Moment Varieties of Measures on Polytopes

joint works with Kristian Ranestad (Universitetet i Oslo), Boris Shapiro (Stockholms universitet) and Bernd Sturmfels (UC Berkeley / MPI MiS Leipzig)

July 10, 2019

Moments of a Polytope

- Let $P \subset \mathbb{R}^d$ be a full-dimensional polytope.
- μ_P : uniform probability distribution on P
- moments

$$m_{i_1i_2\dots i_d}(P) := \int_{\mathbb{R}^d} w_1^{i_1} w_2^{i_2} \dots w_d^{i_d} \,\mathrm{d}\mu_P \quad ext{ for } i_1, i_2, \dots, i_d \in \mathbb{Z}_{\geq 0}$$

Moments of a Polytope

- Let $P \subset \mathbb{R}^d$ be a full-dimensional polytope.
- μ_P : uniform probability distribution on P
- moments

$$m_{i_1i_2\dots i_d}(P) := \int_{\mathbb{R}^d} w_1^{i_1} w_2^{i_2} \dots w_d^{i_d} d\mu_P \quad \text{for } i_1, i_2, \dots, i_d \in \mathbb{Z}_{\geq 0}$$

Known:

The list of all moments $(m_{\mathcal{I}}(P) \mid \mathcal{I} \in \mathbb{Z}_{\geq 0}^d)$ uniquely encodes *P*. \rightsquigarrow Can recover *P* from its moments.

Moments of a Polytope

- Let $P \subset \mathbb{R}^d$ be a full-dimensional polytope.
- μ_P : uniform probability distribution on P
- moments

$$m_{i_1i_2\dots i_d}(P) := \int_{\mathbb{R}^d} w_1^{i_1} w_2^{i_2} \dots w_d^{i_d} d\mu_P \quad \text{for } i_1, i_2, \dots, i_d \in \mathbb{Z}_{\geq 0}$$

Known:

The list of all moments $(m_{\mathcal{I}}(P) \mid \mathcal{I} \in \mathbb{Z}_{\geq 0}^d)$ uniquely encodes P. \rightsquigarrow Can recover P from its moments. Caution: The moments are not independent of each other.

Our Goal: Study the dependencies among the moments!

• We assume: $P \subset \mathbb{R}^d$ is full-dimensional, simplicial, and has *n* vertices

We assume: P ⊂ ℝ^d is full-dimensional, simplicial, and has n vertices
We can vary the vertices of P locally without changing the combinatorial type P of P

 $\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates

We assume: P ⊂ ℝ^d is full-dimensional, simplicial, and has n vertices
We can vary the vertices of P locally without changing the combinatorial type P of P

 $\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates \rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^d$, we have a rational function

$$m_{\mathcal{P},\mathcal{A}}: \left(\mathbb{R}^d\right)^n \dashrightarrow \mathbb{R}^{|\mathcal{A}|},$$

 $P\longmapsto (m_{\mathcal{I}}(P))_{\mathcal{I}\in\mathcal{I}}$

We assume: P ⊂ ℝ^d is full-dimensional, simplicial, and has n vertices
We can vary the vertices of P locally without changing the combinatorial type P of P

 $\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates \rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^d$, we have a rational function

$$m_{\mathcal{P},\mathcal{A}}: \left(\mathbb{R}^{d}
ight)^{n} \dashrightarrow \mathbb{R}^{|\mathcal{A}|}, \ P\longmapsto (m_{\mathcal{I}}(P))_{\mathcal{I}\in\mathcal{A}}$$

• We assume: $0 \in \mathcal{A} \rightsquigarrow m_{\mathcal{P},\mathcal{A}} : \mathbb{C}^{d \times n} \dashrightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$

We assume: P ⊂ ℝ^d is full-dimensional, simplicial, and has n vertices
We can vary the vertices of P locally without changing the combinatorial type P of P

