Random Graphs and their Use in Peer-to-Peer Networks

Kathlén Kohn

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn

November 28, 2013

1/28

Table of Contents

Graph Transformations
Definitions
Requirements
First Examples

Pointer-Push&Pull
Unlabeled Digraphs
Edge Labeled Digraphs

Simple Graphs

Peer-to-Peer Networks
Implementation of Pointer-Push&Pull
Advantage of Pointer-Push&Pull
Example: 3nuts

2/28
L

Graph Transformations

Definitions

3/28

Graph Transformations

Definitions

Definition (Simple Digraph)

A simple digraph G = (V/, E) is defined by a node set

V ={vi,...,vs} and a set of directed edges
EC{(uv) uveV,utvh

3/28

Graph Transformations

Definitions

Definition (Simple Digraph)

A simple digraph G = (V/, E) is defined by a node set
V ={vi,...,vs} and a set of directed edges
EC{(uv)|uveV,utvh

Definition (Multi-Digraph)

A multi-digraph G = (V, E, #) is defined by a node set

V ={wvi,...,vs} and a set of directed edges E = {(u,v) | u,v € V}
with multiplicities given by # : E — Np.

Graph Transformations

Definitions

Definition (Simple Digraph)

A simple digraph G = (V/, E) is defined by a node set
V ={vi,...,vs} and a set of directed edges
EC{(uv) uveV,utvh

Definition (Multi-Digraph)

A multi-digraph G = (V, E, #) is defined by a node set

V ={wvi,...,vs} and a set of directed edges E = {(u,v) | u,v € V}
with multiplicities given by # : E — Np.

Graph Transformations

Definitions

Definition (Graph Transformation)

Let G C {G | G is a multi-digraph with n nodes}. A graph
transformation is a random transition 7 : G ~ G such that

VGeG: Y Pr(r(G)=G) =1

G'eg

428

Graph Transformations

Definitions

Definition (Graph Transformation)

Let G C {G | G is a multi-digraph with n nodes}. A graph
transformation is a random transition 7 : G ~ G such that

VGeG: Y Pr(r(G)=G) =1

G'eg

If |G| < oo, T defines a Markov chain, where the set of states is G and
the transition matrix is T € RI9XI9 with t; ¢/ = Pr(7(G) = G').

428

Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer
networks:

5 /28

Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer
networks:

® Soundness: VG € G: 7(G) € G

5 /28

Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer
networks:

® Soundness: VG € G: 7(G) € G
® Generality: VG,G' € G : klim Pr (Tk(G) =G')>0
—00

5 /28

Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer
networks:

® Soundness: VG € G: 7(G) € G
® Generality: VG,G' € G : klim Pr (Tk(G) =G')>0
—00

= Uniform generality: VG, G’ € G: lim Pr(rK(G)=G') = %
k—o00 1G]

5 /28

Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer
networks:

® Soundness: VG € G: 7(G) € G
® Generality: VG,G' € G : klim Pr (Tk(G) =G')>0
—00
= Uniform generality: VG, G" € G : lim Pr (Th(6)=6) =g
—00
® Feasibility: 7 can be described by a simple routine with a

straightforward implementation in a distributed maintained
network.

5 /28

Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer
networks:

® Soundness: VG € G: 7(G) € G
® Generality: VG,G' € G : klim Pr (Tk(G) =G')>0
—00
= Uniform generality: VG, G" € G : lim Pr (Th(6)=6) =g
—00
® Feasibility: 7 can be described by a simple routine with a

straightforward implementation in a distributed maintained
network.

m Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.

