Random Graphs and their Use in Peer-to-Peer Networks

Kathlén Kohn

Faculty of Computer Science, Electrical Engineering and Mathematics University of Paderborn

November 28, 2013

Table of Contents

Graph Transformations

Definitions Requirements First Examples

Pointer-Push&Pull

Unlabeled Digraphs Edge Labeled Digraphs

Simple Graphs

Peer-to-Peer Networks

Implementation of Pointer-Push&Pull Advantage of Pointer-Push&Pull Example: 3nuts

Definitions

Definitions

Definition (Simple Digraph)

A simple digraph G = (V, E) is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}.$

Definitions

Definition (Simple Digraph)

A simple digraph G = (V, E) is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}.$

Definition (Multi-Digraph)

A multi-digraph G = (V, E, #) is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E = \{(u, v) \mid u, v \in V\}$ with multiplicities given by $\# : E \to \mathbb{N}_0$.

Definitions

Definition (Simple Digraph)

A simple digraph G = (V, E) is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}.$

Definition (Multi-Digraph)

A multi-digraph G = (V, E, #) is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E = \{(u, v) \mid u, v \in V\}$ with multiplicities given by $\# : E \to \mathbb{N}_0$.

Definitions

Definition (Graph Transformation)

Let $\mathcal{G} \subseteq \{G \mid G \text{ is a multi-digraph with } n \text{ nodes}\}$. A graph transformation is a random transition $\tau : \mathcal{G} \rightsquigarrow \mathcal{G}$ such that

$$orall G \in \mathcal{G}: \sum_{G' \in \mathcal{G}} \mathsf{Pr}\left(au(G) = G'
ight) = 1.$$

Definitions

Definition (Graph Transformation)

Let $\mathcal{G} \subseteq \{G \mid G \text{ is a multi-digraph with } n \text{ nodes}\}$. A graph transformation is a random transition $\tau : \mathcal{G} \rightsquigarrow \mathcal{G}$ such that

$$orall G \in \mathcal{G}: \sum_{G' \in \mathcal{G}} \mathsf{Pr}\left(au(G) = G'
ight) = 1.$$

If $|\mathcal{G}| < \infty$, τ defines a Markov chain, where the set of states is \mathcal{G} and the transition matrix is $\mathcal{T} \in \mathbb{R}^{|\mathcal{G}| \times |\mathcal{G}|}$ with $t_{\mathcal{G},\mathcal{G}'} = \Pr(\tau(\mathcal{G}) = \mathcal{G}')$.

Requirements

Requirements for graph transformations used in peer-to-peer networks:

Requirements

Requirements for graph transformations used in peer-to-peer networks:

• Soundness: $\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G}$

Requirements

Requirements for graph transformations used in peer-to-peer networks:

- Soundness: $\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G}$
- Generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr\left(\tau^k(G) = G'\right) > 0$

Requirements

Requirements for graph transformations used in peer-to-peer networks:

- Soundness: $\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G}$
- Generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr\left(\tau^k(G) = G'\right) > 0$ \Box Uniform generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr\left(\tau^k(G) = G'\right) = \frac{1}{|\mathcal{G}|}$

Requirements

Requirements for graph transformations used in peer-to-peer networks:

- Soundness: $\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G}$
- Generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr\left(\tau^k(G) = G'\right) > 0$

□ Uniform generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr\left(\tau^k(G) = G'\right) = \frac{1}{|\mathcal{G}|}$

Feasibility: \(\tau\) can be described by a simple routine with a straightforward implementation in a distributed maintained network.

Requirements

Requirements for graph transformations used in peer-to-peer networks:

- Soundness: $\forall G \in \mathcal{G} : \tau(G) \in \mathcal{G}$
- Generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr\left(\tau^k(G) = G'\right) > 0$

□ Uniform generality: $\forall G, G' \in \mathcal{G} : \lim_{k \to \infty} \Pr\left(\tau^k(G) = G'\right) = \frac{1}{|\mathcal{G}|}$

- Feasibility: τ can be described by a simple routine with a straightforward implementation in a distributed maintained network.
- Convergence rate: After a small number of transitions a good approximation of the ultimate distribution on *G* is achieved.

