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Moments of a Polytope

¢ Let P c R? be a full-dimensional polytope.
o up: uniform probability distribution on P

¢ moments

i i P .
m;l,-Z.‘.;d(P) = /Rd W11W22 S de d/,Lp for i, in,...,iq € ZZO

Known:
The list of all moments (mz(P) | Z € Zdzo) uniquely encodes P.

~>Can recover P from its moments.
Caution: The moments are not independent of each other.

Our Goal:
Study the dependencies among the moments!
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Moment Varieties

o We assume: P C R? is full-dimensional, simplicial, and has n vertices
& We can vary the vertices of P locally without changing the
combinatorial type P of P

~» mz(P) is a locally defined function of the vertex coordinates

~> For every combinatorial type P and every finite subset A C Z‘;O,
we have a rational function

mp.a (Rd>" > RMI,
Pr—s{mall)) - 4
- . dxn A1
¢ We assume: 0 € A~ mp 4:C - P¢
¢ Moment variety

M(P) := mp_4 (CIxm) c P
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Example: Line Segments

o Let P—|ab] = RE

1 B 1 pitl _ i+l
= m;(P} = niiEeD— b—a/ w'dw = T T

= i—|1—1 (ai+ai_1b+ai_2b2+...—|—bi)

L2 r
= My ineSegments,{0,1,...,r} ol )

(a, b) — (mg(a, b) : my(a,b): ...: m(a,b))

¢ Myo,,.. ry(LineSegments) is a surface in P"
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Example: Line Segments

Moment surface Mg 5 3)(LineSegments) C P3 in affine chart {mg = 1}

o Defined by Zmi’ — 3mgmymy + mgm3 =0

# Singular along {mg = m; = 0}

+ Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0
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Example: Quadrilaterals

Let' A :=HT e ZS i [ 2
Can we compute the moment hypersurface 4
Miglletige B e
Observations:

The defining equation of M 4(0) is
¢ homogeneous with respect to the Z3-grading given by

degree(mj,;,) = (1, i1, i),

& invariant under the natural action of the affine group Aff,.
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Example: Quadrilaterals

Using monodromy methods from numerical algebraic geometry, we compute
that the defining equation of M 4(0J) C P? has Z3-degree (18,12,12).

Proposition (K., Shapiro, Sturmfels)
The invariant ring R[mz | T € A]A"2 is generated by 6 invariants:

Moo s t h g )
Z3-degree (1,0,0) (4,4,4) (6,6.6) (3,2,2) (8,6,6) (12.9,9)
# terms 1 25 103 5 168 892

We use the moments of various random quadrilaterals to interpolate the
defining equation of M 4(0) C P*:
2125764 h® + 5484996 mZyh*s — 1574640 moogh® + 364500 m3,h°t

+ 3458700 migyh?s> — 2041200ma,ghs + 472500mgyhst — 122500mSys° + 291600m3,g>
—135000mgogt + 15625miyt>.

This polynomial has 5100 terms in the mj .
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The moments of order < 3 of probability measures on the triangle A C R?
whose densities are linear functions form a hypersurface in P° of Z3-degree
(52,36,36):

12288754756878336m'0s% — 125913170530271232h° m**s® — 11555266180939776hm'5s” t — 423605444226048m 0 s +2
—242587475329941504h* m?s” — 67888179490848768h° m3s0t — 2253544388206704h> m'*s° t? + 92156256976896hm °s* ¢
+4239929831616m'0s3t* — 2425179321925632ghm*3s” + 767341894828032gm *s®t — 1302706722212675584h° m'0s°
—108262506929061888h° m1s°t + 673312350928806h* m'2s*t? + 535497484271616h° m*3s3t> 4 31959518257152h% m14s? ¢4
+440798423040hm ™5 st® + 195036798885543936gh° m'1s® — 410140620619776gh® m'2s°t — 412398826108747776gh% mPs>t
—2360537593675776ghm™3s* t2 — 89805332054016gm™*s3t3 — 486870353365172224h m®s® + 6819936693387264h" m?s*t
+204227339850547201° m'0s3 2 + 2782917213290496h° m™ s> + 58246341746688h* m'%st* — 587731230720h° m*3t
+3602104581095424g2 m*?s® — 157746980481662976gh° m'

—668738492301312gh° m'2s2 3

MgzsSet

mﬁs
+58678654946770944g2 h>m'%s® + 16167862146170880g2 hm'!s*t + 705486447968256g° m'%s> > — 1103687847816200192gh" m
+13931406950400gh°> m*! £

