Point-Line Minimal Problems
 for 3 Cameras with Partial Visibility

Kathlén Kohn
KTH Stockholm

joint work with Timothy Duff (Georgia Tech), Anton Leykin (Georgia Tech) \& Tomas Pajdla (CTU in Prague)

Reconstruct 3D scenes and camera poses from 2D images

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

We use calibrated perspective cameras:
each such camera is represented by a matrix $[R \mid t]$, where $R \in \mathrm{SO}(3)$ and $t \in \mathbb{R}^{3}$

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

II - XVII

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C}.
(Given 2 images, a solution is 5 points in 3D and 2 camera poses.).

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C}.
(Given 2 images, a solution is 5 points in 3D and 2 camera poses.).
\Rightarrow The 5-Point-Problem is a minimal problem!

Another minimal problem with partial visibility

- Given: 3 images like this:

- Recover: 3 camera poses and 3D coordinates of 2 points and 6 lines with the incidences:

Another minimal problem

with partial visibility

- Given: 3 images like this:

- Recover: 3 camera poses and 3D coordinates of 2 points and 6 lines with the incidences:

This problem has 240 solutions over \mathbb{C}.
(solution $=3$ camera poses and 3D coordinates of points and lines)
\Rightarrow It is a minimal problem!

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines,
- for each camera $c \in\{1, \ldots, m\}$, sets $\mathcal{P}_{c} \& \mathcal{L}_{c}$ of observed points \& lines.

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines,
- for each camera $c \in\{1, \ldots, m\}$, sets $\mathcal{P}_{c} \& \mathcal{L}_{c}$ of observed points \& lines.

Definition

A PLP is minimal if, given m generic 2D-images, where the c-th image consists of the points and lines in \mathcal{P}_{c} and \mathcal{L}_{c} satisfying the incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}.
(solution $=m$ camera poses and 3D coordinates of p points and ℓ lines satisfying the incidences \mathcal{I})

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines,
- for each camera $c \in\{1, \ldots, m\}$, sets $\mathcal{P}_{c} \& \mathcal{L}_{c}$ of observed points \& lines.

Definition

A PLP is minimal if, given m generic 2D-images, where the c-th image consists of the points and lines in \mathcal{P}_{c} and \mathcal{L}_{c} satisfying the incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}.
(solution $=m$ camera poses and 3D coordinates of p points and ℓ lines satisfying the incidences \mathcal{I})

Can we list all minimal PLPs?

 How many solutions do they have?
30 Minimal PLPs with Complete Visibility

What about Partial Visibility?

1. Minimal PLPs with complete visibility have at most 6 cameras.

What about Partial Visibility?

1. Minimal PLPs with complete visibility have at most 6 cameras. Minimal PLPs with partial visibility exist for arbitrarily many cameras!

What about Partial Visibility?

1. Minimal PLPs with complete visibility have at most 6 cameras. Minimal PLPs with partial visibility exist for arbitrarily many cameras!
2. Even for a fixed number of cameras, minimal PLPs with partial visibility are much harder to classify than those with complete visibility!

Assumptions

1. $m=3$ cameras
2.
3.
4.

Assumptions

1. $m=3$ cameras
2. Every point or line is observed by at least one camera.
3.
4.

Assumptions

1. $m=3$ cameras
2. Every point or line is observed by at least one camera.
3. Each intersection point of 2 lines is observed by all cameras which see both lines.
4.

Assumptions

1. $m=3$ cameras
2. Every point or line is observed by at least one camera.
3. Each intersection point of 2 lines is observed by all cameras which see both lines.
4. Each line is adjacent to at most one point.
ingrediences / local features:

VII - XVII

Assumptions

1. $m=3$ cameras
2. Every point or line is observed by at least one camera.
3. Each intersection point of 2 lines is observed by all cameras which see both lines.
4. Each line is adjacent to at most one point.
ingrediences / local features:

We call a PLP satisfying these assumptions a PL1P in 3 views.

> VII - XVII

Assumptions

1. $m=3$ cameras
2. Every point or line is observed by at least one camera.
3. Each intersection point of 2 lines is observed by all cameras which see both lines.
4. Each line is adjacent to at most one point.
ingrediences / local features:

We call a PLP satisfying these assumptions a PL1P in 3 views.
There are infinitely many minimal PL1Ps in 3 views!!

