Table of Contents

Graph Transformations
 Definitions
 Requirements
 First Examples

Pointer-Push & Pull
 Unlabeled Digraphs
 Edge Labeled Digraphs

Simple Graphs

Peer-to-Peer Networks
 Implementation of Pointer-Push & Pull
 Advantage of Pointer-Push & Pull
 Example: 3nuts
Graph Transformations

Definitions

Definition (Simple Digraph)
A simple digraph $G = (V, E)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{ (u, v) | u, v \in V, u \neq v \}$.

Definition (Multi-Digraph)
A multi-digraph $G = (V, E, #)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E = \{ (u, v) | u, v \in V \}$ with multiplicities given by $# : E \rightarrow \mathbb{N}_0$.
Graph Transformations

Definitions

Definition (Simple Digraph)

A simple digraph $G = (V, E)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}$.
Graph Transformations

Definitions

Definition (Simple Digraph)
A simple digraph $G = (V, E)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}$.

Definition (Multi-Digraph)
A multi-digraph $G = (V, E, \#)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E = \{(u, v) \mid u, v \in V\}$ with multiplicities given by $\#: E \to \mathbb{N}_0$.

\[\text{Diagram:}\]

\[\text{Nodes: 0, 1, 2, 1, 0}\]

\[\text{Edges: 0 \rightarrow 2 \rightarrow 1, 1 \rightarrow 0 \rightarrow 0}\]
Graph Transformations

Definitions

Definition (Simple Digraph)
A simple digraph $G = (V, E)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}$.

Definition (Multi-Digraph)
A multi-digraph $G = (V, E, \#)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E = \{(u, v) \mid u, v \in V\}$ with multiplicities given by $\# : E \to \mathbb{N}_0$.

\[
\begin{array}{c}
0 \xrightarrow{2} 1 \xleftarrow{2} 0
\end{array}
\sim
\begin{array}{c}
\circlearrowleft
\end{array}
\begin{array}{c}
\circlearrowleft
\end{array}
\]
Graph Transformations
Definitions

Definition (Graph Transformation)
Let $\mathcal{G} \subseteq \{G \mid G$ is a multi-digraph with n nodes$\}$. A graph transformation is a random transition $\tau : \mathcal{G} \rightsquigarrow \mathcal{G}$ such that

$$\forall G \in \mathcal{G} : \sum_{G' \in \mathcal{G}} \Pr \left(\tau(G) = G' \right) = 1.$$
Graph Transformations

Definitions

Definition (Graph Transformation)

Let \(\mathcal{G} \subseteq \{ G \mid G \text{ is a multi-digraph with } n \text{ nodes} \} \). A graph transformation is a random transition \(\tau : \mathcal{G} \rightsquigarrow \mathcal{G} \) such that

\[
\forall G \in \mathcal{G} : \sum_{G' \in \mathcal{G}} \Pr(\tau(G) = G') = 1.
\]

If \(|\mathcal{G}| < \infty \), \(\tau \) defines a Markov chain, where the set of states is \(\mathcal{G} \) and the transition matrix is \(T \in \mathbb{R}^{|\mathcal{G}| \times |\mathcal{G}|} \) with \(t_{G,G'} = \Pr(\tau(G) = G') \).
Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer networks:

- **Soundness:** \(\forall G \in G: \tau(G) \in G \)

- **Generality:** \(\forall G, G' \in G: \lim_{k \to \infty} \Pr(\tau^k(G) = G') > 0 \)

- **Uniform generality:** \(\forall G, G' \in G: \lim_{k \to \infty} \Pr(\tau^k(G) = G') = \frac{1}{|G|} \)

- **Feasibility:** \(\tau \) can be described by a simple routine with a straightforward implementation in a distributed maintained network.