 $\rightsquigarrow m_{\mathcal{I}}(P)$ is a locally defined function of the vertex coordinates \rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^d$, we have a rational function

$$egin{aligned} m_{\mathcal{P},\mathcal{A}} &: \left(\mathbb{R}^d
ight)^n \dashrightarrow \mathbb{R}^{|\mathcal{A}|}, \ P &\longmapsto (m_{\mathcal{I}}(P))_{\mathcal{I} \in \mathcal{I}} \end{aligned}$$

• We assume: $0 \in \mathcal{A} \rightsquigarrow m_{\mathcal{P},\mathcal{A}} : \mathbb{C}^{d \times n} \dashrightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$ • Moment variety

 $\overline{\mathcal{M}_{\mathcal{A}}(\mathcal{P}):=\overline{m_{\mathcal{P},\mathcal{A}}\left(\mathbb{C}^{d imes n}
ight)}\subset\mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}}$

• Let $P = [a, b] \subset \mathbb{R}^1$

$$\Rightarrow m_i(P) = m_i(a, b) = \frac{1}{b-a} \int_a^b w^i \, \mathrm{d}w = \frac{1}{i+1} \frac{b^{i+1} - a^{i+1}}{b-a} \\ = \frac{1}{i+1} \left(a^i + a^{i-1}b + a^{i-2}b^2 + \ldots + b^i \right)$$

• Let $P = [a, b] \subset \mathbb{R}^1$

$$\Rightarrow m_i(P) = m_i(a, b) = \frac{1}{b-a} \int_a^b w^i \, \mathrm{d}w = \frac{1}{i+1} \frac{b^{i+1} - a^{i+1}}{b-a}$$
$$= \frac{1}{i+1} \left(a^i + a^{i-1}b + a^{i-2}b^2 + \ldots + b^i \right)$$

 $\Rightarrow \overline{m_{\text{LineSegments},\{0,1,\dots,r\}}: \mathbb{C}^2 \dashrightarrow \mathbb{P}^r, }$ $(a,b) \longmapsto (m_0(a,b): m_1(a,b):\dots:m_r(a,b))$

• Let $P = [a, b] \subset \mathbb{R}^1$

$$\Rightarrow m_i(P) = m_i(a, b) = \frac{1}{b-a} \int_a^b w^i \, \mathrm{d}w = \frac{1}{i+1} \frac{b^{i+1} - a^{i+1}}{b-a}$$
$$= \frac{1}{i+1} \left(a^i + a^{i-1}b + a^{i-2}b^2 + \ldots + b^i \right)$$

 $\Rightarrow \overline{m_{\text{LineSegments},\{0,1,\ldots,r\}}: \mathbb{C}^2 \dashrightarrow \mathbb{P}^r, }$ $(a,b) \longmapsto (m_0(a,b): m_1(a,b): \ldots: m_r(a,b))$

• $\mathcal{M}_{\{0,1,\ldots,r\}}$ (LineSegments) is a surface in \mathbb{P}^r

III - XI

Moment surface $\mathcal{M}_{\{0,1,2,3\}}(\mathsf{LineSegments}) \subset \mathbb{P}^3$ in affine chart $\{m_0=1\}$

• Defined by $2m_1^3 - 3m_0m_1m_2 + m_0^2m_3 = 0$

Moment surface $\mathcal{M}_{\{0,1,2,3\}}(\mathsf{LineSegments}) \subset \mathbb{P}^3$ in affine chart $\{m_0=1\}$

Defined by 2m₁³ - 3m₀m₁m₂ + m₀²m₃ = 0
 <u>Singular</u> along {m₀ = m₁ = 0}

Moment surface $\mathcal{M}_{\{0,1,2,3\}}(\mathsf{LineSegments}) \subset \mathbb{P}^3$ in affine chart $\{m_0=1\}$

- Defined by $2m_1^3 3m_0m_1m_2 + m_0^2m_3 = 0$
- Singular along $\{m_0 = m_1 = 0\}$

 Contains twisted cubic curve (in red) corresponding to degenerate line segments [a, a] of length 0

Let $\mathcal{A} := \{\mathcal{I} \in \mathbb{Z}^2_{\geq 0} \mid |\mathcal{I}| \leq 3\}.$

Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\Box) \subset \mathbb{P}^9$?