5 /28

Graph Transformations

First Examples

6/28

Graph Transformations
First Examples

. G is a weakly-connected d-out-regular
Let G, = {G ‘ multi-digraph with n nodes

G = (V,E,#) is d-out-regular &Vuec V: > #((u,v))=d
veV

6/28

Graph Transformations

First Examples

. G is a weakly-connected d-out-regular
Let Gy = {G ‘ multi-digraph with n nodes

G = (V,E,#) is d-out-regular &Vue V: > #((u,v))=d
veV

Pointer-Push:

*—0—0
e

6/28

Graph Transformations

First Examples

. G is a weakly-connected d-out-regular
Let Gy = {G ‘ multi-digraph with n nodes

G = (V,E,#) is d-out-regular &Vue V: > #((u,v))=d
veV

Pointer-Push:

O ® js sound
® s feasible

® is not general

6/28

Graph Transformations

First Examples

. G is a weakly-connected d-out-regular
Let Gy = {G ‘ multi-digraph with n nodes

G = (V,E,#) is d-out-regular & Vu e V: > #((u,v))=d
veV

Pointer-Pull:

" —0—0—0
e
o

7/28

Graph Transformations

First Examples

. G is a weakly-connected d-out-regular
Let Gy = {G ‘ multi-digraph with n nodes

G = (V,E,#) is d-out-regular & Vu e V: > #((u,v))=d
veV

Pointer-Pull:

O ® s not sound

7/28

Pointer-Push&Pull

Unlabeled Digraphs
Let G, := {

G is a weakly-connected d-out-regular
multi-digraph with n nodes '

8 /28

Pointer-Push&Pull

Unlabeled Digraphs
Let G, := iG

G is a weakly-connected d-out-regular
multi-digraph with n nodes '

Pointer-Push&Pull: .-;.-;.

e 00

8 /28

Pointer-Push&Pull

Unlabeled Digraphs
Let G, := iG

G is a weakly-connected d-out-regular
multi-digraph with n nodes '

Pointer-Push&Pull: .-;.-;.

8 /28

Pointer-Push&Pull

Unlabeled Digraphs
Let gll = iG

G is a weakly-connected d-out-regular
multi-digraph with n nodes '

S
O
¢ »

8 /28

Pointer-Push&Pull

Unlabeled Digraphs

G is a weakly-connected d-out-regular
multi-digraph with n nodes '

Let G, := {G ‘

Pointer-Push&Pull:

*—0—0
e

9/28

Pointer-Push&Pull

Unlabeled Digraphs

. G is a weakly-connected d-out-regular
Let G, = {G ‘ multi-digraph with n nodes }

Pointer-Push&Pull:

. . l ® s sound
O ® s feasible

B js general

® is uniform general

9/28

T —
*—0—0

Pointer-Push&Pull O
Unlabeled Digraphs _.\-_/

Let G =(V,E,#), ue V. Nt(u):={veV|#((uv)) >0}

10/ 28

T —
*—0—0

Pointer-Push&Pull O
Unlabeled Digraphs _.\._-/

Let G =(V,E,#), ue V. Nt(u):={veV|#((uv)) >0}

Algorithm 2 Unlabeled Pointer-Push&Pull: 7, : G, ~» G,

1: »1 (i %

2: if random event with probability N (w)| (V1)| occurs then

3: %) (— N+(V1)

4: if random event with probability M occurs then
5: V3 (i N+(V2)

6: #((vi;v2)) = #((v1,v2)) — 1

7. # ((v2, v3)) = #((v2, v3)) — 1

8: # ((v2,v1)) = # ((v2,v1)) +1

o # ((v1,v3)) == #((v1,v3)) +1

10/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _._/

Let G, = {G ‘ G is a weakly-connected d-out-regular }

multi-digraph with n nodes

11/ 28

T —
*—0—0

Pointer-Push&Pull O
Unlabeled Digraphs _.\-_/

G is a weakly-connected d-out-regular
multi-digraph with n nodes '

Let G, := {G ‘

Lemma
VG, G € G, : Pr(ry(G) = G') = Pr(r,(G’) = G).

11/ 28

T —
*—0—0

Pointer-Push&Pull O
Unlabeled Digraphs _.\._/

. G is a weakly-connected d-out-regular
Let G, := {G ‘ multi-digraph with n nodes }
Lemma
VG, G € Gy Pr(ry(G) = G') =Pr(r,(G") = G).
Proof.

Suppose G’ is reached from G using the path (v;, vj, vk).