> VII - XVII

Reduced PL1Ps

From a PL1P Π one can obtain a new PL1P Π^{\prime} by forgetting some points and lines (both in 3D-space and in the camera views).

$$
\begin{aligned}
& \text { (3D-arrangement, cam } \left.1, \mathrm{cam}_{2}, \mathrm{cam}_{3}\right) \longmapsto \text { take pictures }\left(\text { pic }_{1}, \text { pic }_{2}, \text { pic }_{3}\right) \\
& \text { forget } \downarrow \square{ }^{\text {forget }} \\
& \left(3 \mathrm{D} \text {-arrangement }{ }^{\prime}, \text { cam }_{1}, \text { cam }_{2}, \mathrm{cam}_{3}\right) \longmapsto \text { take pictures }\left(\text { pic }_{1}^{\prime}, \text { pic }_{2}^{\prime}, \text { pic }_{3}^{\prime}\right)
\end{aligned}
$$

Reduced PL1Ps

From a PL1P Π one can obtain a new PL1P Π^{\prime} by forgetting some points and lines (both in 3D-space and in the camera views).

$$
\begin{aligned}
& \text { (3D-arrangement, cam } \left.1, \mathrm{cam}_{2}, \mathrm{cam}_{3}\right) \longmapsto \text { take pictures }\left(\text { pic }_{1}, \text { pic }_{2}, \text { pic }_{3}\right) \\
& \text { forget } \downarrow \downarrow{ }^{\text {forget }} \\
& \left(3 \mathrm{D} \text {-arrangement }{ }^{\prime}, \text { cam }_{1}, \text { cam }_{2}, \mathrm{cam}_{3}\right) \longmapsto \text { take pictures } \longrightarrow\left(\text { pic }_{1}^{\prime}, \text { pic }_{2}^{\prime}, \text { pic }_{3}^{\prime}\right)
\end{aligned}
$$

Definition

We say that Π is reducible to Π^{\prime} if

1. both are minimal,
2.
3.

Reduced PL1Ps

From a PL1P Π one can obtain a new PL1P Π^{\prime} by forgetting some points and lines (both in 3D-space and in the camera views).

$$
\begin{aligned}
& \text { (3D-arrangement, cam } \left.1, \mathrm{cam}_{2}, \mathrm{cam}_{3}\right) \stackrel{\text { take pictures }}{\longrightarrow}\left(\text { pic }_{1}, \text { pic }_{2}, \text { pic }_{3}\right) \\
& \text { forget } \downarrow \downarrow{ }^{\text {forget }} \\
& \left(3 \mathrm{D} \text {-arrangement }{ }^{\prime}, \text { cam }_{1}, \text { cam }_{2}, \mathrm{cam}_{3}\right) \longmapsto \text { take pictures } \longrightarrow\left(\text { pic }_{1}^{\prime}, \text { pic }_{2}^{\prime}, \text { pic }_{3}^{\prime}\right)
\end{aligned}
$$

Definition

We say that Π is reducible to Π^{\prime} if

1. both are minimal,
2. for each forgotten point, at most one of its pins is kept, and 3.

Reduced PL1Ps

From a PL1P Π one can obtain a new PL1P Π^{\prime} by forgetting some points and lines (both in 3D-space and in the camera views).

$$
\begin{aligned}
& \text { (3D-arrangement, cam } \left.1, \mathrm{cam}_{2}, \mathrm{cam}_{3}\right) \stackrel{\text { take pictures }}{\longrightarrow}\left(\text { pic }_{1}, \text { pic }_{2}, \text { pic }_{3}\right) \\
& \text { forget } \downarrow \downarrow{ }^{\text {forget }} \\
& \left(3 \mathrm{D} \text {-arrangement }{ }^{\prime}, \text { cam }_{1}, \mathrm{cam}_{2}, \mathrm{cam}_{3}\right) \longmapsto \text { take pictures }\left(\text { pic }_{1}^{\prime}, \text { pic }_{2}^{\prime}, \text { pic }_{3}^{\prime}\right)
\end{aligned}
$$

Definition

We say that Π is reducible to Π^{\prime} if

1. both are minimal,
2. for each forgotten point, at most one of its pins is kept, and
3. for generic pictures $\left(\mathrm{pic}_{1}, \mathrm{pic}_{2}, \mathrm{pic}_{3}\right)$,
a generic solution of Π^{\prime} on input ($\mathrm{pic}_{1}^{\prime}, \mathrm{pic}_{2}^{\prime}$, pic $_{3}^{\prime}$) can be lifted to a solution of Π on input $\left(\mathrm{pic}_{1}, \mathrm{pic}_{2}, \mathrm{pic}_{3}\right)$.