Let
$$\mathcal{A} := \{\mathcal{I} \in \mathbb{Z}^2_{\geq 0} \mid |\mathcal{I}| \leq 3\}.$$

Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\Box) \subset \mathbb{P}^9$?

Observations:

The defining equation of $\mathcal{M}_{\mathcal{A}}(\Box)$ is

• homogeneous with respect to the \mathbb{Z}^3 -grading given by

 $\operatorname{degree}(m_{i_1i_2}) = (1, i_1, i_2),$

Let
$$\mathcal{A} := \{\mathcal{I} \in \mathbb{Z}^2_{\geq 0} \mid |\mathcal{I}| \leq 3\}.$$

Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\Box) \subset \mathbb{P}^9$?

Observations:

The defining equation of $\mathcal{M}_{\mathcal{A}}(\Box)$ is

• homogeneous with respect to the \mathbb{Z}^3 -grading given by

 $degree(m_{i_1i_2}) = (1, i_1, i_2),$

invariant under the natural action of the affine group Aff₂.

Using monodromy methods from numerical algebraic geometry, we compute that the defining equation of $\mathcal{M}_{\mathcal{A}}(\Box) \subset \mathbb{P}^9$ has \mathbb{Z}^3 -degree (18, 12, 12).

Using monodromy methods from numerical algebraic geometry, we compute that the defining equation of $\mathcal{M}_{\mathcal{A}}(\Box) \subset \mathbb{P}^9$ has \mathbb{Z}^3 -degree (18, 12, 12).

Proposition (K., Shapiro, Sturmfels)

The invariant ring $\mathbb{R}[m_{\mathcal{I}} \mid \mathcal{I} \in \mathcal{A}]^{Aff_2}$ is generated by 6 invariants:

Using monodromy methods from numerical algebraic geometry, we compute that the defining equation of $\mathcal{M}_{\mathcal{A}}(\Box) \subset \mathbb{P}^9$ has \mathbb{Z}^3 -degree (18, 12, 12).

Proposition (K., Shapiro, Sturmfels)

The invariant ring $\mathbb{R}[m_{\mathcal{I}} \mid \mathcal{I} \in \mathcal{A}]^{Aff_2}$ is generated by 6 invariants:

We use the moments of various random quadrilaterals to **interpolate** the defining equation of $\mathcal{M}_{\mathcal{A}}(\Box) \subset \mathbb{P}^9$:

 $\begin{array}{r} 2125764\,h^6\,+\,5484996\,m_{00}^2\,h^4s\,-\,1574640\,m_{00}gh^3\,+\,364500\,m_{00}^3\,h^3t\\ +\,3458700\,m_{00}^4\,h^2s^2-2041200\,m_{00}^3ghs\,+\,472500\,m_{00}^5\,hst\,-\,122500\,m_{00}^6s^3\,+\,291600\,m_{00}^2g^2\\ -\,135000\,m_{00}^4gt\,+\,15625\,m_{00}^6t^2. \end{array}$

This polynomial has 5100 terms in the $m_{i_1i_2}$.