11/ 28

T —
*—0—0

Pointer-Push&Pull O
Unlabeled Digraphs _.\._/

. G is a weakly-connected d-out-regular
Let G, := {G ‘ multi-digraph with n nodes }
Lemma
VG, G' € Gy : Pr(ry(G) = G') =Pr(r,(G') = G).
Proof.

Suppose G’ is reached from G using the path (v;, vj, vk).
= G can be reached from G’ exactly with (vj, vi, vi).

11/ 28

T —
*—0—0

Pointer-Push&Pull O
Unlabeled Digraphs _.\._/

. G is a weakly-connected d-out-regular
Let G, := {G ‘ multi-digraph with n nodes }
Lemma
VG, G' € Gy : Pr(ry(G) = G') =Pr(r,(G') = G).
Proof.

Suppose G’ is reached from G using the path (v;, vj, vk).
= G can be reached from G’ exactly with (vj, vj, vi).
= Pr(ry(G)=G)=1.1. L =pr(r,(G")=G) O

11/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs
Let G, == {G

G is a weakly-connected d-out-regular
multi-digraph with n nodes '

Lemma
Let G,G' € G,. G' can be reached from G with at most 10nd

Pointer-Push&Pull operations.

12/28

o—0—0
Pointer-Push&Pull 2
Unlabeled Digraphs
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '
Lemma

Let G,G' € G,. G' can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V,E,#) with V = {vi,...,v,}.

12/28

o—0—0
Pointer-Push&Pull 2
Unlabeled Digraphs
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '
Lemma

Let G,G' € G,. G' can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V,E,#) with V = {vi,...,v,}.
Define G, := (V, E, #¢) with:

VueV :#:.((u,v1)) =d,
Vue V,ve V\{vn} :#c((u,v)) =0.

12/28

o—0—0
Pointer-Push&Pull 2
Unlabeled Digraphs
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '
Lemma

Let G,G' € G,. G' can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V,E,#) with V = {vi,...,v,}.
Define G, := (V, E, #¢) with:

VueV :#:.((u,v1)) =d,
Vue V,ve V\{vn} :#c((u,v)) =0.

= To show: G, can be reached from G with at most 5nd

Pointer-Push&Pull operations. O
12 /28

Pointer-Push&Pull O

Unlabeled Digraphs _.\-_/

Case 1: 3j € {2,...,n} : #((v1,vj)) >0

13 /28

Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 1: 3j € {2,...,n} : #((v1,vj)) >0
Case 1.1: j #k #1

D

13/ 28

Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 1: 3j € {2,...,n} : #((v1,vj)) >0
Case 1.1: j £ k#1 Case 1.2:

D D

13/ 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _."--._./

Case 1: 3j € {2,...,n} : #((v1,vj)) >0
Case 1.1: j# k #1 Case 1.2: Case 1.3:

o) 13 1]

13/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\-_/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0

14 / 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _.\._-/

Case 2: # ((V17 Vl)) = davj € {27 SRRE) n} : #((V17 VJ)) =0
Case 2.1:

1#j#k#1

14/ 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 2: # ((V]_, Vl)) = davj € {27 SRRE) n} : #((V17 VJ)) =0
Case 2.1:

1#j#k#1

o>
@

14/ 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1:

1#£j#k#1

EDTID
i

14/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1:

1#£j#k#1

=g L=)=

14/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1:

1#£j#k#1

=g L= JU=dl J=

14/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1:

1#£j#k#1

=

14/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\._/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2:

1#j#k#1 LA j#kAL#]

=

14/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\-_-—-’

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2:

1#j#k#1 LA j#kAL# 1]

£ 1

14/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\-_-/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2:

1#j#k#1 LA j#kAL# 1]

£ o@é
©

14/ 28

T —
*—0—0

Pointer-Push&Pull O

Unlabeled Digraphs _.\-_-/

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2:

1#j#k#1 LA j#kAL# 1]

= =

14/ 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _."--._./

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2: Case 2.3:

1#£j#k#1 LAjAkALAI] 1]

= =

14/ 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _."--._./

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2: Case 2.3:

1#£j#k#1 LAjAkALAI] 1]

5 sg:’

14/ 28

Pointer-Push&Pull

Unlabeled Digraphs _."--._./

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2: Case 2.3:

1#£j#k#1 LAjAkALAI] 1]

& = E:%o

b

14/ 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _.\._./

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2: Case 2.3:

1#£j#k#1 LAjAkALAI] 1]

= = g:%o

EX:

14/ 28

*—0—0
Pointer-Push&Pull O

Unlabeled Digraphs _."--._./

Case 2: # ((vi,v1))=d,Vje{2,...,n} : #((v1,vj)) =0
Case 2.1: Case 2.2: Case 2.3:

1#£j#k#1 LAjAkALAI] 14]

5| 25 5(:3

14/ 28

o—0—0
Pointer-Push&Pull . U! .
Unlabeled Digraphs
Let G, =1 G G is a weakly-connected d-out-regular
o= multi-digraph with n nodes '
Theorem

/ B k N —
VG, G Egu.klmmPr(Tu(G)_ G) =g

15 / 28

T —
*—0—0

Pointer-Push&Pull . U! .
Unlabeled Digraphs
Let G, =1 G G is a weakly-connected d-out-regular

‘o multi-digraph with n nodes '

Theorem
/ N k _ o 1
VG, G Egu.klmmPr(Tu(G)_ G) =g

Proof.
Follows from properties of corresponding Markov chain with transition
matrix T:

15 / 28

o—0—0
Pointer-Push&Pull . U! .
Unlabeled Digraphs .
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '

Theorem

o k _ _ 1
VG,G' € G, : kI|_>moo Pr (TU(G) = G’) = G
Proof.
Follows from properties of corresponding Markov chain with transition
matrix T:
® T is symmetric

L L _ 1 1
= (Igul""’ |gu‘) T = (Igul"“’ |gu‘) is stationary distribution

15 / 28

o—0—0
Pointer-Push&Pull . U! .
Unlabeled Digraphs .
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '

Theorem

o k _ _ 1
VG,G' €G,: kI|_>moo Pr (TU(G) = G’) = G
Proof.
Follows from properties of corresponding Markov chain with transition
matrix T:
® T is symmetric

1 a7 (L L) is stati istributi
= (Igul""’ |gu‘) T = (Igul"“’ |gu‘) is stationary distribution

® Markov chain is irreducible

15 / 28

o—0—0
Pointer-Push&Pull . U! .
Unlabeled Digraphs .
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '

Theorem

o k _ _ 1
VG,G' €G,: kI|_>mOO Pr (TU(G) = G’) = G
Proof.
Follows from properties of corresponding Markov chain with transition
matrix T:
® T is symmetric

1 a7 (L L) is stati istributi
= (Igul""’ |gu‘) T = (Igul"“’ |gu‘) is stationary distribution

® Markov chain is irreducible

B T has some non-zero diagonal entries
= Markov chain is aperiodic

15 / 28 U
L

Pointer-Push&Pull

Edge Labeled Digraphs

16 / 28

Pointer-Push&Pull

Edge Labeled Digraphs
Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph G = (V/, E) is defined by
a node set V = {vy,...,v,} and a set of directed edges
EC{(u,v,i)|uveV,ie{l, .. d}} with:

Vue VVie{l,... d}3INt(u,i)e V: (u Nt (u,i),i)€E.

16 / 28

Pointer-Push&Pull

Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph G = (V/, E) is defined by
a node set V = {vy,...,v,} and a set of directed edges
EC{(u,v,i)|uveV,ie{l,. .. d}} with:

Yue VVie{l,...,d} AINT(u,i) € V: (u, NT(

@@9 @9

Pointer-Push&Pull
Edge Labeled Digraphs
Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.

17/ 28

Pointer-Push&Pull

Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.

G [G]

pS RIS

17/ 28

Pointer-Push&Pull

Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.