Reduced PL1Ps

Definition

We say that a PL1P is reduced if it is not reducible to any other PL1P.

Reduced PL1Ps

Definition

We say that a PL1P is reduced if it is not reducible to any other PL1P.
There are finitely many reduced minimal PL1Ps in 3 views!!

Reduced PL1Ps

Definition

We say that a PL1P is reduced if it is not reducible to any other PL1P.
There are finitely many reduced minimal PL1Ps in 3 views!!

Proposition

If a PL1P is reducible to another PL1P, then both have the same number of solutions (over \mathbb{C}).

Counting Reduced Minimal PL1Ps in 3 views

How do they look?

Theorem

A reduced minimal PL1P in 3 views has ≤ 1 point with ≥ 3 pins.

Counting Reduced Minimal PL1Ps in 3 views

How do they look?

Theorem

A reduced minimal PL1P in 3 views has ≤ 1 point with ≥ 3 pins.
If such a point exists,

- it has ≤ 7 pins,

Counting Reduced Minimal PL1Ps in 3 views

How do they look?

Theorem

A reduced minimal PL1P in 3 views has ≤ 1 point with ≥ 3 pins.
If such a point exists,

- it has ≤ 7 pins,
- and the point and all its pins are viewed by all 3 cameras.

Counting Reduced Minimal PL1Ps in 3 views

How do they look?

Theorem

A reduced minimal PL1P in 3 views has ≤ 1 point with ≥ 3 pins.
If such a point exists,

- it has ≤ 7 pins,
- and the point and all its pins are viewed by all 3 cameras.

All other local features are viewed as follows:

Counting Reduced Minimal PL1Ps in 3 views

How do they look?

Theorem

A reduced minimal PL1P in 3 views has ≤ 1 point with ≥ 3 pins.
If such a point exists,

- it has ≤ 7 pins,
- and the point and all its pins are viewed by all 3 cameras.

All other local features are viewed as follows:

Counting Reduced Minimal PL1Ps in 3 views

How do they look?

Theorem

A reduced minimal PL1P in 3 views has ≤ 1 point with ≥ 3 pins.
If such a point exists,

- it has ≤ 7 pins,
- and the point and all its pins are viewed by all 3 cameras.

All other local features are viewed as follows:

Counting Reduced Minimal PL1Ps in 3 views

Degrees of Freedom

3D
2D

Counting Reduced Minimal PL1Ps in 3 views

Degrees of Freedom

$$
\begin{gathered}
3 \mathbf{D} \\
3+2+2 \\
=7
\end{gathered}
$$

Counting Reduced Minimal PL1Ps in 3 views

Degrees of Freedom

$$
\begin{array}{cc}
\text { 3D } & \text { 2D } \\
& 2+1+1 \\
2+2 & +2 \\
=7 & +2 \\
& =8
\end{array}
$$

Counting Reduced Minimal PL1Ps in 3 views

Counting Reduced Minimal PL1Ps in 3 views

							es of	reedon					
		int	with		0	\bigcirc	ρ	ρ^{\prime}	ρ		-	\bullet	
7	6	5	4	3	1		σ	σ	-	-	\bigcirc	\bigcirc	
		pin			0		\%		$\$ & \downarrow	\bullet		,	
3D 17	15	13	11	9	7	7	5	5	5	5	3	3	4
2D 27	24	21	18	15	12	8	9	8	7	6	6	4	6

Counting Reduced Minimal PL1Ps in 3 views

							ees of	reedom					
		int	with		6	\bigcirc	σ^{\prime}	ρ	ρ		\bullet	\bullet	
7	6	5	4				σ	σ	-	-	\bullet	-	
		pins			\cdots			\downarrow	\searrow		\bullet		\backslash
3D 17	15	13	11	9	7	7	5	5	5	5	3	3	4
2D 27	24	21	18		12	8	9	8	7	6	6	4	6

Lemma: A minimal PL1P in 3 views satisfies: degrees of freedom + camera parameters $=$ degrees of freedom in 3D in 2D

Counting Reduced Minimal PL1Ps in 3 views

Counting Reduced Minimal PL1Ps in 3 views

Permuting single local features...

... in the 3 views changes the PL1P!

Example:

3D

XIII - XVII

Permuting single local features...

... in the 3 views changes the PL1P!

Example:
 3D

But relabeling the views does not change the PL1P.