The moments of order \leq 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^2$ whose densities are linear functions

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^2$ whose densities are linear functions form a hypersurface in \mathbb{P}^9 of \mathbb{Z}^3 -degree (52, 36, 36):

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^2$ whose densities are linear functions form a hypersurface in \mathbb{P}^9 of \mathbb{Z}^3 -degree (**52**, 36, 36):

 $12288754756878336m^{16}s^9 - 125913170530271232h^2m^{14}s^8 - 11555266180939776hm^{15}s^7t - 423695444226048m^{16}s^6t^2 - 125885444226048m^{16}s^6t^2 - 125885444226048m^{16}s^6t^2 - 125885444226048m^{16}s^6t^2 - 125885444286048m^{16}s^6t^2 - 125885444286048m^{16}s^6t^2 - 125885488t^2 - 125885484t^2 - 12588548t^2 - 1258858t^2 - 125885858t^2 - 1258858t^2 - 125885858t^2 - 125885858t^2 - 125885858t^2 - 125885858t^2 - 125885858t^2 - 12588585858t^2 - 125885858585858t^2 - 1258858585858t^2 - 1258858585858585858585858585858585858t^2 - 1$ $-108262506929061888h^5m^{11}s^5t + 673312350928896h^4m^{12}s^4t^2 + 535497484271616h^3m^{13}s^3t^3 + 31959518257152h^2m^{14}s^2t^4 + 535497484271616h^3m^{13}s^3t^3 + 5354974884571618886h^3m^{13}s^3t^3 + 53568788866h^3m^{13}s^3t^3 + 53568886h^3m^{13}s^3t^3 + 53568886h^3m^{13}s^3t^3 + 5356886h^3m^{13}s^3t^3 + 53568886h^3m^{13}s^3t^3 + 53568886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 536886h^3m^{13}s^3t^3 + 536886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 5368886h^3m^{13}s^3t^3 + 536886h^3m^{13}s^3t^3 + 536886h^3m^{13}s^3 + 536886h^3m^{$ $+440798423040 hm^{15} st^5 + 195936798885543936 gh^3 m^{11} s^6 - 410140620619776 gh^2 m^{12} s^5 t - 412398826108747776 gh^6 m^8 s^3 t$ $-2360537593675776 ghm^{13}s^4t^2 - 89805332054016 gm^{14}s^3t^3 - 486870353365172224h^8m^8s^5 + 6819936693387264h^7m^9s^4t^3 - 48687035336517222h^8m^8s^5 + 6819936693387264h^7m^9s^4t^3 - 4868703536517222h^8m^8s^5 + 6819936693387264h^7m^9s^4t^3 - 4868703536517222h^8m^8s^5 + 6819936693387264h^7m^9s^4t^3 - 4868703536517222h^8m^8s^5 - 4868703536517222h^8m^8s^5 - 4868703536517222h^8m^8s^5 - 4868703536517222h^8m^8s^5 - 4868703536517222h^8m^8s^5 - 4868703536517222h^8m^8s^5 - 48687035536517222h^8m^8s^5 - 48687035565172254h^8m^8s^5 - 486870556565 - 48687055656555 - 48687055565 - 486870555655 - 48687055555 - 4868705565555 - 48687055555 - 48687055555 - 48687055555 - 48687055555 - 48687055555 - 48687055555 - 48687055555 - 48687055555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 4868705555 - 486870555 - 486870555 - 486870555 - 486870555 - 486870555 - 486870555 - 486870555 - 486870555 - 486870555 - 486870555 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 48687055 - 4868705 - 48687055 - 4868705 - 4868705 - 48687055 - 4867055 - 4868705 - 48687055 - 48687055 - 48687055 - 4868$ $+29422733985054720 h^{6} m^{10} s^{3} t^{2}+2782917213290496 h^{5} m^{11} s^{2} t^{3}+58246341746688 h^{4} m^{12} st^{4}-587731230720 h^{3} m^{13} t^{5}+10000 t^{2} s^{2} t^{2}+10000 t^{2} s^{2} t^{2}+10000 t^{2} s^{2} t^{2}+10000 t^{2} t^{2}+10000 t^{2}+1$ $+814698134331457536h^9m^7s^3t + 92179893357379584h^8m^8s^2t^2 + 2541749079638016h^7m^9st^3 - 13792092880896h^6m^{10}t^4$ $+ 13931406950400gh^3m^{11}t^4 - 44584171418419200gh^5m^9s^2t^2 - 9685512225m^{16}t^6 - \underline{1132386035171328gh^4m^{10}st^3}{110}t^{11$ $+260713381625856gh^{6}m^{8}t^{3}+7163309458867617792h^{14}m^{2}s^{2}+495888540219998208h^{13}m^{3}\underline{st-613682107121664h^{12}m^{4}t^{2}}{t^{2}}t^{4}t^{2}$ $\underline{-33414364526542848g^3hm^9s^4}_{-2441030167166976g^3m^{10}s^3t} + 1297818789047435264g^2h^6m^6s^3 + 235088951956733952g^2h^5m^7s^2t^{10}t^{10}s^{10}s^{10}t^{10}t^{10}s^{10}t^{10}t^{10}s^{10}t^{10$ $-1848091141472256g^2h^6m^6t^2-2445243491429646336gh^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^4m^8s^{13}ms+5610807836540928gh^{12}m^2t+3143555283419136g^{14}ms^{14$ $-68785447433666556g^4h^6m^2 + 1407374883553280g^5h^3m^3 - 109951162777600g^6m^4$.

