
Random Graphs and their Use in Peer-to-Peer Networks

Kathlén Kohn

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn

November 28, 2013

1 / 28

Table of Contents

Graph Transformations
Definitions
Requirements
First Examples

Pointer-Push&Pull
Unlabeled Digraphs
Edge Labeled Digraphs

Simple Graphs

Peer-to-Peer Networks
Implementation of Pointer-Push&Pull
Advantage of Pointer-Push&Pull
Example: 3nuts

2 / 28

Graph Transformations
Definitions

Definition (Simple Digraph)

A simple digraph G = (V ,E) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges
E ⊆ {(u, v) | u, v ∈ V , u 6= v}.

Definition (Multi-Digraph)

A multi-digraph G = (V ,E ,#) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges E = {(u, v) | u, v ∈ V }
with multiplicities given by # : E → N0.

3 / 28

Graph Transformations
Definitions

Definition (Simple Digraph)

A simple digraph G = (V ,E) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges
E ⊆ {(u, v) | u, v ∈ V , u 6= v}.

Definition (Multi-Digraph)

A multi-digraph G = (V ,E ,#) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges E = {(u, v) | u, v ∈ V }
with multiplicities given by # : E → N0.

3 / 28

Graph Transformations
Definitions

Definition (Simple Digraph)

A simple digraph G = (V ,E) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges
E ⊆ {(u, v) | u, v ∈ V , u 6= v}.

Definition (Multi-Digraph)

A multi-digraph G = (V ,E ,#) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges E = {(u, v) | u, v ∈ V }
with multiplicities given by # : E → N0.

3 / 28

Graph Transformations
Definitions

Definition (Simple Digraph)

A simple digraph G = (V ,E) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges
E ⊆ {(u, v) | u, v ∈ V , u 6= v}.

Definition (Multi-Digraph)

A multi-digraph G = (V ,E ,#) is defined by a node set
V = {v1, . . . , vn} and a set of directed edges E = {(u, v) | u, v ∈ V }
with multiplicities given by # : E → N0.

3 / 28

Graph Transformations
Definitions

Definition (Graph Transformation)

Let G ⊆ {G | G is a multi-digraph with n nodes}. A graph
transformation is a random transition τ : G G such that

∀G ∈ G :
∑
G ′∈G

Pr
(
τ(G) = G ′

)
= 1.

If |G| <∞, τ defines a Markov chain, where the set of states is G and
the transition matrix is T ∈ R|G|×|G| with tG ,G ′ = Pr (τ(G) = G ′).

4 / 28

Graph Transformations
Definitions

Definition (Graph Transformation)

Let G ⊆ {G | G is a multi-digraph with n nodes}. A graph
transformation is a random transition τ : G G such that

∀G ∈ G :
∑
G ′∈G

Pr
(
τ(G) = G ′

)
= 1.

If |G| <∞, τ defines a Markov chain, where the set of states is G and
the transition matrix is T ∈ R|G|×|G| with tG ,G ′ = Pr (τ(G) = G ′).

4 / 28

Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer
networks:

� Soundness: ∀G ∈ G : τ(G) ∈ G
� Generality: ∀G ,G ′ ∈ G : lim

k→∞
Pr
(
τk(G) = G ′

)
> 0

� Uniform generality: ∀G ,G ′ ∈ G : lim
k→∞

Pr
(
τk(G) = G ′

)
= 1
|G|

� Feasibility: τ can be described by a simple routine with a
straightforward implementation in a distributed maintained
network.

� Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.

5 / 28

Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer
networks:

� Soundness: ∀G ∈ G : τ(G) ∈ G

� Generality: ∀G ,G ′ ∈ G : lim
k→∞

Pr
(
τk(G) = G ′

)
> 0

� Uniform generality: ∀G ,G ′ ∈ G : lim
k→∞

Pr
(
τk(G) = G ′

)
= 1
|G|

� Feasibility: τ can be described by a simple routine with a
straightforward implementation in a distributed maintained
network.

� Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.

5 / 28

Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer
networks:

� Soundness: ∀G ∈ G : τ(G) ∈ G
� Generality: ∀G ,G ′ ∈ G : lim

k→∞
Pr
(
τk(G) = G ′

)
> 0

� Uniform generality: ∀G ,G ′ ∈ G : lim
k→∞

Pr
(
τk(G) = G ′

)
= 1
|G|

� Feasibility: τ can be described by a simple routine with a
straightforward implementation in a distributed maintained
network.

� Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.

5 / 28

Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer
networks:

� Soundness: ∀G ∈ G : τ(G) ∈ G
� Generality: ∀G ,G ′ ∈ G : lim

k→∞
Pr
(
τk(G) = G ′

)
> 0

� Uniform generality: ∀G ,G ′ ∈ G : lim
k→∞

Pr
(
τk(G) = G ′

)
= 1
|G|

� Feasibility: τ can be described by a simple routine with a
straightforward implementation in a distributed maintained
network.

� Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.

5 / 28

Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer
networks:

� Soundness: ∀G ∈ G : τ(G) ∈ G
� Generality: ∀G ,G ′ ∈ G : lim

k→∞
Pr
(
τk(G) = G ′

)
> 0

� Uniform generality: ∀G ,G ′ ∈ G : lim
k→∞

Pr
(
τk(G) = G ′

)
= 1
|G|

� Feasibility: τ can be described by a simple routine with a
straightforward implementation in a distributed maintained
network.

� Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.

5 / 28

Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer
networks:

� Soundness: ∀G ∈ G : τ(G) ∈ G
� Generality: ∀G ,G ′ ∈ G : lim

k→∞
Pr
(
τk(G) = G ′

)
> 0

� Uniform generality: ∀G ,G ′ ∈ G : lim
k→∞

Pr
(
τk(G) = G ′

)
= 1
|G|

� Feasibility: τ can be described by a simple routine with a
straightforward implementation in a distributed maintained
network.

� Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.

5 / 28

Graph Transformations
First Examples

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

G = (V ,E ,#) is d-out-regular ⇔ ∀u ∈ V :
∑
v∈V

((u, v)) = d

Pointer-Push:

� is sound

� is feasible

� is not general

6 / 28

Graph Transformations
First Examples

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

G = (V ,E ,#) is d-out-regular ⇔ ∀u ∈ V :
∑
v∈V

((u, v)) = d

Pointer-Push:

� is sound

� is feasible

� is not general

6 / 28

Graph Transformations
First Examples

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

G = (V ,E ,#) is d-out-regular ⇔ ∀u ∈ V :
∑
v∈V

((u, v)) = d

Pointer-Push:

� is sound

� is feasible

� is not general

6 / 28

Graph Transformations
First Examples

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

G = (V ,E ,#) is d-out-regular ⇔ ∀u ∈ V :
∑
v∈V

((u, v)) = d

Pointer-Push:

� is sound

� is feasible

� is not general

6 / 28

Graph Transformations
First Examples

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

G = (V ,E ,#) is d-out-regular ⇔ ∀u ∈ V :
∑
v∈V

((u, v)) = d

Pointer-Pull:

� is not sound

7 / 28

Graph Transformations
First Examples

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

G = (V ,E ,#) is d-out-regular ⇔ ∀u ∈ V :
∑
v∈V

((u, v)) = d

Pointer-Pull:

� is not sound

7 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Pointer-Push&Pull:

8 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Pointer-Push&Pull:

8 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Pointer-Push&Pull:

8 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Pointer-Push&Pull:

8 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Pointer-Push&Pull:

� is sound

� is feasible

� is general

� is uniform general

9 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Pointer-Push&Pull:

� is sound

� is feasible

� is general

� is uniform general

9 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let G = (V ,E ,#), u ∈ V . N+(u) := {v ∈ V | # ((u, v)) > 0}.

Algorithm 1 Unlabeled Pointer-Push&Pull: τu : Gu Gu
1: v1

R← V
2: if random event with probability |N

+(v1)|
d occurs then

3: v2
R← N+(v1)

4: if random event with probability |N
+(v2)|
d occurs then

5: v3
R← N+(v2)

6: # ((v1, v2)) := # ((v1, v2))− 1
7: # ((v2, v3)) := # ((v2, v3))− 1
8: # ((v2, v1)) := # ((v2, v1)) + 1
9: # ((v1, v3)) := # ((v1, v3)) + 1

10 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let G = (V ,E ,#), u ∈ V . N+(u) := {v ∈ V | # ((u, v)) > 0}.

