Moment Varieties of Measures on Polytopes

joint works with Kristian Ranestad (Universitetet i Oslo),
Boris Shapiro (Stockholms universitet) and Bernd Sturmfels (UC Berkeley / MPI MiS Leipzig)

$$
\text { July 10, } 2019
$$

Moments of a Polytope

- Let $P \subset \mathbb{R}^{d}$ be a full-dimensional polytope.
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{i_{1} i_{2} \ldots i_{d}}(P):=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{d}^{i_{d}} \mathrm{~d} \mu_{P} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Moments of a Polytope

- Let $P \subset \mathbb{R}^{d}$ be a full-dimensional polytope.
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{i_{1} i_{2} \ldots i_{d}}(P):=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{d}^{i_{d}} \mathrm{~d} \mu_{P} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Known:

The list of all moments $\left(m_{\mathcal{I}}(P) \mid \mathcal{I} \in \mathbb{Z}_{\geq 0}^{d}\right)$ uniquely encodes P. \rightsquigarrow Can recover P from its moments.

Moments of a Polytope

- Let $P \subset \mathbb{R}^{d}$ be a full-dimensional polytope.
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{i_{1} i_{2} \ldots i_{d}}(P):=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{d}^{i_{d}} \mathrm{~d} \mu_{P} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Known:

The list of all moments $\left(m_{\mathcal{I}}(P) \mid \mathcal{I} \in \mathbb{Z}_{\geq 0}^{d}\right)$ uniquely encodes P.
\rightsquigarrow Can recover P from its moments.
Caution: The moments are not independent of each other.

Our Goal:

Study the dependencies among the moments!

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates
\rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{d}$, we have a rational function

$$
\begin{aligned}
m_{\mathcal{P}, \mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n} & \rightarrow \mathbb{R}^{|\mathcal{A}|} \\
P & \longmapsto\left(m_{\mathcal{I}}(P)\right)_{\mathcal{I} \in \mathcal{A}}
\end{aligned}
$$

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates
\rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{d}$, we have a rational function

$$
\begin{aligned}
m_{\mathcal{P}, \mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n} & \rightarrow \mathbb{R}^{|\mathcal{A}|} \\
P & \longmapsto\left(m_{\mathcal{I}}(P)\right)_{\mathcal{I} \in \mathcal{A}}
\end{aligned}
$$

- We assume: $0 \in \mathcal{A} \rightsquigarrow m_{\mathcal{P}, \mathcal{A}}: \mathbb{C}^{d \times n} \rightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates
\rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{d}$, we have a rational function

$$
\begin{aligned}
m_{\mathcal{P}, \mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n} & \rightarrow \mathbb{R}^{|\mathcal{A}|} \\
P & \longmapsto\left(m_{\mathcal{I}}(P)\right)_{\mathcal{I} \in \mathcal{A}}
\end{aligned}
$$

- We assume: $0 \in \mathcal{A} \rightsquigarrow m_{\mathcal{P}, \mathcal{A}}: \mathbb{C}^{d \times n} \rightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$
- Moment variety

$$
\mathcal{M}_{\mathcal{A}}(\mathcal{P}):=\overline{m_{\mathcal{P}, \mathcal{A}}\left(\mathbb{C}^{d \times n}\right) \subset \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}}
$$

Example: Line Segments

- Let $P=[a, b] \subset \mathbb{R}^{1}$

$$
\begin{aligned}
\Rightarrow m_{i}(P)=m_{i}(a, b) & =\frac{1}{b-a} \int_{a}^{b} w^{i} \mathrm{~d} w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

Example: Line Segments

- Let $P=[a, b] \subset \mathbb{R}^{1}$

$$
\begin{aligned}
\Rightarrow m_{i}(P)=m_{i}(a, b) & =\frac{1}{b-a} \int_{a}^{b} w^{i} \mathrm{~d} w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

$\Rightarrow m_{\text {LineSegments },\{0,1, \ldots, r\}}: \mathbb{C}^{2} \rightarrow \mathbb{P}^{r}$,

$$
(a, b) \longmapsto\left(m_{0}(a, b): m_{1}(a, b): \ldots: m_{r}(a, b)\right)
$$

Example: Line Segments

- Let $P=[a, b] \subset \mathbb{R}^{1}$

$$
\begin{aligned}
\Rightarrow m_{i}(P)=m_{i}(a, b) & =\frac{1}{b-a} \int_{a}^{b} w^{i} \mathrm{~d} w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

$\Rightarrow m_{\text {LineSegments, }\{0,1, \ldots, r\}}: \mathbb{C}^{2} \rightarrow \mathbb{P}^{r}$,

$$
(a, b) \longmapsto\left(m_{0}(a, b): m_{1}(a, b): \ldots: m_{r}(a, b)\right)
$$