(|| <u>-</u> X|

Lemma (Gravin, Pasechnik, Shapiro, Shapiro / Baldoni, Berline, De Loera, Köppe, Vergne) Let $\triangle_d \subset \mathbb{R}^d$ be a d-dimensional simplex with vertices $x_1, x_2, \ldots, x_{d+1}$.

$$\sum_{\mathcal{I}\in\mathbb{Z}_{\geq 0}^d} inom{|\mathcal{I}|+d}{\mathcal{I},d} \cdot m_{\mathcal{I}}(riangle_d)\cdot t^{\mathcal{I}} =$$

Lemma (Gravin, Pasechnik, Shapiro, Shapiro / Baldoni, Berline, De Loera, Köppe, Vergne) Let $\triangle_d \subset \mathbb{R}^d$ be a d-dimensional simplex with vertices $x_1, x_2, \ldots, x_{d+1}$.

$$\sum_{\mathcal{I}\in\mathbb{Z}_{\geq 0}^d} inom{|\mathcal{I}|+d}{\mathcal{I},d} \cdot \mathit{m}_\mathcal{I}(riangle_d)\cdot t^\mathcal{I} = \prod_{k=1}^{d+1}rac{1}{1-\langle x_k,t
angle}$$

Lemma (Gravin, Pasechnik, Shapiro, Shapiro / Baldoni, Berline, De Loera, Köppe, Vergne) Let $\triangle_d \subset \mathbb{R}^d$ be a d-dimensional simplex with vertices $x_1, x_2, \ldots, x_{d+1}$.

$$\sum_{\mathcal{I}\in\mathbb{Z}_{\geq 0}^d} inom{|\mathcal{I}|+d}{\mathcal{I},d} \cdot \mathit{m}_\mathcal{I}(riangle_d) \cdot \mathit{t}^\mathcal{I} = \prod_{k=1}^{d+1} rac{1}{1-\langle x_k, \, t
angle}$$

Example (d = 1): $\triangle_1 = [a, b] \subset \mathbb{R}^1$

$$\sum_{i=0}^\infty (i+1)\cdot m_i\cdot t^i=rac{1}{(1-at)(1-bt)}$$

VIII - XI

Proposition (K., Shapiro, Sturmfels) Let $P \subset \mathbb{R}^d$ be a convex polytope with vertices x_1, x_2, \ldots, x_n .

$$\sum_{\mathcal{I}\in\mathbb{Z}_{\geq 0}^{d}}\binom{|\mathcal{I}|+d}{\mathcal{I},d}\cdot m_{\mathcal{I}}(P)\cdot t^{\mathcal{I}}=\frac{\mathrm{adj}_{P}(t)}{\prod_{k=1}^{n}(1-\langle x_{k},t\rangle)}$$

Proposition (K., Shapiro, Sturmfels) Let $P \subset \mathbb{R}^d$ be a convex polytope with vertices x_1, x_2, \ldots, x_n .