Counting Reduced Minimal PL1Ps in 3 views

 point with $\begin{array}{lllll}7 & 6 & 5 & 4 & 3\end{array}$ pins| 3D | 17 | 15 | 13 | 11 | 9 | 7 | 7 | 5 | 5 | 5 | 5 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2D | 27 | 24 | 21 | 18 | 15 | 12 | 8 | 9 | 8 | 7 | 6 | 6 | 4 |
| \# | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} | x_{9} | x_{10} | x_{11} | x_{12} | x_{13} |

Counting Reduced Minimal PL1Ps in 3 views

point with				
7 6 5 4 3				
pins				

3D	17	15	13	11	9	7	7	5	5	5	5	3	3

Counting Reduced Minimal PL1Ps in 3 views

point with				
7 6 5 4 3				
pins				

3D	17	15	13	11	9	7	7	5	5	5	5	3	3

Counting Reduced Minimal PL1Ps in 3 views

point with				
7 6 5 4 3				
pins				

Counting Reduced Minimal PL1Ps in 3 views

point with				
7 6 5 4 3				
pins				

Counting Reduced Minimal PL1Ps in 3 views

point with				
7 6 5 4 3				
pins				

3D	17	15	13	11	9	7	7	5	5	5	5	3	3	4
2D	27	24	21	18	15	12	8	9	8	7	6	6	4	6
\#	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$x_{7}^{1}, x_{7}^{2}, x_{7}^{3}$	x_{8}	$x_{9}^{1}, x_{9}^{2}, x_{9}^{3}$	$x_{10}^{1}, \cdots x_{10}^{6} x_{11}^{1}, x_{11}^{2}, x_{11}^{3}$	x_{12}	$x_{13}^{1}, x_{13}^{3}, x_{13}^{3}$	x_{14}	
perm	1	1	1	1	1	1	3	1	3	6	3	1	3	1

$$
\begin{array}{ccc}
17 x_{1}+15 x_{2}+13 x_{3}+11 x_{4}+9 x_{5}+7 x_{6} & +11= & 27 x_{1}+24 x_{2}+21 x_{3}+18 x_{4}+15 x_{5}+12 x_{6} \\
+7\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+5 x_{8}+5\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+5\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) & +8\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+9 x_{8}+8\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+7\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) \\
+5\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+3 x_{12}+3\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+4 x_{14} & & +6\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+6 x_{12}+4\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+6 x_{14}
\end{array}
$$

Counting Reduced Minimal PL1Ps in 3 views

point with				
7 6 5 4 3				
pins				

Every reduced minimal PL1Ps in 3 views yields a non-negative integer solution of this equation!

Counting Reduced Minimal PL1Ps in 3 views

point with				
7 6 5 4 3 pins				

Every reduced minimal PL1Ps in 3 views yields a non-negative integer solution of this equation! Which solutions are minimal reduced PL1Ps?XIV - XV||

Counting Reduced Minimal PL1Ps in 3 views

Every reduced minimal PL1Ps in 3 views yields a non-negative integer solution of

$$
\begin{array}{ccc}
17 x_{1}+15 x_{2}+13 x_{3}+11 x_{4}+9 x_{5}+7 x_{6} & +11= & 27 x_{1}+24 x_{2}+21 x_{3}+18 x_{4}+15 x_{5}+12 x_{6} \\
+7\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+5 x_{8}+5\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+5\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) & +8\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+9 x_{8}+8\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+7\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) \\
+5\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+3 x_{12}+3\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+4 x_{14} & +6\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+6 x_{12}+4\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+6 x_{14}
\end{array}
$$

Counting Reduced Minimal PL1Ps in 3 views

Every reduced minimal PL1Ps in 3 views yields a non-negative integer solution of

$$
\begin{array}{ccc}
17 x_{1}+15 x_{2}+13 x_{3}+11 x_{4}+9 x_{5}+7 x_{6} \quad+11= & 27 x_{1}+24 x_{2}+21 x_{3}+18 x_{4}+15 x_{5}+12 x_{6} \\
+7\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+5 x_{8}+5\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+5\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) & +8\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+9 x_{8}+8\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+7\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) \\
+5\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+3 x_{12}+3\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+4 x_{14} & +6\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+6 x_{12}+4\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+6 x_{14}
\end{array}
$$

- This equation has 845161 non-negative integer solutions.