- **Convergence rate:** After a small number of transitions a good approximation of the ultimate distribution on \(G \) is achieved.
Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer networks:

- **Soundness**: \(\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G} \)
Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer networks:

- **Soundness**: \(\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G} \)
- **Generality**: \(\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr(\tau^k(G) = G') > 0 \)
Graph Transformations
Requirements

Requirements for graph transformations used in peer-to-peer networks:

- **Soundness:** $\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G}$
- **Generality:** $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr(\tau^k(G) = G') > 0$
 - Uniform generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr(\tau^k(G) = G') = \frac{1}{|\mathcal{G}|}$
- **Feasibility:** τ can be described by a simple routine with a straightforward implementation in a distributed maintained network.
- **Convergence rate:** After a small number of transitions a good approximation of the ultimate distribution on G is achieved.
Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer networks:

- **Soundness**: \(\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G} \)
- **Generality**: \(\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr(\tau^k(G) = G') > 0 \)
 - Uniform generality: \(\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr(\tau^k(G) = G') = \frac{1}{|\mathcal{G}|} \)
- **Feasibility**: \(\tau \) can be described by a simple routine with a straightforward implementation in a distributed maintained network.
Graph Transformations

Requirements

Requirements for graph transformations used in peer-to-peer networks:

- **Soundness:** $\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G}$
- **Generality:** $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr(\tau^k(G) = G') > 0$
 - Uniform generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr(\tau^k(G) = G') = \frac{1}{|\mathcal{G}|}$
- **Feasibility:** τ can be described by a simple routine with a straightforward implementation in a distributed maintained network.
- **Convergence rate:** After a small number of transitions a good approximation of the ultimate distribution on \mathcal{G} is achieved.
Graph Transformations

First Examples
Graph Transformations
First Examples

Let \(G_u := \left\{ G \mid \begin{array}{l} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\} \).

\(G = (V, E, \#) \) is \(d\)-out-regular \(\iff \forall u \in V : \sum_{v \in V} \#((u, v)) = d \)
Graph Transformations

First Examples

Let \(G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}. \)

\(G = (V, E, \#) \text{ is } d\text{-out-regular } \iff \forall u \in V : \sum_{v \in V} \#((u, v)) = d \)

Pointer-Push:
Graph Transformations

First Examples

Let $G_u := \left\{ G \left| \begin{array}{l} \text{G is a weakly-connected d-out-regular} \\ \text{multi-digraph with n nodes} \end{array} \right. \right\}$.

$G = (V, E, \#)$ is d-out-regular $\iff \forall u \in V : \sum_{v \in V} \#((u, v)) = d$

Pointer-Push:

- is sound
- is feasible
- is not general
Graph Transformations
First Examples

Let $G_u := \left\{ G \mid \begin{array}{l} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}$.

$G = (V, E, \#)$ is d-out-regular $\iff \forall u \in V : \sum_{v \in V} \#((u, v)) = d$

Pointer-Pull:

![Diagram of Graph Transformations]
Graph Transformations

First Examples

Let $G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$. $G = (V, E, #)$ is d-out-regular $\iff \forall u \in V : \sum_{v \in V} #((u, v)) = d$

Pointer-Pull:

\[\text{is not sound}\]
Pointer-Push&Pull

Unlabeled Digraphs

Let $G_u := \left\{ G \mid \begin{array}{l} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}$.
Pointer-Push&Pull

Unlabeled Digraphs

Let \(\mathcal{G}_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}. \)

Pointer-Push&Pull:

![Diagram of a weakly-connected d-out-regular multi-digraph]
Unlabeled Digraphs
Let $\mathcal{G}_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Pointer-Push&Pull:

![Diagram of Pointer-Push&Pull]
Pointer-Push&Pull

Unlabeled Digraphs
Let $G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Pointer-Push&Pull:
Let $G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Pointer-Push&Pull:

- Is sound
- Is feasible
- Is general
- Is uniform general
Pointer-Push&Pull
Unlabeled Digraphs

Let $\mathcal{G}_u := \{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \}$.

Pointer-Push&Pull:

- is sound
- is feasible
- is general
- is uniform general
Pointer-Push&Pull

Unlabeled Digraphs

Let $G = (V, E, \#)$, $u \in V$. $N^+(u) := \{ v \in V \mid \#((u, v)) > 0 \}$.
Pointer-Push&Pull

Unlabeled Digraphs

Let $G = (V, E, \#)$, $u \in V$. $N^+(u) := \{v \in V \mid \#((u, v)) > 0\}$.