- $\mathcal{M}_{\{0,1, \ldots, r\}}($ LineSegments $)$ is a surface in \mathbb{P}^{r}

Example: Line Segments

Moment surface $\mathcal{M}_{\{0,1,2,3\}}($ LineSegments $) \subset \mathbb{P}^{3}$ in affine chart $\left\{m_{0}=1\right\}$

- Defined by $2 m_{1}^{3}-3 m_{0} m_{1} m_{2}+m_{0}^{2} m_{3}=0$

$$
\mathrm{IV}-\mathrm{XI}
$$

Example: Line Segments

Moment surface $\mathcal{M}_{\{0,1,2,3\}}($ LineSegments $) \subset \mathbb{P}^{3}$ in affine chart $\left\{m_{0}=1\right\}$

- Defined by $2 m_{1}^{3}-3 m_{0} m_{1} m_{2}+m_{0}^{2} m_{3}=0$
- Singular along $\left\{m_{0}=m_{1}=0\right\}$

> IV - XI

Example: Line Segments

Moment surface $\mathcal{M}_{\{0,1,2,3\}}($ LineSegments $) \subset \mathbb{P}^{3}$ in affine chart $\left\{m_{0}=1\right\}$

- Defined by $2 m_{1}^{3}-3 m_{0} m_{1} m_{2}+m_{0}^{2} m_{3}=0$
- Singular along $\left\{m_{0}=m_{1}=0\right\}$
- Contains twisted cubic curve (in red) corresponding to degenerate line segments [a, a] of length 0
IV - XI

Example: Quadrilaterals

$$
\text { Let } \mathcal{A}:=\left\{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{2}| | \mathcal{I} \mid \leq 3\right\} \text {. }
$$

Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9} ?$

Example: Quadrilaterals

$$
\text { Let } \mathcal{A}:=\left\{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{2}| | \mathcal{I} \mid \leq 3\right\} \text {. }
$$

Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9} ?$

Observations:

The defining equation of $\mathcal{M}_{\mathcal{A}}(\square)$ is

- homogeneous with respect to the $\cdot \mathbb{Z}^{3}$-grading given by

$$
\operatorname{degree}\left(m_{i_{1} i_{2}}\right)=\left(1, i_{1}, i_{2}\right),
$$

Example: Quadrilaterals

$$
\text { Let } \mathcal{A}:=\left\{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{2}| | \mathcal{I} \mid \leq 3\right\} \text {. }
$$

Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9} ?$

Observations:

The defining equation of $\mathcal{M}_{\mathcal{A}}(\square)$ is

- homogeneous with respect to the $\cdot \mathbb{Z}^{3}$-grading given by

$$
\operatorname{degree}\left(m_{i_{1} i_{2}}\right)=\left(1, i_{1}, i_{2}\right),
$$

- invariant under the natural action of the affine group Aff 2 .

Example: Quadrilaterals

Using monodromy methods from numerical algebraic geometry, we compute that the defining equation of $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ has \mathbb{Z}^{3}-degree $(18,12,12)$.

Example: Quadrilaterals

Using monodromy methods from numerical algebraic geometry, we compute that the defining equation of $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, \mathbf{1 2}, \mathbf{1 2})$.

Proposition (K., Shapiro, Sturmfels)

The invariant ring $\mathbb{R}\left[m_{\mathcal{I}} \mid \mathcal{I} \in \mathcal{A}\right]^{\mathrm{Aff}_{2}}$ is generated by 6 invariants:

	m_{00}	s	t	h	g	j
\mathbb{Z}^{3}-degree	$(1,0,0)$	$(4,4,4)$	$(6,6,6)$	$(3,2,2)$	$(8,6,6)$	$(12,9,9)$
\# terms	1	25	103	5	168	892

Example: Quadrilaterals

Using monodromy methods from numerical algebraic geometry, we compute that the defining equation of $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, \mathbf{1 2}, \mathbf{1 2})$.