Counting Reduced Minimal PL1Ps in 3 views

Every reduced minimal PL1Ps in 3 views yields a non-negative integer solution of

$$
\begin{array}{ccc}
17 x_{1}+15 x_{2}+13 x_{3}+11 x_{4}+9 x_{5}+7 x_{6} \quad+11= & 27 x_{1}+24 x_{2}+21 x_{3}+18 x_{4}+15 x_{5}+12 x_{6} \\
+7\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+5 x_{8}+5\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+5\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) & +8\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+9 x_{8}+8\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+7\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) \\
+5\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+3 x_{12}+3\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+4 x_{14} & +6\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+6 x_{12}+4\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+6 x_{14}
\end{array}
$$

- This equation has 845161 non-negative integer solutions.
- Some solutions correspond to PL1Ps which are the same up to relabeling the 3 views.

Counting Reduced Minimal PL1Ps in 3 views

Every reduced minimal PL1Ps in 3 views yields a non-negative integer solution of

$$
\begin{array}{ccc}
17 x_{1}+15 x_{2}+13 x_{3}+11 x_{4}+9 x_{5}+7 x_{6} \quad+11= & 27 x_{1}+24 x_{2}+21 x_{3}+18 x_{4}+15 x_{5}+12 x_{6} \\
+7\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+5 x_{8}+5\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+5\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) & +8\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+9 x_{8}+8\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+7\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) \\
+5\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+3 x_{12}+3\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+4 x_{14} & +6\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+6 x_{12}+4\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+6 x_{14}
\end{array}
$$

- This equation has 845161 non-negative integer solutions.
- Some solutions correspond to PL1Ps which are the same up to relabeling the 3 views.
- So the 845161 solutions describe only 143494 different PL1Ps.

Counting Reduced Minimal PL1Ps in 3 views

Every reduced minimal PL1Ps in 3 views yields a non-negative integer solution of

$$
\begin{array}{ccc}
17 x_{1}+15 x_{2}+13 x_{3}+11 x_{4}+9 x_{5}+7 x_{6} \quad+11= & 27 x_{1}+24 x_{2}+21 x_{3}+18 x_{4}+15 x_{5}+12 x_{6} \\
+7\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+5 x_{8}+5\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+5\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) & +8\left(x_{7}^{1}+x_{7}^{2}+x_{7}^{3}\right)+9 x_{8}+8\left(x_{9}^{1}+x_{9}^{2}+x_{9}^{3}\right)+7\left(x_{10}^{1}+\ldots+x_{10}^{6}\right) \\
+5\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+3 x_{12}+3\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+4 x_{14} & +6\left(x_{11}^{1}+x_{11}^{2}+x_{11}^{3}\right)+6 x_{12}+4\left(x_{13}^{1}+x_{13}^{2}+x_{13}^{3}\right)+6 x_{14}
\end{array}
$$

- This equation has 845161 non-negative integer solutions.
- Some solutions correspond to PL1Ps which are the same up to relabeling the 3 views.
- So the 845161 solutions describe only 143494 different PL1Ps.
- Which of these 143494 PL1Ps are minimal?

Minimality Check

Lemma

A PL1P in 3 views satisfying the integer equation on the previous slide is minimal if and only if the differential of the map
(3D-arrangement, cam ${ }_{1}$, cam $_{2}$, cam $\left._{3}\right) \stackrel{\text { take pictures }}{\longrightarrow}\left(\right.$ pic $_{1}$, pic $_{2}$, pic $\left._{3}\right)$
is surjective at a generic point in its domain.

Minimality Check

Lemma

A PL1P in 3 views satisfying the integer equation on the previous slide is minimal if and only if the differential of the map
$\left(3 \mathrm{D}\right.$-arrangement, cam ${ }_{1}$, cam $_{2}$, cam $\left._{3}\right) \stackrel{\text { take pictures }}{\longrightarrow}\left(\right.$ pic $_{1}$, pic $_{2}$, pic $\left._{3}\right)$ is surjective at a generic point in its domain.

It turns out that only 5707 of the 143494 PL1Ps described by the integer equation are not minimal.

Minimality Check

Lemma

A PL1P in 3 views satisfying the integer equation on the previous slide is minimal if and only if the differential of the map
$\left(3 \mathrm{D}\right.$-arrangement, cam ${ }_{1}$, cam $_{2}$, cam $\left._{3}\right) \stackrel{\text { take pictures }}{\longrightarrow}\left(\right.$ pic $_{1}$, pic $_{2}$, pic $\left._{3}\right)$ is surjective at a generic point in its domain.

It turns out that only 5707 of the 143494 PL1Ps described by the integer equation are not minimal.

Final Result

There are 137787 reduced minimal PL1Ps in 3 views.

Computing the generic number of solutions

Ongoing work

using homotopy continuation and monodromy (state-of-the-art methods in numerical algebraic geometry)

Problem 20 in our list of 137787 minimal problems

has generically 240 solutions