Algorithm 2 Unlabeled Pointer-Push&Pull: $\tau_u : G_u \rightsquigarrow G_u$

1. $v_1 \leftarrow^{R} V$
2. **if** random event with probability $\frac{|N^+(v_1)|}{d}$ occurs **then**
3. $v_2 \leftarrow^{R} N^+(v_1)$
4. **if** random event with probability $\frac{|N^+(v_2)|}{d}$ occurs **then**
5. $v_3 \leftarrow^{R} N^+(v_2)$
6. $\#((v_1, v_2)) := \#((v_1, v_2)) - 1$
7. $\#((v_2, v_3)) := \#((v_2, v_3)) - 1$
8. $\#((v_2, v_1)) := \#((v_2, v_1)) + 1$
9. $\#((v_1, v_3)) := \#((v_1, v_3)) + 1$
Pointer-Push&Pull
Unlabeled Digraphs

Let \(G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\} \).
Let $G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Lemma

$\forall G, G' \in G_u : \Pr (\tau_u(G) = G') = \Pr (\tau_u(G') = G)$.
Pointer-Push&Pull
Unlabeled Digraphs

Let $G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Lemma
$\forall G, G' \in G_u : \Pr(\tau_u(G) = G') = \Pr(\tau_u(G') = G)$.

Proof.
Suppose G' is reached from G using the path (v_i, v_j, v_k).
Pointer-Push&Pull
Unlabeled Digraphs

Let \(\mathcal{G}_u := \left\{ G \middle| G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\} \).

Lemma
\(\forall G, G' \in \mathcal{G}_u : \Pr(\tau_u(G) = G') = \Pr(\tau_u(G') = G) \).

Proof.
Suppose \(G' \) is reached from \(G \) using the path \((v_i, v_j, v_k)\).
\(\Rightarrow \) \(G \) can be reached from \(G' \) exactly with \((v_j, v_i, v_k)\).
Let $G_u := \{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \}$.

Lemma

$\forall G, G' \in G_u : \Pr(\tau_u(G) = G') = \Pr(\tau_u(G') = G)$.

Proof.

Suppose G' is reached from G using the path (v_i, v_j, v_k).

$\Rightarrow G$ can be reached from G' exactly with (v_j, v_i, v_k).

$\Rightarrow \Pr(\tau_u(G) = G') = \frac{1}{n} \cdot \frac{1}{d} \cdot \frac{1}{d} = \Pr(\tau_u(G') = G)$
Pointer-Push&Pull

Unlabeled Digraphs

Let \(\mathcal{G}_u \) := \(\{ G \mid G \) is a weakly-connected \(d \)-out-regular multi-digraph with \(n \) nodes \}.

Lemma

Let \(G, G' \in \mathcal{G}_u \). \(G' \) can be reached from \(G \) with at most \(10nd \) Pointer-Push&Pull operations.
Pointer-Push&Pull

Unlabeled Digraphs
Let \(\mathcal{G}_u := \left\{ G \mid \text{G is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\} \).

Lemma
Let \(G, G' \in \mathcal{G}_u \). \(G' \) can be reached from \(G \) with at most 10nd Pointer-Push&Pull operations.

Proof.
Let \(G = (V, E, \#) \) with \(V = \{v_1, \ldots, v_n\} \).
Let $G_u := \{ G \mid G$ is a weakly-connected d-out-regular multi-digraph with n nodes $\}$.

Lemma

Let $G, G' \in G_u$. G' can be reached from G with at most 10nd Pointer-Push&Pull operations.

Proof.

Let $G = (V, E, \#)$ with $V = \{v_1, \ldots, v_n\}$.

Define $G_c := (V, E, \#_c)$ with:

$$\forall u \in V : \#_c ((u, v_1)) = d,$$

$$\forall u \in V, v \in V \setminus \{v_1\} : \#_c ((u, v)) = 0.$$
Pointer-Push&Pull

Unlabeled Digraphs
Let \(\mathcal{G}_u := \left\{ G \left| G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right. \right\}. \)

Lemma
Let \(G, G' \in \mathcal{G}_u. \) \(G' \) can be reached from \(G \) with at most 10nd Pointer-Push&Pull operations.