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^d} \binom{|\mathcal{I}| + d}{\mathcal{I}, d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}} = \frac{\operatorname{adj}_P(t)}{\prod_{k=1}^n (1 - \langle x_k, t \rangle)}$$

The adjoint polynomial $adj_P(t)$ of *P* was introduced by Joe Warren in 1996 to define barycentric coordinates on *P*.

Proposition (K., Shapiro, Sturmfels) Let $P \subset \mathbb{R}^d$ be a convex polytope with vertices x_1, x_2, \ldots, x_n .

$$\sum_{\mathcal{I}\in\mathbb{Z}_{\geq 0}^d} \binom{|\mathcal{I}|+d}{\mathcal{I},d} \cdot m_{\mathcal{I}}(P) \cdot t^{\mathcal{I}} = \frac{\operatorname{adj}_P(t)}{\prod_{k=1}^n (1-\langle x_k,t\rangle)}$$

The adjoint polynomial $\operatorname{adj}_P(t)$ of P was introduced by Joe Warren in 1996 to define barycentric coordinates on P. It was first defined for polygons by Wachspress in 1975:

The Adjoint of a Polygon

Definition (Wachspress)

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

The Adjoint of a Polygon

Definition (Wachspress)

The adjoint A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$$(\deg A_P = |V(P)| - 3)$$

Proposition (Warren)

Wachspress' adjoint curve A_P of P is defined by Warren's adjoint polynomial $\operatorname{adj}_{P^*}(t)$ of the dual polygon P^* , i.e. $Z(\operatorname{adj}_{P^*}) = A_P$.

 $(\mathsf{Recall}: \ P^* = \{t \in \mathbb{R}^n \mid \forall x \in V(P) : \langle x, t \rangle \leq 1\})$

• *P*: polytope in \mathbb{P}^d

• \mathcal{H}_P : hyperplane arrangement spanned by facets of P

- *P*: polytope in \mathbb{P}^d
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

• *P*: polytope in \mathbb{P}^d

• \mathcal{H}_P : hyperplane arrangement spanned by facets of P

R_P: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- *P*: polytope in \mathbb{P}^d
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- *P*: polytope in \mathbb{P}^d
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- *P*: polytope in \mathbb{P}^d
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

- P: polytope in \mathbb{P}^d
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- *R_P*: residual arrangement of linear spaces that are intersections of hyperplanes in *H_P* and do not contain any of face of *P*

P: polytope in P^d
H_P: hyperplane arrangement spanned by facets of P
R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^d pass $\leq d$ hyperplanes),

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^d pass $\leq d$ hyperplanes),

Theorem (K., Ranestad)

• •

 \cap

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^d pass $\leq d$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^d of degree n - d - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

 $\Delta_1 \cap \Delta_2$

Theorem (K., Ranestad)

• •

•

 \cap

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^d pass $\leq d$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^d of degree n - d - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

adjoint quadric surface

adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^d pass $\leq d$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^d of degree n - d - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

The Adjoint of a Polytope P: polytope in P^d with n facets H_P: hyperplane arrangement spanned by facets of P R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

adjoint double plane adjoint quadric surface

 $\Delta_1 \cap \Delta_2$ adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^d pass $\leq d$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^d of degree n - d - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

The Adjoint of a Polytope P: polytope in P^d with n facets H_P: hyperplane arrangement spanned by facets of P R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

adjoint double plane adjoint quadric surface

 $\Delta_1 \cap \Delta_2$ adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^d pass $\leq d$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^d of degree n - d - 1 passing through \mathcal{R}_P . A_P is called the adjoint of P. Moreover, $Z(\operatorname{adj}_{P^*}) = A_P$.