First Examples

First Examples

Let $\mathcal{G}_u := \left\{ G \mid \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$ $G = (V, E, \#) \text{ is } d\text{-out-regular} \Leftrightarrow \forall u \in V : \sum_{v \in V} \# ((u, v)) = d$

First Examples

Let
$$\mathcal{G}_u := \left\{ G \mid \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$$

 $G = (V, E, \#) \text{ is } d\text{-out-regular} \Leftrightarrow \forall u \in V : \sum_{v \in V} \# ((u, v)) = d$

Pointer-Push:

First Examples

Let
$$\mathcal{G}_u := \left\{ G \mid \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$$

 $G = (V, E, \#) \text{ is } d\text{-out-regular} \Leftrightarrow \forall u \in V : \sum_{v \in V} \# ((u, v)) = d$

Pointer-Push:

First Examples

Let
$$\mathcal{G}_u := \left\{ G \mid \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$$

 $G = (V, E, \#) \text{ is } d\text{-out-regular} \Leftrightarrow \forall u \in V : \sum_{v \in V} \# ((u, v)) = d$

Pointer-Pull:

First Examples

Let
$$\mathcal{G}_u := \left\{ G \mid \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$$

 $G = (V, E, \#) \text{ is } d\text{-out-regular} \Leftrightarrow \forall u \in V : \sum_{v \in V} \# ((u, v)) = d$

Pointer-Pull:

Unlabeled Digraphs Let $\mathcal{G}_u := \left\{ \begin{array}{c|c} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

Unlabeled Digraphs Let $\mathcal{G}_u := \left\{ \begin{array}{c|c} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

Unlabeled Digraphs Let $\mathcal{G}_u := \left\{ \begin{array}{c|c} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

Unlabeled Digraphs Let $\mathcal{G}_u := \left\{ \begin{array}{c|c} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

Unlabeled Digraphs

Let $\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

Unlabeled Digraphs

Let $\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

- is sound
- is feasible
- is general
- is uniform general

Unlabeled Digraphs Let G = (V, E, #), $u \in V$. $N^+(u) := \{v \in V \mid \#((u, v)) > 0\}$.

Pointer-Push&Pull Unlabeled Digraphs Let G = (V, E, #), $u \in V$. $N^+(u) := \{v \in V \mid \#((u, v)) > 0\}$.

Algorithm 2 Unlabeled Pointer-Push&Pull: $\tau_u : \mathcal{G}_u \rightsquigarrow \mathcal{G}_u$

1:
$$v_1 \stackrel{\mathbb{R}}{\leftarrow} V$$

2: **if** random event with probability $\frac{|N^+(v_1)|}{d}$ occurs **then**
3: $v_2 \stackrel{\mathbb{R}}{\leftarrow} N^+(v_1)$
4: **if** random event with probability $\frac{|N^+(v_2)|}{d}$ occurs **then**
5: $v_3 \stackrel{\mathbb{R}}{\leftarrow} N^+(v_2)$
6: $\#((v_1, v_2)) := \#((v_1, v_2)) - 1$
7: $\#((v_2, v_3)) := \#((v_2, v_3)) - 1$
8: $\#((v_2, v_1)) := \#((v_2, v_1)) + 1$
9: $\#((v_1, v_3)) := \#((v_1, v_3)) + 1$

Unlabeled Digraphs

Let
$$\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d \text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$$

Unlabeled Digraphs

Let
$$\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$$

Lemma

$$\forall G, G' \in \mathcal{G}_u : \Pr(\tau_u(G) = G') = \Pr(\tau_u(G') = G).$$

Unlabeled Digraphs

Let
$$\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d \text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}$$

Lemma

$$\forall G, G' \in \mathcal{G}_u : \Pr(\tau_u(G) = G') = \Pr(\tau_u(G') = G).$$

Proof.

Suppose G' is reached from G using the path (v_i, v_j, v_k) .

Unlabeled Digraphs

Let
$$\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d \text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}$$

Lemma

$$\forall G, G' \in \mathcal{G}_u : \Pr(\tau_u(G) = G') = \Pr(\tau_u(G') = G).$$

Proof.

Suppose G' is reached from G using the path (v_i, v_j, v_k) . \Rightarrow G can be reached from G' exactly with (v_i, v_i, v_k) .

Unlabeled Digraphs

Let
$$\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d \text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}$$

Lemma

$$\forall G, G' \in \mathcal{G}_u : \Pr(\tau_u(G) = G') = \Pr(\tau_u(G') = G).$$

Proof.