Proof.
Let \(G = (V, E, \#) \) with \(V = \{v_1, \ldots, v_n\}. \)
Define \(G_c := (V, E, \#_c) \) with:
\[
\forall u \in V : \#_c ((u, v_1)) = d, \\
\forall u \in V, v \in V \setminus \{v_1\} : \#_c ((u, v)) = 0.
\]

\(\Rightarrow \) To show: \(G_c \) can be reached from \(G \) with at most 5nd Pointer-Push&Pull operations.
Pointer-Push&Pull
Unlabeled Digraphs

Case 1: \(\exists j \in \{2, \ldots, n\} : \#((v_1, v_j)) > 0 \)
Pointer-Push&Pull
Unlabeled Digraphs

Case 1: \(\exists j \in \{2, \ldots, n\} : \#((v_1, v_j)) > 0 \)

Case 1.1: \(j \neq k \neq 1 \)
Pointer-Push&Pull
Unlabeled Digraphs

Case 1: \(\exists j \in \{2, \ldots, n\} : \#((v_1, v_j)) > 0 \)

Case 1.1: \(j \neq k \neq 1 \)

Case 1.2:
Pointer-Push&Pull
Unlabeled Digraphs

Case 1: \(\exists j \in \{2, \ldots, n\} : \#((v_1, v_j)) > 0 \)

Case 1.1: \(j \neq k \neq 1 \)

Case 1.2:

Case 1.3:
Pointer-Push&Pull
Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)
Pointer-Push&Pull
Unlabeled Digraphs

Case 2:
\[\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \]

Case 2.1:
\[1 \neq j \neq k \neq 1 \]
Pointer-Push&Pull
Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)

Case 2.1:
\(1 \neq j \neq k \neq 1 \)
Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0$

Case 2.1: $1 \neq j \neq k \neq 1$

Case 2.2: $1 \neq j \neq k \neq 1 \neq l$

Case 2.3: $1 \neq j \neq k \neq 1$
Pointer-Push&Pull

Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)

Case 2.1:
1 \(\neq j \neq k \neq 1 \)
Pointer-Push&Pull
Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)

Case 2.1:
\(1 \neq j \neq k \neq 1\)
Pointer-Push&Pull

Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)

Case 2.1:
\(1 \neq j \neq k \neq 1 \)
Pointer-Push&Pull

Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)

Case 2.1:
1 \(\neq j \neq k \neq 1 \)

Case 2.2:
1 \(\neq j \neq k \neq 1 \neq l \neq j \)
Pointer-Push&Pull
Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\}: \#((v_1, v_j)) = 0 \)

Case 2.1: \(1 \neq j \neq k \neq 1 \)

Case 2.2: \(1 \neq j \neq k \neq 1 \neq l \neq j \)
Pointer-Push&Pull
Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0$

Case 2.1: $1 \neq j \neq k \neq 1$

Case 2.2: $1 \neq j \neq k \neq 1 \neq l \neq j$
Pointer-Push&Pull
Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\}: \#((v_1, v_j)) = 0$

Case 2.1: $1 \neq j \neq k \neq 1$

Case 2.2: $1 \neq j \neq k \neq 1 \neq l \neq j$
Pointer-Push&Pull

Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)

Case 2.1: \(1 \neq j \neq k \neq 1 \)

Case 2.2: \(1 \neq j \neq k \neq 1 \neq l \neq j \)

Case 2.3: \(1 \neq j \)
Pointer-Push&Pull

Unlabeled Digraphs

Case 2: \(\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \)

Case 2.1:
1 \(\not\equiv j \not\equiv k \not\equiv 1 \)

Case 2.2:
1 \(\not\equiv j \not\equiv k \not\equiv 1 \not\equiv l \not\equiv j \)

Case 2.3:
1 \(\not\equiv j \)

Pointer-Push&Pull

Unlabeled Digraphs

Case 2:

$$\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0$$

Case 2.1:

$$1 \neq j \neq k \neq 1$$

Case 2.2:

$$1 \neq j \neq k \neq 1 \neq l \neq j$$

Case 2.3:

$$1 \neq j$$
Pointer-Push&Pull

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0$

Case 2.1: $1 \neq j \neq k \neq 1$

Case 2.2: $1 \neq j \neq k \neq 1 \neq l \neq j$

Case 2.3: $1 \neq j$
Pointer-Push&Pull

Unlabeled Digraphs

Case 2:
\[\#((v_1, v_1)) = d, \forall j \in \{2, \ldots, n\} : \#((v_1, v_j)) = 0 \]