Proposition (K., Shapiro, Sturmfels)

The invariant ring $\mathbb{R}\left[m_{\mathcal{I}} \mid \mathcal{I} \in \mathcal{A}\right]^{\mathrm{Aff}_{2}}$ is generated by 6 invariants:

	m_{00}	s	t	h	g	j
\mathbb{Z}^{3}-degree	$(1,0,0)$	$(4,4,4)$	$(6,6,6)$	$(3,2,2)$	$(8,6,6)$	$(12,9,9)$
\# terms	1	25	103	5	168	892

We use the moments of various random quadrilaterals to interpolate the defining equation of $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$:

$$
\begin{aligned}
& 2125764 h^{6}+5484996 m_{00}^{2} h^{4} s-1574640 m_{00} g h^{3}+364500 m_{00}^{3} h^{3} t \\
& +3458700 m_{00}^{4} h^{2} s^{2}-2041200 m_{00}^{3} g h s+472500 m_{00}^{5} h s t-122500 m_{00}^{6} s^{3}+291600 m_{00}^{2} g^{2} \\
& -135000 m_{00}^{4} g t+15625 m_{00}^{6} t^{2} .
\end{aligned}
$$

This polynomial has 5100 terms in the $m_{i_{1} i_{2}}$.

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^{2}$ whose densities are linear functions

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^{2}$ whose densities are linear functions form a hypersurface in \mathbb{P}^{9} of \mathbb{Z}^{3}-degree $(52,36,36)$:

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^{2}$ whose densities are linear functions form a hypersurface in \mathbb{P}^{9} of \mathbb{Z}^{3}-degree