Algorithm 2 Unlabeled Pointer-Push&Pull: τu : Gu Gu
1: v1

R← V
2: if random event with probability |N

+(v1)|
d occurs then

3: v2
R← N+(v1)

4: if random event with probability |N
+(v2)|
d occurs then

5: v3
R← N+(v2)

6: # ((v1, v2)) := # ((v1, v2))− 1
7: # ((v2, v3)) := # ((v2, v3))− 1
8: # ((v2, v1)) := # ((v2, v1)) + 1
9: # ((v1, v3)) := # ((v1, v3)) + 1

10 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
∀G ,G ′ ∈ Gu : Pr (τu(G) = G ′) = Pr (τu(G ′) = G).

Proof.
Suppose G ′ is reached from G using the path (vi , vj , vk).
⇒ G can be reached from G ′ exactly with (vj , vi , vk).
⇒ Pr (τu(G) = G ′) = 1

n ·
1
d ·

1
d = Pr (τu(G ′) = G)

11 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
∀G ,G ′ ∈ Gu : Pr (τu(G) = G ′) = Pr (τu(G ′) = G).

Proof.
Suppose G ′ is reached from G using the path (vi , vj , vk).
⇒ G can be reached from G ′ exactly with (vj , vi , vk).
⇒ Pr (τu(G) = G ′) = 1

n ·
1
d ·

1
d = Pr (τu(G ′) = G)

11 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
∀G ,G ′ ∈ Gu : Pr (τu(G) = G ′) = Pr (τu(G ′) = G).

Proof.
Suppose G ′ is reached from G using the path (vi , vj , vk).

⇒ G can be reached from G ′ exactly with (vj , vi , vk).
⇒ Pr (τu(G) = G ′) = 1

n ·
1
d ·

1
d = Pr (τu(G ′) = G)

11 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
∀G ,G ′ ∈ Gu : Pr (τu(G) = G ′) = Pr (τu(G ′) = G).

Proof.
Suppose G ′ is reached from G using the path (vi , vj , vk).
⇒ G can be reached from G ′ exactly with (vj , vi , vk).

⇒ Pr (τu(G) = G ′) = 1
n ·

1
d ·

1
d = Pr (τu(G ′) = G)

11 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
∀G ,G ′ ∈ Gu : Pr (τu(G) = G ′) = Pr (τu(G ′) = G).

Proof.
Suppose G ′ is reached from G using the path (vi , vj , vk).
⇒ G can be reached from G ′ exactly with (vj , vi , vk).
⇒ Pr (τu(G) = G ′) = 1

n ·
1
d ·

1
d = Pr (τu(G ′) = G)

11 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
Let G ,G ′ ∈ Gu. G ′ can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V ,E ,#) with V = {v1, . . . , vn}.
Define Gc := (V ,E ,#c) with:

∀u ∈ V : #c ((u, v1)) = d ,

∀u ∈ V , v ∈ V \ {v1} : #c ((u, v)) = 0.

⇒ To show: Gc can be reached from G with at most 5nd
Pointer-Push&Pull operations.

12 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
Let G ,G ′ ∈ Gu. G ′ can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V ,E ,#) with V = {v1, . . . , vn}.

Define Gc := (V ,E ,#c) with:

∀u ∈ V : #c ((u, v1)) = d ,

∀u ∈ V , v ∈ V \ {v1} : #c ((u, v)) = 0.

⇒ To show: Gc can be reached from G with at most 5nd
Pointer-Push&Pull operations.

12 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
Let G ,G ′ ∈ Gu. G ′ can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V ,E ,#) with V = {v1, . . . , vn}.
Define Gc := (V ,E ,#c) with:

∀u ∈ V : #c ((u, v1)) = d ,

∀u ∈ V , v ∈ V \ {v1} : #c ((u, v)) = 0.

⇒ To show: Gc can be reached from G with at most 5nd
Pointer-Push&Pull operations.

12 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Lemma
Let G ,G ′ ∈ Gu. G ′ can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V ,E ,#) with V = {v1, . . . , vn}.
Define Gc := (V ,E ,#c) with:

∀u ∈ V : #c ((u, v1)) = d ,

∀u ∈ V , v ∈ V \ {v1} : #c ((u, v)) = 0.

⇒ To show: Gc can be reached from G with at most 5nd
Pointer-Push&Pull operations.