Case 2.1:
1 \(\neq j \neq k \neq 1 \)

Case 2.2:
1 \(\neq j \neq k \neq 1 \neq l \neq j \)

Case 2.3:
1 \(\neq j \)
Pointer-Push&Pull

Unlabeled Digraphs
Let $G_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Theorem
$\forall G, G' \in G_u : \lim_{k \to \infty} \Pr(\tau^k_u(G) = G') = \frac{1}{|G_u|}$
Pointer-Push&Pull

Unlabeled Digraphs
Let $\mathcal{G}_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Theorem
$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr(\tau^k_u(G) = G') = \frac{1}{|\mathcal{G}_u|}$

Proof.
Follows from properties of corresponding Markov chain with transition matrix T:

1. T is symmetric $\Rightarrow (\frac{1}{|\mathcal{G}_u|}, ..., \frac{1}{|\mathcal{G}_u|})^T = (\frac{1}{|\mathcal{G}_u|}, ..., \frac{1}{|\mathcal{G}_u|})$ is stationary distribution
2. Markov chain is irreducible
3. T has some non-zero diagonal entries \Rightarrow Markov chain is aperiodic
Pointer-Push&Pull

Unlabeled Digraphs

Let \(\mathcal{G}_u := \left\{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\} \).

Theorem

\[\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr(\tau^k_u(G) = G') = \frac{1}{|\mathcal{G}_u|} \]

Proof.

Follows from properties of corresponding Markov chain with transition matrix \(T \):

- \(T \) is symmetric
 \[\Rightarrow \left(\frac{1}{|\mathcal{G}_u|}, \ldots, \frac{1}{|\mathcal{G}_u|} \right) T = \left(\frac{1}{|\mathcal{G}_u|}, \ldots, \frac{1}{|\mathcal{G}_u|} \right) \text{ is stationary distribution} \]
Pointer-Push&Pull

Unlabeled Digraphs

Let $\mathcal{G}_u := \left\{ G \left| G\text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n\text{ nodes} \right. \right\}$.

Theorem

$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr(\tau^k_u(G) = G') = \frac{1}{|\mathcal{G}_u|}$

Proof.

Follows from properties of corresponding Markov chain with transition matrix T:

- T is symmetric
 $\Rightarrow \left(\frac{1}{|\mathcal{G}_u|}, \ldots, \frac{1}{|\mathcal{G}_u|} \right) T = \left(\frac{1}{|\mathcal{G}_u|}, \ldots, \frac{1}{|\mathcal{G}_u|} \right)$ is stationary distribution

- Markov chain is irreducible
Pointer-Push&Pull
Unlabeled Digraphs
Let $G_u := \{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \}$.

Theorem
$\forall G, G' \in G_u : \lim_{k \to \infty} \Pr(\tau_u^k(G) = G') = \frac{1}{|G_u|}$

Proof.
Follows from properties of corresponding Markov chain with transition matrix T:

- T is symmetric
 \[
 \Rightarrow \left(\frac{1}{|G_u|}, \ldots, \frac{1}{|G_u|} \right) T = \left(\frac{1}{|G_u|}, \ldots, \frac{1}{|G_u|} \right) \text{ is stationary distribution}
 \]
- Markov chain is irreducible
- T has some non-zero diagonal entries
 \Rightarrow \text{Markov chain is aperiodic}
Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph $G = (V, E)$ is defined by a node set $V = \{v_1, ..., v_n\}$ and a set of directed edges $E \subseteq \{(u, v, i) | u, v \in V, i \in \{1, ..., d\}\}$ with:

$$\forall u \in V \forall i \in \{1, ..., d\} \exists! N^+(u, i) \in V : (u, N^+(u, i), i) \in E.$$
Pointer-Push & Pull

Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph $G = (V, E)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v, i) \mid u, v \in V, i \in \{1, \ldots, d\}\}$ with:

\[
\forall u \in V \forall i \in \{1, \ldots, d\} \exists ! N^+(u, i) \in V : (u, N^+(u, i), i) \in E.
\]
Pointer-Push&Pull

Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph $G = (V, E)$ is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v, i) \mid u, v \in V, i \in \{1, \ldots, d\}\}$ with:

$$\forall u \in V \forall i \in \{1, \ldots, d\} \exists! N^+(u, i) \in V : (u, N^+(u, i), i) \in E.$$
Pointer-Push&Pull
Edge Labeled Digraphs

Definition (Equivalence Class)
Let G be an unlabeled d-out-regular multi-digraph. $[G]$ denotes the set of all edge labeled d-out-regular multi-digraphs describing G when omitting the edge labels.
Pointer-Push&Pull

Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. $[G]$ denotes the set of all edge labeled d-out-regular multi-digraphs describing G when omitting the edge labels.

$G \Rightarrow |G|$. The lower the number of multi-edges in G, the larger is $|G|$.

![Diagram of G and $[G]$](image)
Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. $[G]$ denotes the set of all edge labeled d-out-regular multi-digraphs describing G when omitting the edge labels.

\Rightarrow The lower the number of multi-edges in G, the larger is $| [G] |$.
Pointer-Push&Pull
Edge Labeled Digraphs

Let $\mathcal{G}_l := \left\{ G \mid G \text{ is an edge labeled weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.
Let $G_l := \left\{ G \mid G \text{ is an edge labeled weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \right\}$.

Algorithm 4 Labeled Pointer-Push&Pull: $\tau_l : G_l \leadsto G_l$

1: $v_1 \leftarrow^R V$
2: $i \leftarrow^R \{1, \ldots, d\}$
3: $v_2 := N^+(v_1, i)$
4: $j \leftarrow^R \{1, \ldots, d\}$
5: $v_3 := N^+(v_2, j)$
6: $E := (E \setminus \{(v_1, v_2, i), (v_2, v_3, j)\}) \cup \{(v_2, v_1, j), (v_1, v_3, i)\}$
Pointer-Push&Pull

Edge Labeled Digraphs

Let \(G_l := \{ G | G \) is an edge labeled weakly-connected \(d \)-out-regular multi-digraph with \(n \) nodes \}.

As before: \(\tau_l \) is

- sound
- feasible
- general
- uniform general
Pointer-Push&Pull

Edge Labeled Digraphs

Let $G_l := \{ G \mid G \text{ is an edge labeled weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \}$.

As before: τ_l is

- sound
- feasible
- general
- uniform general

Let $G_u := \{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \}$.

Theorem

$\forall G, G' \in G_u : \lim_{k \to \infty} \Pr(\tau_l^k(G) = G') = \frac{|G'|}{|G_l|}$.

A particular simple digraph is more probable than a particular multi-digraph.
Pointer-Push&Pull

Edge Labeled Digraphs

Let $\mathcal{G}_l := \{ G \mid G \text{ is an edge labeled weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \}$.

As before: τ_l is

- sound
- feasible
- general
- uniform general

Let $\mathcal{G}_u := \{ G \mid G \text{ is a weakly-connected } d\text{-out-regular multi-digraph with } n \text{ nodes} \}$.

Theorem

$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr(\tau_l^k(G) = G') = \frac{|[G']|}{|\mathcal{G}_l|}$.

\Rightarrow A particular simple digraph is more probable than a particular multi-digraph.
Simple Graphs
Simple Graphs

Pointer-Push\&Pull cannot be restricted to simple graphs:
Simple Graphs

Let $G_{s} \triangleq \{ G \mid G \text{ is an undirected connected } d\text{-regular simple graph with } n \text{ nodes} \}$.

1-Flipper:
Simple Graphs

Let $G_s := \left\{ G \mid G \text{ is an undirected connected } d\text{-regular simple graph with } n \text{ nodes} \right\}$.

1-Flipper:
Simple Graphs

Let $\mathcal{G}_s := \left\{ G \mid G \text{ is an undirected connected } d\text{-regular simple graph with } n \text{ nodes} \right\}$.