 $(52,36,36)$:$12288754756878336 m^{16} s^{9}-125913170530271232 h^{2} m^{14} s^{8}-11555266180939776 h m^{15} s^{7} t-423695444226048 m^{16} s^{6} t^{2}$ $-242587475329941504 h^{4} m^{12} s^{7}-67888179490848768 h^{3} m^{13} s^{6} t-2253544388296704 h^{2} m^{14} s^{5} t^{2}+92156256976896 h m^{15} s^{4} t^{3}$ $+4239929831616 \mathrm{~m}^{16} s^{3} t^{4}-2425179321925632 \mathrm{ghm}^{13} s^{7}+767341894828032 \mathrm{gm}^{14} s^{6} t-1302706722212675584 h^{6} \mathrm{~m}^{10} s^{6}$
$-108262506929061888 h^{5} m^{11} s^{5} t+673312350928896 h^{4} m^{12} s^{4} t^{2}+535497484271616 h^{3} m^{13} s^{3} t^{3}+31959518257152 h^{2} m^{14} s^{2} t^{4}$ $+440798423040 h m^{15} s t^{5}+195936798885543936 \mathrm{gh}^{3} \mathrm{~m}^{11} s^{6}-410140620619776 \mathrm{gh}^{2} \mathrm{~m}^{12} s^{5} t-412398826108747776 \mathrm{gh}^{6} \mathrm{~m}^{8} s^{3} t$ $-2360537593675776 \mathrm{ghm}^{13} s^{4} t^{2}-89805332054016 \mathrm{gm}^{14} s^{3} t^{3}-486870353365172224 \mathrm{~h}^{8} \mathrm{~m}^{8} s^{5}+6819936693387264 h^{7} \mathrm{~m}^{9} s^{4} t$ $+29422733985054720 h^{6} m^{10} s^{3} t^{2}+2782917213290496 h^{5} m^{11} s^{2} t^{3}+58246341746688 h^{4} m^{12} s t^{4}-587731230720 h^{3} m^{13} t^{5}$ $+3602104581095424 g^{2} m^{12} s^{6}-157746980481662976 \mathrm{gh}^{5} \mathrm{~m}^{9} s^{5}-79828890012352512 \mathrm{gh}^{4} \mathrm{~m}^{10} s^{4} t-10700934975848448 \mathrm{gh}^{3} \mathrm{~m}^{11} s^{3} t^{2}$ $-668738492301312 \mathrm{gh}^{2} \mathrm{~m}^{12} \mathrm{~s}^{2} t^{3}-10448555212800 \mathrm{ghm}^{13} s t^{4}+275499014400 \mathrm{gm}^{14} t^{5}+1321196639636946944 h^{10} \mathrm{~m}^{6} \mathrm{~s}^{4}$ $+814698134331457536 h^{9} m^{7} s^{3} t+92179893357379584 h^{8} m^{8} s^{2} t^{2}+2541749079638016 h^{7} m^{9} s t^{3}-13792092880896 h^{6} m^{10} t^{4}$ $+58678654946770944 g^{2} h^{2} m^{10} s^{5}+16167862146170880 g^{2} h m^{11} s^{4} t+705486447968256 g^{2} \mathrm{~m}^{12} s^{3} t^{2}-1103687847816200192 \mathrm{gh}^{7} \mathrm{~m}^{7} s^{4}$ $+13931406950400 \mathrm{gh}^{3} \mathrm{~m}^{11} t^{4}-44584171418419200 \mathrm{gh}^{5} \mathrm{~m}^{9} s^{2} t^{2}-9685512225 m^{16} t^{6}-1132386035171328 \mathrm{gh}^{4} \mathrm{~m}^{10} s t^{3}$ $+7839053087502237696 h^{12} m^{4} s^{3}+1352219532013338624 h^{11} m^{5} s^{2} t+51427969540816896 h^{10} m^{6} s t^{2}-147941222252544 h^{9} m^{7} t^{3}$ $+356552602772570112 g^{2} h^{4} m^{8} s^{4}+65355404946702336 g^{2} h^{3} m^{9} s^{3} t+5201278745444352 g^{2} h^{2} m^{10} s^{2} t^{2}+99067782758400 g^{2} h m^{11} s t^{3}$ $-3265173504000 \mathrm{~g}^{2} m^{12} t^{4}-5301992678571900928 \mathrm{gh}^{9} m^{5} s^{3}-984505782412247040 \mathrm{gh}^{8} \mathrm{~m}^{6} s^{2} t-37440870596739072 g h^{7} m^{7} s t^{2}$ $+260713381625856 \mathrm{gh}^{6} \mathrm{~m}^{8} t^{3}+7163309458867617792 h^{14} m^{2} s^{2}+495888540219998208 h^{13} m^{3} s t-613682107121664 h^{12} m^{4} t^{2}$ $-33414364526542848 g^{3} h m^{9} s^{4}-2441030167166976 g^{3} m^{10} s^{3} t+1297818789047435264 g^{2} h^{6} m^{6} s^{3}+235088951956733952 g^{2} h^{5} m^{7} s^{2} t$ $+8250658482290688 g^{2} h^{4} m^{8} s t^{2}-132090377011200 \mathrm{~g}^{2} h^{3} m^{9} t^{3}-7123133303988682752 \mathrm{gh}^{11} \mathrm{~m}^{3} \mathrm{~s}^{2}-506754841838616576 \mathrm{gh}^{10} \mathrm{~m}^{4} s t$ $+2079004689432576 \mathrm{gh}^{9} m^{5} t^{2}+1846757322198614016 h^{16} s-126388861612851200 \mathrm{~g}^{3} h^{3} m^{7} s^{3}-17847573389770752 g^{3} h^{2} m^{8} s^{2} t$ $-469654673817600 g^{3} h m^{9} s t^{2}+20639121408000 g^{3} m^{10} t^{3}+2594242435278176256 g^{2} h^{8} m^{4} s^{2}+183620365983940608 g^{2} h^{7} m^{5} s t$ $-1848091141472256 \mathrm{~g}^{2} h^{6} m^{6} t^{2}-2445243491429646336 \mathrm{gh} h^{13} \mathrm{~ms}+5610807836540928 \mathrm{gh}^{12} \mathrm{~m}^{2} t+3143555283419136 \mathrm{~g}^{4} \mathrm{~m}^{8} s^{3}$ $-408993036765233152 g^{3} h^{5} m^{5} s^{2}-26702361435045888 g^{3} h^{4} m^{6} s t+626206231756800 g^{3} h^{3} m^{7} t^{2}+1246806603479384064 g^{2} h^{10} m^{2} s$ $-9737274975584256 \mathrm{~g}^{2} h^{9} m^{3} t+22822562857746432 g^{4} h^{2} m^{6} s^{2}+1113255523123200 g^{4} h^{7} s t-73383542784000 g^{4} m^{8} t^{2}$ $-299841218941026304 g^{3} h^{7} m^{3} s+5822326385934336 g^{3} h^{6} m^{4} t-12824703626379264 g^{2} h^{12}+32389413531025408 g^{4} h^{4} m^{4} s$ $-1484340697497600 g^{4} h^{3} m^{5} t+15199648742375424 g^{3} h^{9} m-1055531162664960 g^{5} h^{5} s+139156940390400 g^{5} m^{6} t$ $-6878544743366656 g^{4} h^{6} m^{2}+1407374883553280 g^{5} h^{3} m^{3}-109951162777600 g^{6} m^{4}$.