12 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 1: ∃j ∈ {2, . . . , n} : # ((v1, vj)) > 0

Case 1.1: j 6= k 6= 1 Case 1.2: Case 1.3:

13 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 1: ∃j ∈ {2, . . . , n} : # ((v1, vj)) > 0

Case 1.1: j 6= k 6= 1

Case 1.2: Case 1.3:

13 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 1: ∃j ∈ {2, . . . , n} : # ((v1, vj)) > 0

Case 1.1: j 6= k 6= 1 Case 1.2:

Case 1.3:

13 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 1: ∃j ∈ {2, . . . , n} : # ((v1, vj)) > 0

Case 1.1: j 6= k 6= 1 Case 1.2: Case 1.3:

13 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0

Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Case 2: # ((v1, v1)) = d ,∀j ∈ {2, . . . , n} : # ((v1, vj)) = 0
Case 2.1:
1 6= j 6= k 6= 1

Case 2.2:
1 6= j 6= k 6= 1 6= l 6= j

Case 2.3:
1 6= j

14 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τku (G) = G ′

)
= 1
|Gu |

Proof.
Follows from properties of corresponding Markov chain with transition
matrix T :

� T is symmetric

⇒
(

1
|Gu | , . . . ,

1
|Gu |

)
T =

(
1
|Gu | , . . . ,

1
|Gu |

)
is stationary distribution

� Markov chain is irreducible

� T has some non-zero diagonal entries
⇒ Markov chain is aperiodic

15 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τku (G) = G ′

)
= 1
|Gu |

Proof.
Follows from properties of corresponding Markov chain with transition
matrix T :

� T is symmetric

⇒
(

1
|Gu | , . . . ,

1
|Gu |

)
T =

(
1
|Gu | , . . . ,

1
|Gu |

)
is stationary distribution

� Markov chain is irreducible

� T has some non-zero diagonal entries
⇒ Markov chain is aperiodic

15 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τku (G) = G ′

)
= 1
|Gu |

Proof.
Follows from properties of corresponding Markov chain with transition
matrix T :

� T is symmetric

⇒
(

1
|Gu | , . . . ,

1
|Gu |

)
T =

(
1
|Gu | , . . . ,

1
|Gu |

)
is stationary distribution

� Markov chain is irreducible

� T has some non-zero diagonal entries
⇒ Markov chain is aperiodic

15 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τku (G) = G ′

)
= 1
|Gu |

Proof.
Follows from properties of corresponding Markov chain with transition
matrix T :

� T is symmetric

⇒
(

1
|Gu | , . . . ,

1
|Gu |

)
T =

(
1
|Gu | , . . . ,

1
|Gu |

)
is stationary distribution

� Markov chain is irreducible

� T has some non-zero diagonal entries
⇒ Markov chain is aperiodic

15 / 28

Pointer-Push&Pull
Unlabeled Digraphs

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τku (G) = G ′

)
= 1
|Gu |

Proof.
Follows from properties of corresponding Markov chain with transition
matrix T :

� T is symmetric

⇒
(

1
|Gu | , . . . ,

1
|Gu |

)
T =

(
1
|Gu | , . . . ,

1
|Gu |

)
is stationary distribution

� Markov chain is irreducible

� T has some non-zero diagonal entries
⇒ Markov chain is aperiodic

15 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph G = (V ,E) is defined by
a node set V = {v1, . . . , vn} and a set of directed edges
E ⊆ {(u, v , i) | u, v ∈ V , i ∈ {1, . . . , d}} with:

∀u ∈ V ∀i ∈ {1, . . . , d} ∃!N+(u, i) ∈ V : (u,N+(u, i), i) ∈ E .

16 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph G = (V ,E) is defined by
a node set V = {v1, . . . , vn} and a set of directed edges
E ⊆ {(u, v , i) | u, v ∈ V , i ∈ {1, . . . , d}} with:

∀u ∈ V ∀i ∈ {1, . . . , d} ∃!N+(u, i) ∈ V : (u,N+(u, i), i) ∈ E .

16 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph G = (V ,E) is defined by
a node set V = {v1, . . . , vn} and a set of directed edges
E ⊆ {(u, v , i) | u, v ∈ V , i ∈ {1, . . . , d}} with:

∀u ∈ V ∀i ∈ {1, . . . , d} ∃!N+(u, i) ∈ V : (u,N+(u, i), i) ∈ E .