G [G]

pS RIS

= The lower the number of multi-edges in G, the larger is | [G] |.
17/ 28

T —
*—0—0

Pointer-Push&Pull O

Edge Labeled Digraphs _.\-_/

G is an edge labeled weakly-connected
d-out-regular multi-digraph with n nodes

Let G, := {G ‘

18 / 28

T —
*—0—0

Pointer-Push&Pull)4
Edge Labeled Digraphs _.\._-/

Let G =4 G G is an edge labeled weakly-connected
= d-out-regular multi-digraph with n nodes

Algorithm 4 Labeled Pointer-Push&Pull: 7, : G; ~~ G,

1: w»1 <i Vv

2 i & {1,...,d}

3 v = NT (v, i)

4 j&{1,...,d}

5 v3:= Nt (v,))

6: E = (E \ {(Vla V2, I)a (V27 V37.j)}) U {(V2a Vlv.j)a (V17 v3, I)}

18 / 28

T —
*—0—0

Pointer-Push&Pull . U! .
Edge Labeled Digraphs
et G =4 G G is an edge labeled weakly-connected

= d-out-regular multi-digraph with n nodes

As before: 7 is
® sound
feasible
general

uniform general

19 / 28

T —
*—0—0

Pointer-Push&Pull . U! .
Edge Labeled Digraphs
et G =4 G G is an edge labeled weakly-connected
= d-out-regular multi-digraph with n nodes

As before: 7 is
® sound
m feasible
® general
® uniform general

. G is a weakly-connected d-out-regular
Let Gy := {G multi-digraph with n nodes }
Theorem

! N k _ /_M
VG, G Egu.klmmPr(T,(G)_G)_ Gl

19 / 28

T —
*—0—0

Pointer-Push&Pull . U! .
Edge Labeled Digraphs
et G =4 G G is an edge labeled weakly-connected

= d-out-regular multi-digraph with n nodes

As before: 7 is

® sound

m feasible

® general

® uniform general

. G is a weakly-connected d-out-regular
Let Gy := {G multi-digraph with n nodes }

Theorem -
! T k _ - _ el
VG,G e Gy kI|_>mOOPr (tf(G)=G") = Gl -
= A particular simple digraph is more probable than a particular
o /rgsulti—digra ph.

Simple Graphs 2

20/ 28

Simple Graphs 2

Pointer-Push&Pull cannot be restricted to _.\-—-/

simple graphs:

D

doed
LU

20 /28

Simple Graphs

Let Go =4 G G is an undlrec.ted connected d-regular .
simple graph with n nodes

1-Flipper:

21 /28

Simple Graphs
Let G5 := {G

G is an undirected connected d-regular
simple graph with n nodes '

1-Flipper:

L ks

21 /28

Simple Graphs

G is an undirected connected d-regular
Let Gs =< G i : .
simple graph with n nodes
1-Flipper:
® js sound
¢ B js feasible
B js general
® js uniform general

21 /28

Simple Graphs

G is an undirected connected d-regular
Let Gs =< G i : .
simple graph with n nodes
1-Flipper:
® js sound
¢ B js feasible
B js general
® js uniform general

® Four peers have to participate actively

m Digraphs are sufficient in practice

21 /28

Peer-to-Peer Networks ’4
Implementation of Pointer-Push&Pull _.\-_/

22 /28

Peer-to-Peer Networks
Implementation of Pointer-Push&Pull _.\._/
1. v; requests a random neighbor from v,

2. vp replaces vz by v; in neighborhood list and sends ID of v3 to »;

3. w1 receives ID of v3 from v, and replaces v» by v3 in neighborhood
list

22 /28

o —0—0
Peer-to-Peer Networks ’4
Implementation of Pointer-Push&Pull _.\._-/

1. v; requests a random neighbor from v,

2. vp replaces vz by v; in neighborhood list and sends ID of v3 to »;

3. w1 receives ID of v3 from v, and replaces v» by v3 in neighborhood
list

= only two network operations
=> no additional overhead to periodical neighborhood verification