Generating Functions

Lemma (Gravin,Pasechnik,Shapiro,Shapiro / Baldoni,Berline,De Loera,Köppe,Vergne) Let $\triangle_{d} \subset \mathbb{R}^{d}$ be a d-dimensional simplex with vertices $x_{1}, x_{2}, \ldots, x_{d+1}$.

$$
\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{d}}\binom{|\mathcal{I}|+d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}\left(\triangle_{d}\right) \cdot t^{\mathcal{I}}=
$$

Generating Functions

Lemma (Gravin,Pasechnik,Shapiro,Shapiro / Baldoni,Berline,De Loera,Köppe,Vergne) Let $\triangle_{d} \subset \mathbb{R}^{d}$ be a d-dimensional simplex with vertices $x_{1}, x_{2}, \ldots, x_{d+1}$.

$$
\sum_{\mathcal{I} \in \mathbb{Z} \geq 0}\binom{|\mathcal{I}|+d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}\left(\triangle_{d}\right) \cdot t^{\mathcal{I}}=\prod_{k=1}^{d+1} \frac{1}{1-\left\langle x_{k}, t\right\rangle}
$$

Generating Functions

Lemma (Gravin,Pasechnik,Shapiro,Shapiro / Baldoni,Berline,De Loera,Köppe,Vergne) Let $\triangle_{d} \subset \mathbb{R}^{d}$ be a d-dimensional simplex with vertices $x_{1}, x_{2}, \ldots, x_{d+1}$.

$$
\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{d}}\binom{|\mathcal{I}|+d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}\left(\triangle_{d}\right) \cdot t^{\mathcal{I}}=\prod_{k=1}^{d+1} \frac{1}{1-\left\langle x_{k}, t\right\rangle}
$$

Example $(d=1): \triangle_{1}=[a, b] \subset \mathbb{R}^{1}$

$$
\sum_{i=0}^{\infty}(i+1) \cdot m_{i} \cdot t^{i}=\frac{1}{(1-a t)(1-b t)}
$$

Generating Functions

Proposition (K., Shapiro, Sturmfels)

Let $P \subset \mathbb{R}^{d}$ be a convex polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$.

$$
\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{d}}\binom{|\mathcal{I}|+d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}}=\frac{\operatorname{adj}_{P}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
$$

Generating Functions

Proposition (K., Shapiro, Sturmfels)

Let $P \subset \mathbb{R}^{d}$ be a convex polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$.

$$
\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{d}}\binom{|\mathcal{I}|+d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}}=\frac{\operatorname{adj}_{P}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
$$

The adjoint polynomial $\operatorname{adj}_{P}(t)$ of P was introduced by Joe Warren in 1996 to define barycentric coordinates on P.

Generating Functions

Proposition (K., Shapiro, Sturmfels)

Let $P \subset \mathbb{R}^{d}$ be a convex polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$.

$$
\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{d}}\binom{|\mathcal{I}|+d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}}=\frac{\operatorname{adj}_{P}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
$$

The adjoint polynomial $\operatorname{adj}_{P}(t)$ of P was introduced by Joe Warren in 1996 to define barycentric coordinates on P. It was first defined for polygons by Wachspress in 1975:

The Adjoint of a Polygon

Definition (Wachspress)

The adjoint \boldsymbol{A}_{P} of a polygon $P \subset \mathbb{P}^{2}$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$$
\left(\operatorname{deg} A_{P}=|V(P)|-3\right)
$$

The Adjoint of a Polygon

Definition (Wachspress)

The adjoint \boldsymbol{A}_{P} of a polygon $P \subset \mathbb{P}^{2}$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

Proposition (Warren)

Wachspress' adjoint curve A_{P} of P is defined by Warren's adjoint polynomial $\operatorname{adj}_{P^{*}}(t)$ of the dual polygon P^{*}, i.e. $Z\left(\operatorname{adj}_{P^{*}}\right)=\boldsymbol{A}_{\boldsymbol{P}}$.
(Recall: $\left.P^{*}=\left\{t \in \mathbb{R}^{n} \mid \forall x \in V(P):\langle x, t\rangle \leq 1\right\}\right)$

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P

The Adjoint of a Polytope

- P: polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P: polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{d} pass $\leq d$ hyperplanes),

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d} with \boldsymbol{n} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{d} pass $\leq d$ hyperplanes),

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d} with \boldsymbol{n} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{d} pass $\leq d$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{d} of degree $n-d-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d} with \boldsymbol{n} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{d} pass $\leq d$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{d} of degree $n-d-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d} with \boldsymbol{n} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

adjoint quadric surface

adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{d} pass $\leq d$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{d} of degree $n-d-1$ passing through \mathcal{R}_{P}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d} with \boldsymbol{n} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

adjoint double plane

adjoint quadric surface

adjoint plane Theorem (K., Ranestad)
If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{d} pass $\leq d$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{d} of degree $n-d-1$ passing through \mathcal{R}_{P}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{d} with \boldsymbol{n} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

adjoint double plane

adjoint quadric surface

adjoint plane Theorem (K., Ranestad)
If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{d} pass $\leq d$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{d} of degree $n-d-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P. Moreover, $Z\left(\operatorname{adj}_{P^{*}}\right)=A_{P}$.