16 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.

G [G]

⇒ The lower the number of multi-edges in G , the larger is | [G] |.

17 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.

G [G]

⇒ The lower the number of multi-edges in G , the larger is | [G] |.

17 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.

G [G]

⇒ The lower the number of multi-edges in G , the larger is | [G] |.
17 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Let Gl :=

{
G

∣∣∣∣ G is an edge labeled weakly-connected
d-out-regular multi-digraph with n nodes

}
.

Algorithm 3 Labeled Pointer-Push&Pull: τl : Gl Gl
1: v1

R← V
2: i

R← {1, . . . , d}
3: v2 := N+(v1, i)

4: j
R← {1, . . . , d}

5: v3 := N+(v2, j)
6: E := (E \ {(v1, v2, i), (v2, v3, j)}) ∪ {(v2, v1, j), (v1, v3, i)}

18 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Let Gl :=

{
G

∣∣∣∣ G is an edge labeled weakly-connected
d-out-regular multi-digraph with n nodes

}
.

Algorithm 4 Labeled Pointer-Push&Pull: τl : Gl Gl
1: v1

R← V
2: i

R← {1, . . . , d}
3: v2 := N+(v1, i)

4: j
R← {1, . . . , d}

5: v3 := N+(v2, j)
6: E := (E \ {(v1, v2, i), (v2, v3, j)}) ∪ {(v2, v1, j), (v1, v3, i)}

18 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Let Gl :=

{
G

∣∣∣∣ G is an edge labeled weakly-connected
d-out-regular multi-digraph with n nodes

}
.

As before: τl is

� sound

� feasible

� general

� uniform general

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τkl (G) = G ′

)
= |[G ′]|
|Gl | .

⇒ A particular simple digraph is more probable than a particular
multi-digraph.

19 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Let Gl :=

{
G

∣∣∣∣ G is an edge labeled weakly-connected
d-out-regular multi-digraph with n nodes

}
.

As before: τl is

� sound

� feasible

� general

� uniform general

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τkl (G) = G ′

)
= |[G ′]|
|Gl | .

⇒ A particular simple digraph is more probable than a particular
multi-digraph.

19 / 28

Pointer-Push&Pull
Edge Labeled Digraphs

Let Gl :=

{
G

∣∣∣∣ G is an edge labeled weakly-connected
d-out-regular multi-digraph with n nodes

}
.

As before: τl is

� sound

� feasible

� general

� uniform general

Let Gu :=

{
G

∣∣∣∣ G is a weakly-connected d-out-regular
multi-digraph with n nodes

}
.

Theorem
∀G ,G ′ ∈ Gu : lim

k→∞
Pr
(
τkl (G) = G ′

)
= |[G ′]|
|Gl | .

⇒ A particular simple digraph is more probable than a particular
multi-digraph.

19 / 28

Simple Graphs

Pointer-Push&Pull cannot be restricted to
simple graphs:

20 / 28

Simple Graphs
Pointer-Push&Pull cannot be restricted to
simple graphs:

20 / 28

Simple Graphs

Let Gs :=

{
G

∣∣∣∣ G is an undirected connected d-regular
simple graph with n nodes

}
.

1-Flipper:

� is sound

� is feasible

� is general

� is uniform general

� Four peers have to participate actively

� Digraphs are sufficient in practice

21 / 28

Simple Graphs

Let Gs :=

{
G

∣∣∣∣ G is an undirected connected d-regular
simple graph with n nodes

}
.

1-Flipper:

� is sound

� is feasible

� is general

� is uniform general

� Four peers have to participate actively

� Digraphs are sufficient in practice

21 / 28

Simple Graphs

Let Gs :=

{
G

∣∣∣∣ G is an undirected connected d-regular
simple graph with n nodes

}
.

1-Flipper:

� is sound

� is feasible

� is general

� is uniform general

� Four peers have to participate actively

� Digraphs are sufficient in practice

21 / 28

Simple Graphs

Let Gs :=

{
G

∣∣∣∣ G is an undirected connected d-regular
simple graph with n nodes

}
.