1-Flipper:

- is sound
- is feasible
- is general
- is uniform general
Simple Graphs

Let \(G_s := \left\{ G \mid G \text{ is an undirected connected } d\text{-regular simple graph with } n \text{ nodes} \right\} \).

1-Flipper:

- is sound
- is feasible
- is general
- is uniform general

- Four peers have to participate actively
- Digraphs are sufficient in practice
Peer-to-Peer Networks
Implementation of Pointer-Push&Pull

1. v_1 requests a random neighbor from v_2
2. v_2 replaces v_3 by v_1 in neighborhood list and sends ID of v_3 to v_1
3. v_1 receives ID of v_3 from v_2 and replaces v_2 by v_3 in neighborhood list

\Rightarrow only two network operations
\Rightarrow no additional overhead to periodical neighborhood verification
Peer-to-Peer Networks
Implementation of Pointer-Push&Pull

1. v_1 requests a random neighbor from v_2
2. v_2 replaces v_3 by v_1 in neighborhood list and sends ID of v_3 to v_1
3. v_1 receives ID of v_3 from v_2 and replaces v_2 by v_3 in neighborhood list
Peer-to-Peer Networks
Implementation of Pointer-Push&Pull

1. v_1 requests a random neighbor from v_2
2. v_2 replaces v_3 by v_1 in neighborhood list and sends ID of v_3 to v_1
3. v_1 receives ID of v_3 from v_2 and replaces v_2 by v_3 in neighborhood list

⇒ only two network operations
⇒ no additional overhead to periodical neighborhood verification
Peer-to-Peer Networks

Advantage of Pointer-Push & Pull

- Constant and small out-degree
- Logarithmic diameter
- High connectivity

Open Problems:
- Convergence rate: $O(n \log n)$ supposed
- Simulations indicate quick convergence
- Similar operation for simple digraphs
Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs with

- constant and small out-degree
- logarithmic diameter
- high connectivity
Peer-to-Peer Networks

Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs with

- constant and small out-degree
- logarithmic diameter
- high connectivity

Open Problems:

- Convergence rate
 - $O(n \log n)$ supposed
 - Simulations indicate quick convergence
- Similar operation for simple digraphs
Peer-to-Peer Networks

Example: 3nuts
Peer-to-Peer Networks

Example: 3nuts

Data tree:
Prefix tree of data identities
Peer-to-Peer Networks

Example: 3nuts

Network tree:

For each random network a peer has to save:
- random neighbors
Peer-to-Peer Networks

Example: 3nuts

Network tree:

For each random network a peer has to save:

- random neighbors
- branch links to each child
 - random branch links
 - local branch links
Peer-to-Peer Networks

Example: 3nuts

Network tree:

For each random network a peer has to save:

- random neighbors
- branch links to each child
 - random branch links
 - local branch links
- responsible peers
Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:
Peer-to-Peer Networks

Example: 3nuts

Role of Pointer-Push&Pull:
- maintain truly random networks
 ⇒ robustness
Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:

- maintain truly random networks
 ⇒ robustness
- spread information among peers, e.g. tree structure, weights
Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:
- maintain truly random networks
 ⇒ robustness
- spread information among peers, e.g. tree structure, weights
- update random branch links and guarantee them to be truly random
Peer-to-Peer Networks
Example: 3nuts

Role of Pointer-Push&Pull:
■ maintain truly random networks
 ⇒ robustness
■ spread information among peers, e.g. tree structure, weights
■ update random branch links and guarantee them to be truly random
■ measure round trip times and find good local branch links
Peer-to-Peer Networks

Example: 3nuts

Routing:
Peer-to-Peer Networks
Example: 3nuts

Routing:
Peer-to-Peer Networks

Example: 3nuts

Routing:
Peer-to-Peer Networks

Example: 3nuts

Routing:
Peer-to-Peer Networks

Example: 3nuts

Routing:

- Use random branch links
 \[\Rightarrow \text{Number of hops in 3nuts with } n \text{ peers is in } O(\log n) \text{ with high probability} \]
- Use local branch links
 \[\Rightarrow \text{Experimental evaluation shows that this can benefit routing} \]