Suppose G' is reached from G using the path (v_i, v_j, v_k) . \Rightarrow G can be reached from G' exactly with (v_j, v_i, v_k) . $\Rightarrow \Pr(\tau_u(G) = G') = \frac{1}{n} \cdot \frac{1}{d} \cdot \frac{1}{d} = \Pr(\tau_u(G') = G)$

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Lemma

Let $G, G' \in \mathcal{G}_u$. G' can be reached from G with at most 10nd Pointer-Push&Pull operations.

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Lemma

Let $G, G' \in \mathcal{G}_u$. G' can be reached from G with at most 10nd Pointer-Push&Pull operations.

Proof.

Let G = (V, E, #) with $V = \{v_1, ..., v_n\}$.

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Lemma

Let $G, G' \in \mathcal{G}_u$. G' can be reached from G with at most 10nd Pointer-Push&Pull operations.

Proof. Let G = (V, E, #) with $V = \{v_1, \dots, v_n\}$. Define $G_c := (V, E, \#_c)$ with:

$$\forall u \in V : \#_c((u, v_1)) = d,$$

$$\forall u \in V, v \in V \setminus \{v_1\} : \#_c((u, v)) = 0.$$

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Lemma

Let $G, G' \in \mathcal{G}_u$. G' can be reached from G with at most 10nd Pointer-Push&Pull operations.

Proof. Let G = (V, E, #) with $V = \{v_1, \ldots, v_n\}$. Define $G_c := (V, E, \#_c)$ with:

$$\forall u \in V : \#_c((u, v_1)) = d,$$

$$\forall u \in V, v \in V \setminus \{v_1\} : \#_c((u, v)) = 0.$$

 \Rightarrow To show: G_c can be reached from G with at most 5ndPointer-Push&Pull operations.

12 / 28

Unlabeled Digraphs

Case 1: $\exists j \in \{2, ..., n\} : \#((v_1, v_j)) > 0$

Unlabeled Digraphs

Case 1: $\exists j \in \{2, ..., n\} : \#((v_1, v_j)) > 0$

Case 1.1: $j \neq k \neq 1$

Unlabeled Digraphs

Case 1: $\exists j \in \{2, ..., n\} : \#((v_1, v_j)) > 0$

Case 1.1: $j \neq k \neq 1$ Case 1.2:

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, ..., n\} : \#((v_1, v_j)) = 0$

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, ..., n\} : \#((v_1, v_j)) = 0$ **Case 2.1:**

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, ..., n\} : \#((v_1, v_j)) = 0$ **Case 2.1:**

 $1 \neq j \neq k \neq 1$

14 / 28

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, ..., n\} : \#((v_1, v_j)) = 0$ **Case 2.1:**

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, ..., n\} : \#((v_1, v_j)) = 0$ **Case 2.1:**

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, ..., n\} : \#((v_1, v_j)) = 0$ **Case 2.1:**

Unlabeled Digraphs

Case 2: $\#((v_1, v_1)) = d, \forall j \in \{2, ..., n\} : \#((v_1, v_j)) = 0$ **Case 2.1:**

 $\begin{array}{l} \text{Unlabeled Digraphs} \\ \text{Let } \mathcal{G}_u := \left\{ \begin{array}{c} G \end{array} \middle| \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right. \end{array}$

Theorem

$$orall G, G' \in \mathcal{G}_u : \lim_{k o \infty} \Pr\left(au_u^k(G) = G'
ight) = rac{1}{|\mathcal{G}_u|}$$

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Theorem

$$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr\left(\tau_u^k(G) = G'\right) = \frac{1}{|\mathcal{G}_u|}$$

Proof.

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Theorem

$$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr\left(\tau_u^k(G) = G'\right) = \frac{1}{|\mathcal{G}_u|}$$

Proof.

• *T* is symmetric

$$\Rightarrow \left(\frac{1}{|\mathcal{G}_u|}, \dots, \frac{1}{|\mathcal{G}_u|}\right) T = \left(\frac{1}{|\mathcal{G}_u|}, \dots, \frac{1}{|\mathcal{G}_u|}\right) \text{ is stationary distribution}$$

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Theorem

$$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr\left(\tau_u^k(G) = G'\right) = \frac{1}{|\mathcal{G}_u|}$$

Proof.

