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Graph Transformations

Definitions

Definition (Graph Transformation)

Let G C {G | G is a multi-digraph with n nodes}. A graph
transformation is a random transition 7 : G ~ G such that
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Graph Transformations

Definitions

Definition (Graph Transformation)

Let G C {G | G is a multi-digraph with n nodes}. A graph
transformation is a random transition 7 : G ~ G such that

VGeG: Y Pr(r(G)=G) =1

G'eg

If |G| < oo, T defines a Markov chain, where the set of states is G and
the transition matrix is T € RI9XI9 with t; ¢/ = Pr(7(G) = G').
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—00
® Feasibility: 7 can be described by a simple routine with a

straightforward implementation in a distributed maintained
network.

m Convergence rate: After a small number of transitions a good
approximation of the ultimate distribution on G is achieved.
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Pointer-Push&Pull

Unlabeled Digraphs

. G is a weakly-connected d-out-regular
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Let G =(V,E,#), ue V. Nt(u):={veV|#((uv)) >0}

Algorithm 2 Unlabeled Pointer-Push&Pull: 7, : G, ~» G,

1: »1 (i %

2: if random event with probability N (w)| (V1)| occurs then

3: %) (— N+(V1)

4: if random event with probability M occurs then
5: V3 (i N+(V2)

6: #((vi;v2)) = #((v1,v2)) — 1

7. # ((v2, v3)) = #((v2, v3)) — 1

8: # ((v2,v1)) = # ((v2,v1)) +1

o # ((v1,v3)) == #((v1,v3)) +1
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Let G, := {G ‘

Lemma
VG, G € G, : Pr(ry(G) = G') = Pr(r,(G’) = G).
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Lemma
Let G,G' € G,. G' can be reached from G with at most 10nd

Pointer-Push&Pull operations.
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Unlabeled Digraphs
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '
Lemma

Let G,G' € G,. G' can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V,E,#) with V = {vi,...,v,}.
Define G, := (V, E, #¢) with:

VueV :#:.((u,v1)) =d,
Vue V,ve V\{vn} :#c((u,v)) =0.
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Unlabeled Digraphs
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '
Lemma

Let G,G' € G,. G' can be reached from G with at most 10nd
Pointer-Push&Pull operations.

Proof.
Let G = (V,E,#) with V = {vi,...,v,}.
Define G, := (V, E, #¢) with:

VueV :#:.((u,v1)) =d,
Vue V,ve V\{vn} :#c((u,v)) =0.

= To show: G, can be reached from G with at most 5nd

Pointer-Push&Pull operations. O
12 /28
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Unlabeled Digraphs .
Let G, =1 G G is a weakly-connected d-out-regular
‘o multi-digraph with n nodes '

Theorem

o k _ _ 1
VG,G' €G,: kI|_>mOO Pr (TU(G) = G’) = G
Proof.
Follows from properties of corresponding Markov chain with transition
matrix T:
® T is symmetric

1 a7 (L L) is stati istributi
= (Igul""’ |gu‘) T = (Igul"“’ |gu‘) is stationary distribution

® Markov chain is irreducible

B T has some non-zero diagonal entries
= Markov chain is aperiodic

15 / 28 U
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Pointer-Push&Pull

Edge Labeled Digraphs
Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph G = (V/, E) is defined by
a node set V = {vy,...,v,} and a set of directed edges
EC{(u,v,i)|uveV,ie{l, .. d}} with:

Vue VVie{l,... d}3INt(u,i)e V: (u Nt (u,i),i)€E.
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Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled d-out-regular multi-digraph G = (V/, E) is defined by
a node set V = {vy,...,v,} and a set of directed edges
EC{(u,v,i)|uveV,ie{l,. .. d}} with:

Yue VVie{l,...,d} AINT(u,i) € V: (u, NT(
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Edge Labeled Digraphs
Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.
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Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the
set of all edge labeled d-out-regular multi-digraphs describing G when
omitting the edge labels.