1-Flipper:

� is sound

� is feasible

� is general

� is uniform general

� Four peers have to participate actively

� Digraphs are sufficient in practice

21 / 28

Peer-to-Peer Networks
Implementation of Pointer-Push&Pull

1. v1 requests a random neighbor from v2

2. v2 replaces v3 by v1 in neighborhood list and sends ID of v3 to v1

3. v1 receives ID of v3 from v2 and replaces v2 by v3 in neighborhood
list

⇒ only two network operations
⇒ no additional overhead to periodical neighborhood verification

22 / 28

Peer-to-Peer Networks
Implementation of Pointer-Push&Pull

1. v1 requests a random neighbor from v2

2. v2 replaces v3 by v1 in neighborhood list and sends ID of v3 to v1

3. v1 receives ID of v3 from v2 and replaces v2 by v3 in neighborhood
list

⇒ only two network operations
⇒ no additional overhead to periodical neighborhood verification

22 / 28

Peer-to-Peer Networks
Implementation of Pointer-Push&Pull

1. v1 requests a random neighbor from v2

2. v2 replaces v3 by v1 in neighborhood list and sends ID of v3 to v1

3. v1 receives ID of v3 from v2 and replaces v2 by v3 in neighborhood
list

⇒ only two network operations
⇒ no additional overhead to periodical neighborhood verification

22 / 28

Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs
with

� constant and small out-degree

� logarithmic diameter

� high connectivity

Open Problems:
� Convergence rate

� O(n log n) supposed
� Simulations indicate quick convergence

� Similar operation for simple digraphs

23 / 28

Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs
with

� constant and small out-degree

� logarithmic diameter

� high connectivity

Open Problems:
� Convergence rate

� O(n log n) supposed
� Simulations indicate quick convergence

� Similar operation for simple digraphs

23 / 28

Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs
with

� constant and small out-degree

� logarithmic diameter

� high connectivity

Open Problems:
� Convergence rate

� O(n log n) supposed
� Simulations indicate quick convergence

� Similar operation for simple digraphs

23 / 28

Peer-to-Peer Networks
Example: 3nuts

Data tree:
Prefix tree of
data identities

24 / 28

Peer-to-Peer Networks
Example: 3nuts

Data tree:
Prefix tree of
data identities

24 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Network tree:

For each random net-
work a peer has to save:

� random neighbors

� branch links to
each child
� random branch links
� local branch links

� responsible peers

25 / 28

Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:

� maintain truly random networks
⇒ robustness

� spread information among peers, e.g. tree structure, weights

� update random branch links and guarantee them to be truly
random

� measure round trip times and find good local branch links

26 / 28

Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:

� maintain truly random networks
⇒ robustness

� spread information among peers, e.g. tree structure, weights

� update random branch links and guarantee them to be truly
random

� measure round trip times and find good local branch links

26 / 28

Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:

� maintain truly random networks
⇒ robustness

� spread information among peers, e.g. tree structure, weights

� update random branch links and guarantee them to be truly
random

� measure round trip times and find good local branch links

26 / 28

Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:

� maintain truly random networks
⇒ robustness

� spread information among peers, e.g. tree structure, weights

� update random branch links and guarantee them to be truly
random

� measure round trip times and find good local branch links

26 / 28

Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:

� maintain truly random networks
⇒ robustness

� spread information among peers, e.g. tree structure, weights

� update random branch links and guarantee them to be truly
random

� measure round trip times and find good local branch links

26 / 28

Peer-to-Peer Networks
Example: 3nuts

Routing:

27 / 28

Peer-to-Peer Networks
Example: 3nuts

Routing:

27 / 28

Peer-to-Peer Networks
Example: 3nuts

Routing:

27 / 28

Peer-to-Peer Networks
Example: 3nuts

Routing:

27 / 28

Peer-to-Peer Networks
Example: 3nuts

Routing:

� Use random branch links
⇒ Number of hops in 3nuts with n peers is in O(log n) with high

probability

� Use local branch links
⇒ Experimental evaluation shows that this can benefit routing

28 / 28

	Graph Transformations
	Definitions
	Requirements
	First Examples

	Pointer-Push&Pull
	Unlabeled Digraphs
	Edge Labeled Digraphs

	Simple Graphs
	Peer-to-Peer Networks
	Implementation of Pointer-Push&Pull
	Advantage of Pointer-Push&Pull
	Example: 3nuts