22 /28

Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

23 /28

Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs
with

B constant and small out-degree

B |ogarithmic diameter

B high connectivity

23 /28

Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs
with

B constant and small out-degree

B |ogarithmic diameter

B high connectivity

Open Problems:
= Convergence rate
7 O(nlog n) supposed
0 Simulations indicate quick convergence

® Similar operation for simple digraphs

23 /28
L

Peer-to-Peer Networks

Example: 3nuts

24 /28

Peer-to-Peer Networks

Example: 3nuts

Data tree:
Prefix tree of
data identities

0011 0110 0111
1

00101

24 /28

Peer-to-Peer Networks

Example: 3nuts

Network tree:

25/ 28

Peer-to-Peer Networks

Example: 3nuts

Network tree: @ Z\

25/ 28

Peer-to-Peer Networks

Example: 3nuts m

Network tree:

ﬁ% :

25/ 28

Peer-to-Peer Networks

Example: 3nuts m

' \
Net k tree:
etwork tree m o

25/ 28

Peer-to-Peer Networks

Example: 3nuts m

' \
Net k tree:
etwork tree m o

25/ 28

Peer-to-Peer Networks

Example: 3nuts m

' \
Net k tree:
etwork tree m o

25/ 28

Peer-to-Peer Networks

Example: 3nuts m

' \
Net k tree:
etwork tree m o

For each random net-
work a peer has to save:

o°.
@/
©

©

©
Z/
-

B random neighbors /

—

o« —©

25/ 28

Peer-to-Peer Networks

Example: 3nuts m

L 4

Network tree: m \E .
For each random net- 4 \ / \
work a peer has to save: 6‘% Q ®
B random neighbors / \ / \
® branch links to ® O—0

each child /

O random branch links

O local branch links @i

25/ 28

Peer-to-Peer Networks

Example: 3nuts m

L 4

Network tree: m \E .
For each random net- 4 \ / \
work a peer has to save: 6‘% Q ®
B random neighbors / \ / \
® branch links to ® O—0

each child /

O random branch links

O local branch links 0
® responsible peers k

25/ 28

Peer-to-Peer Networks

Example: 3nuts

Role of Pointer-Push&Pull:

26 / 28

Peer-to-Peer Networks

Example: 3nuts

Role of Pointer-Push&Pull:

® maintain truly random networks
= robustness

26 / 28

Peer-to-Peer Networks

Example: 3nuts

Role of Pointer-Push&Pull:

® maintain truly random networks
= robustness

® spread information among peers, e.g. tree structure, weights

26 / 28

Peer-to-Peer Networks

Example: 3nuts

Role of Pointer-Push&Pull:

® maintain truly random networks
= robustness

® spread information among peers, e.g. tree structure, weights

B update random branch links and guarantee them to be truly
random

26 / 28

Peer-to-Peer Networks

Example: 3nuts

Role of Pointer-Push&Pull:

® maintain truly random networks
= robustness

® spread information among peers, e.g. tree structure, weights

B update random branch links and guarantee them to be truly
random

® measure round trip times and find good local branch links

26 / 28

Peer-to-Peer Networks

Example: 3nuts m

Routing:

27/ 28

Peer-to-Peer Networks

Example: 3nuts m

Routing:

27/ 28

Peer-to-Peer Networks

Example: 3nuts m

Routing:

27/ 28

Peer-to-Peer Networks

Example: 3nuts m

Routing:

27/ 28

Peer-to-Peer Networks

Example: 3nuts

Routing:

® Use random branch links
= Number of hops in 3nuts with n peers is in O(log n) with high
probability

® Use local branch links
= Experimental evaluation shows that this can benefit routing

28 / 28

	Graph Transformations
	Definitions
	Requirements
	First Examples

	Pointer-Push&Pull
	Unlabeled Digraphs
	Edge Labeled Digraphs

	Simple Graphs
	Peer-to-Peer Networks
	Implementation of Pointer-Push&Pull
	Advantage of Pointer-Push&Pull
	Example: 3nuts