G [G]

pS RIS

= The lower the number of multi-edges in G, the larger is | [G] |.
17/ 28
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G is an edge labeled weakly-connected
d-out-regular multi-digraph with n nodes

Let G, := {G ‘

18 / 28



T —
*—0—0

Pointer-Push&Pull )4
Edge Labeled Digraphs _.\._-/

Let G =4 G G is an edge labeled weakly-connected
= d-out-regular multi-digraph with n nodes

Algorithm 4 Labeled Pointer-Push&Pull: 7, : G; ~~ G,

1: w»1 <i Vv

2 i & {1,...,d}

3 v = NT (v, i)

4 j&{1,...,d}

5 v3:= Nt (v,))

6: E = (E \ {(Vla V2, I)a (V27 V37.j)}) U {(V2a Vlv.j)a (V17 v3, I)}

18 / 28
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As before: 7 is
® sound
feasible
general

uniform general
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et G =4 G G is an edge labeled weakly-connected

= d-out-regular multi-digraph with n nodes

As before: 7 is

® sound

m feasible

® general

® uniform general

. G is a weakly-connected d-out-regular
Let Gy := {G multi-digraph with n nodes }

Theorem -
! T k _ - _ el
VG,G e Gy kI|_>mOOPr (tf(G)=G") = Gl -
= A particular simple digraph is more probable than a particular
o /rgsulti—digra ph.
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Simple Graphs 2

Pointer-Push&Pull cannot be restricted to _.\-—-/

simple graphs:

D

doed
LU
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Simple Graphs

Let Go =4 G G is an undlrec.ted connected d-regular .
simple graph with n nodes

1-Flipper:
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Simple Graphs
Let G5 := {G

G is an undirected connected d-regular
simple graph with n nodes '

1-Flipper:

L ks
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Simple Graphs

G is an undirected connected d-regular
Let Gs =< G i : .
simple graph with n nodes
1-Flipper:
® js sound
¢ B js feasible
B js general
® js uniform general

® Four peers have to participate actively

m Digraphs are sufficient in practice

21 /28
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Peer-to-Peer Networks
Implementation of Pointer-Push&Pull _.\._/
1. v; requests a random neighbor from v,

2. vp replaces vz by v; in neighborhood list and sends ID of v3 to »;

3. w1 receives ID of v3 from v, and replaces v» by v3 in neighborhood
list
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Peer-to-Peer Networks ’4
Implementation of Pointer-Push&Pull _.\._-/

1. v; requests a random neighbor from v,

2. vp replaces vz by v; in neighborhood list and sends ID of v3 to »;

3. w1 receives ID of v3 from v, and replaces v» by v3 in neighborhood
list

= only two network operations
=> no additional overhead to periodical neighborhood verification

22 /28



Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

23 /28



Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs
with

B constant and small out-degree

B |ogarithmic diameter

B high connectivity
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Peer-to-Peer Networks
Advantage of Pointer-Push&Pull

Pointer-Push&Pull leads (with high probability) to random graphs
with

B constant and small out-degree

B |ogarithmic diameter

B high connectivity

Open Problems:
= Convergence rate
7 O(nlog n) supposed
0 Simulations indicate quick convergence

® Similar operation for simple digraphs

23 /28
L
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Peer-to-Peer Networks

Example: 3nuts

Data tree:
Prefix tree of
data identities

0011 0110 0111
1

00101
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Network tree:

ﬁ% :
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Peer-to-Peer Networks

Example: 3nuts

Role of Pointer-Push&Pull:

® maintain truly random networks
= robustness

® spread information among peers, e.g. tree structure, weights

B update random branch links and guarantee them to be truly
random

® measure round trip times and find good local branch links
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Peer-to-Peer Networks

Example: 3nuts

Routing:

® Use random branch links
= Number of hops in 3nuts with n peers is in O(log n) with high
probability

® Use local branch links
= Experimental evaluation shows that this can benefit routing
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