- *T* is symmetric $\Rightarrow \left(\frac{1}{|\mathcal{G}_u|}, \dots, \frac{1}{|\mathcal{G}_u|}\right) T = \left(\frac{1}{|\mathcal{G}_u|}, \dots, \frac{1}{|\mathcal{G}_u|}\right) \text{ is stationary distribution}$
- Markov chain is irreducible

Unlabeled Digraphs

Let $\mathcal{G}_u := \begin{cases} G & \text{is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{cases}$

Theorem

$$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr\left(\tau_u^k(G) = G'\right) = \frac{1}{|\mathcal{G}_u|}$$

Proof.

- *T* is symmetric $\Rightarrow \left(\frac{1}{|\mathcal{G}_u|}, \dots, \frac{1}{|\mathcal{G}_u|}\right) T = \left(\frac{1}{|\mathcal{G}_u|}, \dots, \frac{1}{|\mathcal{G}_u|}\right)$ is stationary distribution
- Markov chain is irreducible
- T has some non-zero diagonal entries
 - \Rightarrow Markov chain is aperiodic

Edge Labeled Digraphs

Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled *d*-out-regular multi-digraph G = (V, E) is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v, i) \mid u, v \in V, i \in \{1, \ldots, d\}\}$ with:

$$\forall u \in V \forall i \in \{1, \ldots, d\} \exists ! N^+(u, i) \in V : (u, N^+(u, i), i) \in E.$$

Edge Labeled Digraphs

Definition (Edge Labeled Multi-Digraph)

An edge labeled *d*-out-regular multi-digraph G = (V, E) is defined by a node set $V = \{v_1, \ldots, v_n\}$ and a set of directed edges $E \subseteq \{(u, v, i) \mid u, v \in V, i \in \{1, \ldots, d\}\}$ with:

 $\forall u \in V \forall i \in \{1, \ldots, d\} \exists ! N^+(u, i) \in V : (u, N^+(u, i), i) \in E.$

16 / 28

Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the set of all edge labeled d-out-regular multi-digraphs describing G when omitting the edge labels.

Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the set of all edge labeled d-out-regular multi-digraphs describing G when omitting the edge labels.

Edge Labeled Digraphs

Definition (Equivalence Class)

Let G be an unlabeled d-out-regular multi-digraph. [G] denotes the set of all edge labeled d-out-regular multi-digraphs describing G when omitting the edge labels.

Edge Labeled Digraphs

Let $\mathcal{G}_l := \left\{ G \middle| \begin{array}{c} G \text{ is an edge labeled weakly-connected} \\ d\text{-out-regular multi-digraph with } n \text{ nodes} \end{array} \right\}$.

Edge Labeled Digraphs

Let $\mathcal{G}_l := \left\{ G \middle| \begin{array}{c} G \text{ is an edge labeled weakly-connected} \\ d\text{-out-regular multi-digraph with } n \text{ nodes} \end{array} \right\}$.

Algorithm 4 Labeled Pointer-Push&Pull: $\tau_I : \mathcal{G}_I \rightsquigarrow \mathcal{G}_I$

1:
$$v_1 \stackrel{R}{\leftarrow} V$$

2: $i \stackrel{R}{\leftarrow} \{1, \dots, d\}$
3: $v_2 := N^+(v_1, i)$
4: $j \stackrel{R}{\leftarrow} \{1, \dots, d\}$
5: $v_3 := N^+(v_2, j)$
6: $E := (E \setminus \{(v_1, v_2, i), (v_2, v_3, j)\}) \cup \{(v_2, v_1, j), (v_1, v_3, i)\}$

Edge Labeled Digraphs Let $\mathcal{G}_l := \begin{cases} G & G \text{ is an edge labeled weakly-connected} \\ d\text{-out-regular multi-digraph with } n \text{ nodes} \end{cases}$

- As before: τ_l is
- sound
- feasible
- general
- uniform general

Edge Labeled Digraphs Let $\mathcal{G}_l := \begin{cases} G & G \\ d$ -out-regular multi-digraph with n nodes

- As before: τ_l is
- sound
- feasible
- general
- uniform general

Let $\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

Theorem

$$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr\left(\tau_l^k(G) = G'\right) = \frac{|[G']|}{|\mathcal{G}_l|}.$$

