
- Node v ∈ V maintains edges to selfishly chosen neighbors N(v) ⊆ V
- Costs per maintained edge:  $\alpha \in \mathbb{R}$
- $v \in V$  minimizes costs:  $\sum_{u \in \mathcal{F}(v)} d(u, v) + \alpha |N(v)|$



- Node  $v \in V$  has friends  $\mathcal{F}(v) \subseteq V$
- Node v ∈ V maintains edges to selfishly chosen neighbors N(v) ⊆ V
- Costs per maintained edge:  $\alpha \in \mathbb{R}$
- $v \in V$  minimizes costs:  $\sum_{u \in \mathcal{F}(v)} d(u, v) + \alpha |N(v)|$



- Node  $v \in V$  has friends  $\mathcal{F}(v) \subseteq V$
- Node v ∈ V maintains edges to selfishly chosen neighbors N(v) ⊆ V
- Costs per maintained edge:  $\alpha \in \mathbb{R}$
- $v \in V$  minimizes costs:  $\sum_{u \in \mathcal{F}(v)} d(u, v) + \alpha |\mathcal{N}(v)|$



- Node  $v \in V$  has friends  $\mathcal{F}(v) \subseteq V$
- Node v ∈ V maintains edges to selfishly chosen neighbors N(v) ⊆ V
- Costs per maintained edge:  $\alpha \in \mathbb{R}$
- $v \in V$  minimizes costs:  $\sum_{u \in \mathcal{F}(v)} d(u, v) + \alpha |N(v)|$

Scenario Research Focus

## Definition (Nash equlibrium)

A state in which no node can improve its costs by choosing other neighbors.

- Focus of past work:
  - What do Nash equilibria look like?
  - How good are Nash equilibria compared to a global optimum?
- Our main focus: Under which circumstances are Nash equilibria reached?

## Current Progress Start Problem



• Nodes on static ring topology



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can maintain up to 1 additional edge (without costs)
- $v \in V$  minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can maintain up to 1 additional edge (without costs)
- $v \in V$  minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can maintain up to 1 additional edge (without costs)
- $v \in V$  minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can maintain up to 1 additional edge (without costs)
- $v \in V$  minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can maintain up to 1 additional edge (without costs)

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can maintain up to 1 additional edge (without costs)

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 

## Current Progress Simulator

#### PeerfactSim.KOM

A simulation framework for large scale peer-to-peer systems.

#### Extended by:

- Network creation games
- Content adressable network (CAN)

# Current Progress



#### Current Progress Simulator



# Current Progress



#### Current Progress Simulator



# Current Progress



#### Current Progress Simulator



#### Current Progress Simulator



# Current Progress



Network Creation Games Range and Search Queries

#### Current Progress Simulator



# Current Progress



Network Creation Games Range and Search Queries

#### Current Progress Simulator



# Current Progress


# Current Progress





































- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 



- Nodes on static ring topology
- No initial friendships, friends get externally added whenever an equilibrium is reached
- Nodes can swap position with a neighbor

• 
$$v \in V$$
 minimizes  $\max_{u \in \mathcal{F}(v)} d(u, v)$ 

# Future Plans

- Approach the start problem
  - Find more easy models and results
  - Generalize techniques
- Identify further reasonable models
  - Consider bandwidths / costs
  - Local view of nodes
- Compare adapting to non-adapting overlays

# Range and Search Queries

# Scenario



• Data items are associated with coordinates in [0, 1]<sup>d</sup>. Tasks:

- Find all data items in the given range  $\mathcal{R} \subseteq [0,1]^d$  or
- Find a data item  $x^* \in [0,1]^d$  maximizing  $f : [0,1]^d \to \mathbb{R}$ .

Introduction Range and Search Queries



Range and Search Queries



Range and Search Queries



Range and Search Queries


Range and Search Queries

### **Current Progress** Simulator



Range and Search Queries

### **Current Progress** Simulator



Range and Search Queries

### **Current Progress** Simulator



## **Current Progress**

- Algorithm for objective function scenario
- Assumptions:
  - $n=2^{2k}$  nodes,  $k\in\mathbb{N}$
  - Nodes uniformly distributed
  - Areas of equal size
  - Linear function  $f: \mathbb{R}^2 \to \mathbb{R}$ , non-negative coefficients
- Result: Message complexity  $\mathcal{O}(\sqrt{n})$  with overhead  $\mathcal{O}(1)$  per node

Introduction Network Creation Games Range and Search Queries

# Next Steps

- Extensions to non-uniform areas, negative coefficients
- Analyze and reduce message size
- Improve routing time
- Looking for more powerful metastructures

Introduction Network Creation Games Range and Search Queries

## Future Plans

- Objective function search extensions
  - More dimensions
  - Broader classes of functions (e.g. convex functions)
- Range queries
  - Start our research

Introduction Network Creation Games Range and Search Queries

### Thank you for your attention.