— 79828890012352512gh* m'%s*t — 10700934975848448gh°> m*! 53 2
— 10448555212800ghm*3st* + 275499014400gm**t> + 1321196639636946944h'0 m®s*
+814698134331457536h7 m’ s>t + 92179893357379584h° mPs?t2 + 2541749079638016h" m%st> — 13792092880896h° m'0 t*
2
t* — 44584171418419200gh° m

4

9

6
+7839053087502237696h12 m* s> + 1352219532013338624h' 1 m>s>t + 51427969540816896h° m®st? — 147941222252544h° m” ¢3
T A0 9 _5
—3265173504000g2m'2+* — 5301992678571900928gh° m

2 — 9685512225m™0¢% — 1132386035171328gh* m'0st3
+356552602772570112g2 h* m®s* + 65355404946702336g2 h> m?s3t + 5201278745444352g2 h2 m10s2+2
— 084505782412247040gh® m®s?t — 37440870596739072gh” m” st?
—33414364526542848g° hm?s* — 2441030167166976g° m'%s> t + 1297818789047435264g2 h® m®s® + 235088951956733952g2 h° m” s>
+8250658482290688g2 h* m®st? — 132090377011200g2h3m° 3 — 7123133303988682752gh'!

+ 99067782758400g% hm*! st
+260713381625856gh° m® 3 + 7163300458867617792h'* m?s? + 495888540219998208h'% m>st — 613682107121664h'2 m* t2

6
+2079004689432576gh° m° t2 + 1846757322198614016h'%s — 1263888616128512002> h>m’

— 506754841838616576gh'0 m* st
s3 — 17847573389770752g°% h® m
—469654673817600g°> hm°st? + 20639121408000g° m'0t> + 2504242435278176256g2 h° m*s? + 183620365983940608g2h m° st

852t
—184809114147225652hOmC t? — 2445243491429646336gh"> ms -+ 5610807836540928gh'2 m?t + 3143555283419136g* m® s>
—408993036765233152g>h° m®s®> — 26702361435045888g> h* m® st + 626206231756800g°>h>m’ t? + 1246806603479384064g2 h'0 m?s
—9737274975584256g2 h° m> t + 22822562857746432g* > m®s? + 1113255523123200g hm” st — 73383542784000g* m®t2
—200841218941026304g> h” m3s + 5822326385934336° hOm™*t — 12824703626379264g2h'2 + 32389413531025408g" h* m*s
—1484340697497600g* h> m®t + 15109648742375424g° h°m — 1055531162664960g° hm°s + 139156940390400g° m®t
—68785447433666565* h® m? + 1407374883553280g° h>m> — 109951162777600g° m*.
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T + d _d+1 )
2 ( Z,d >'mI(A")'tI_ H1—<Xk,t>
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Generating Functions

Lemma (Gravin,Pasechnik,Shapiro,Shapiro / Baldoni,Berline,De Loera,Képpe,Vergne)

Let Ay C RY be a d-dimensional simplex with vertices x1, X2, . .., Xd+1.
d+1
|Z| + d 1
E : AL = | | S e
( T et 1— (x, t)
Tezs, k=1

Example (d = 1): A; = [a,b] C R!

o0

: . 1
R i e

i=0
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Generating Functions

Proposition (K., Shapiro, Sturmfels)
Let P C RY be a convex polytope with vertices x1, xa, . . . , X,

gl .
E (Ld) =) = )

d
Tezd,

The adjoint polynomial adjp(t) of P was introduced by Joe Warren in 1996
to define barycentric coordinates on P. It was first defined for polygons by
Wachspress in 1975:
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The Adjoint of a Polygon

Definition (Wachspress)

The adjoint Ap of a polygon P C IP? is the minimal degree curve
passing through the intersection points of pairs of lines
containing non-adjacent edges of P.

79\/ (deg Ap = |V(P)| - 3)
Ap

Proposition (Warren)

Wachspress’ adjoint curve Ap of P is defined by Warren's adjoint polynomial
adjp-(t) of the dual polygon P*, i.e. Z(adjp-) = Ap.

(Recall&P* = {t € R |’ e V(P): ety <1})
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The Adjoint of a Polytope
& P: polytope in P with n facets
& Hp: hyperplane arrangement spanned by facets of P
¢ Rp: residual arrangement of linear spaces that are intersections of
hyperplanes in Hp and do not contain any of face of P

2./

/i
adjoint double plane  adjoint quadric surface adjoint_plane
Theorem (K., Ranestad)

If Hp is simple (i.e. through any point in P9 pass < d hyperplanes), there is
a unique hypersurface Ap in P9 of degree n — d — 1 passing through Rp.
Ap is called the adjoint of P. Moreover, Z(adjp-) = Ap.

AlmAz
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