Pointer-Push&Pull

 $\begin{array}{l} \mathsf{Edge \ Labeled \ Digraphs} \\ \mathsf{Let \ } \mathcal{G}_{I} := \left\{ \begin{array}{c|c} G & G \ is \ an \ edge \ labeled \ weakly-connected \\ d\text{-out-regular \ multi-digraph \ with \ } n \ nodes \end{array} \right. \end{array}$

- As before: τ_I is
- sound
- feasible
- general
- uniform general

Let $\mathcal{G}_u := \left\{ G \middle| \begin{array}{c} G \text{ is a weakly-connected } d\text{-out-regular} \\ \text{multi-digraph with } n \text{ nodes} \end{array} \right\}.$

Theorem

$$\forall G, G' \in \mathcal{G}_u : \lim_{k \to \infty} \Pr\left(\tau_l^k(G) = G'\right) = \frac{|[G']|}{|\mathcal{G}_l|}.$$

 \Rightarrow A particular simple digraph is more probable than a particular multi-digraph.

19 / 28

Simple Graphs

Simple Graphs

Pointer-Push&Pull cannot be restricted to simple graphs:

- is sound
- is feasible
- is general
- is uniform general

- is sound
- is feasible
- is general
- is uniform general

- Four peers have to participate actively
- Digraphs are sufficient in practice

Implementation of Pointer-Push&Pull

Implementation of Pointer-Push&Pull

- 1. v_1 requests a random neighbor from v_2
- 2. v_2 replaces v_3 by v_1 in neighborhood list and sends ID of v_3 to v_1
- 3. v_1 receives ID of v_3 from v_2 and replaces v_2 by v_3 in neighborhood list

Implementation of Pointer-Push&Pull

- 1. v_1 requests a random neighbor from v_2
- 2. v_2 replaces v_3 by v_1 in neighborhood list and sends ID of v_3 to v_1
- 3. v_1 receives ID of v_3 from v_2 and replaces v_2 by v_3 in neighborhood list
- \Rightarrow only two network operations
- \Rightarrow no additional overhead to periodical neighborhood verification

Advantage of Pointer-Push&Pull

Advantage of Pointer-Push&Pull

 $\label{eq:pointer-Push} \ensuremath{\mathbb{P}}\xspace{\ensuremath{\mathbb{P}}\xs$

- constant and small out-degree
- Iogarithmic diameter
- high connectivity

Advantage of Pointer-Push&Pull

 $\label{eq:pointer-Push} \ensuremath{\mathbb{P}}\xspace{\ensuremath{\mathbb{P}}\xs$

- constant and small out-degree
- Iogarithmic diameter
- high connectivity

Open Problems:

- Convergence rate
 - \Box $O(n \log n)$ supposed
 - Simulations indicate quick convergence
- Similar operation for simple digraphs

Example: 3nuts

Example: 3nuts

Data tree: Prefix tree of data identities

Example: 3nuts

Example: 3nuts

Example: 3nuts

Example: 3nuts

Example: 3nuts

Network tree:

25 / 28

Example: 3nuts

Example: 3nuts

Network tree:

For each random network a peer has to save:

random neighbors

Example: 3nuts

Network tree:

For each random network a peer has to save:

- random neighbors
- branch links to each child
 - random branch links
 - local branch links

Example: 3nuts

Network tree:

For each random network a peer has to save:

- random neighbors
- branch links to each child
 - $\hfill\square$ random branch links
 - local branch links
- responsible peers

Example: 3nuts

Example: 3nuts

- maintain truly random networks
 - \Rightarrow robustness

Example: 3nuts

- maintain truly random networks ⇒ robustness
- spread information among peers, e.g. tree structure, weights

Example: 3nuts

- maintain truly random networks ⇒ robustness
- spread information among peers, e.g. tree structure, weights
- update random branch links and guarantee them to be truly random

Example: 3nuts

- maintain truly random networks ⇒ robustness
- spread information among peers, e.g. tree structure, weights
- update random branch links and guarantee them to be truly random
- measure round trip times and find good local branch links

Example: 3nuts

Example: 3nuts

Example: 3nuts

Example: 3nuts

Example: 3nuts

- Use random branch links
 - \Rightarrow Number of hops in 3nuts with *n* peers is in $O(\log n)$ with high probability
- Use local branch links
 - \Rightarrow Experimental evaluation shows that this can benefit routing