Moment Varieties of Measures on Polytopes

joint with Boris Shapiro (Stockholms universitet) and Bernd Sturmfels (UC Berkeley / MPI MiS Leipzig)

December 4, 2018

Moments of a Polytope

- Let $P \subset \mathbb{R}^{d}$ be a full-dimensional polytope.
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{i_{1} i_{2} \ldots i_{d}}(P):=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{d}^{i_{d}} \mathrm{~d} \mu_{P} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Moments of a Polytope

- Let $P \subset \mathbb{R}^{d}$ be a full-dimensional polytope.
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{i_{1} i_{2} \ldots i_{d}}(P):=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{d}^{i_{d}} \mathrm{~d} \mu_{P} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Known:

The list of all moments $\left(m_{l}(P) \mid I \in \mathbb{Z}_{\geq 0}^{d}\right)$ uniquely encodes P.
\rightsquigarrow Can recover P from its moments.

Moments of a Polytope

- Let $P \subset \mathbb{R}^{d}$ be a full-dimensional polytope.
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{i_{1} i_{2} \ldots i_{d}}(P):=\int_{\mathbb{R}^{d}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{d}^{i_{d}} \mathrm{~d} \mu_{P} \quad \text { for } i_{1}, i_{2}, \ldots, i_{d} \in \mathbb{Z}_{\geq 0}
$$

Known:

The list of all moments $\left(m_{l}(P) \mid I \in \mathbb{Z}_{\geq 0}^{d}\right)$ uniquely encodes P.
\rightsquigarrow Can recover P from its moments.
Caution: The moments are not independent of each other.

Our Goal:

Study the dependencies among the moments!

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{l}(P)$ is a locally defined function of the vertex coordinates

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{l}(P)$ is a locally defined function of the vertex coordinates
\rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{d}$, we have a rational function

$$
\begin{aligned}
& m_{\mathcal{P}, \mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{|\mathcal{A}|} \\
& P \longmapsto\left(m_{l}(P)\right)_{I \in \mathcal{A}}
\end{aligned}
$$

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{l}(P)$ is a locally defined function of the vertex coordinates
\rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{d}$, we have a rational function

$$
\begin{aligned}
& m_{\mathcal{P}, \mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{|\mathcal{A}|} \\
& P \longmapsto\left(m_{l}(P)\right)_{I \in \mathcal{A}}
\end{aligned}
$$

\bullet We assume: $0 \in \mathcal{A} \rightsquigarrow m_{\mathcal{P}, \mathcal{A}}: \mathbb{C}^{d \times n} \rightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$

Moment Varieties

- We assume: $P \subset \mathbb{R}^{d}$ is full-dimensional, simplicial, and has n vertices
- We can vary the vertices of P locally without changing the combinatorial type \mathcal{P} of P
$\rightsquigarrow m_{l}(P)$ is a locally defined function of the vertex coordinates
\rightsquigarrow For every combinatorial type \mathcal{P} and every finite subset $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{d}$, we have a rational function

$$
\begin{aligned}
& m_{\mathcal{P}, \mathcal{A}}:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{|\mathcal{A}|}, \\
& P \longmapsto\left(m_{l}(P)\right)_{I \in \mathcal{A}}
\end{aligned}
$$

- We assume: $0 \in \mathcal{A} \rightsquigarrow m_{\mathcal{P}, \mathcal{A}}: \mathbb{C}^{d \times n} \rightarrow \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}$
- Moment variety

$$
\mathcal{M}_{\mathcal{A}}(\mathcal{P}):=\overline{m_{\mathcal{P}, \mathcal{A}}\left(\mathbb{C}^{d \times n}\right) \subset \mathbb{P}_{\mathbb{C}}^{|\mathcal{A}|-1}}
$$

Example: Line Segments

- Let $P=[a, b] \subset \mathbb{R}^{1}$

$$
\begin{aligned}
\Rightarrow m_{i}(P)=m_{i}(a, b) & =\frac{1}{b-a} \int_{a}^{b} w^{i} \mathrm{~d} w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

Example: Line Segments

- Let $P=[a, b] \subset \mathbb{R}^{1}$

$$
\begin{aligned}
\Rightarrow m_{i}(P)=m_{i}(a, b) & =\frac{1}{b-a} \int_{a}^{b} w^{i} \mathrm{~d} w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

$\Rightarrow m_{\text {LineSegments },\{0,1, \ldots, r\}}: \mathbb{C}^{2} \rightarrow \mathbb{P}^{r}$,

$$
(a, b) \longmapsto\left(m_{0}(a, b): m_{1}(a, b): \ldots: m_{r}(a, b)\right)
$$

Example: Line Segments

- Let $P=[a, b] \subset \mathbb{R}^{1}$

$$
\begin{aligned}
\Rightarrow m_{i}(P)=m_{i}(a, b) & =\frac{1}{b-a} \int_{a}^{b} w^{i} \mathrm{~d} w=\frac{1}{i+1} \frac{b^{i+1}-a^{i+1}}{b-a} \\
& =\frac{1}{i+1}\left(a^{i}+a^{i-1} b+a^{i-2} b^{2}+\ldots+b^{i}\right)
\end{aligned}
$$

$\Rightarrow m_{\text {LineSegments, }\{0,1, \ldots, r\}}: \mathbb{C}^{2} \rightarrow \mathbb{P}^{r}$,

$$
(a, b) \longmapsto\left(m_{0}(a, b): m_{1}(a, b): \ldots: m_{r}(a, b)\right)
$$

- $\mathcal{M}_{\{0,1, \ldots, r\}}($ LineSegments $)$ is a surface in \mathbb{P}^{r}

Example: Line Segments

Moment surface $\mathcal{M}_{\{0,1,2,3\}}($ LineSegments $) \subset \mathbb{P}^{3}$ in affine chart $\left\{m_{0}=1\right\}$

- Defined by $2 m_{1}^{3}-3 m_{0} m_{1} m_{2}+m_{0}^{2} m_{3}=0$

Example: Line Segments

Moment surface $\mathcal{M}_{\{0,1,2,3\}}($ LineSegments $) \subset \mathbb{P}^{3}$ in affine chart $\left\{m_{0}=1\right\}$

- Defined by $2 m_{1}^{3}-3 m_{0} m_{1} m_{2}+m_{0}^{2} m_{3}=0$
- Singular along $\left\{m_{0}=m_{1}=0\right\}$

Example: Line Segments

Moment surface $\mathcal{M}_{\{0,1,2,3\}}($ LineSegments $) \subset \mathbb{P}^{3}$ in affine chart $\left\{m_{0}=1\right\}$

- Defined by $2 m_{1}^{3}-3 m_{0} m_{1} m_{2}+m_{0}^{2} m_{3}=0$
- Singular along $\left\{m_{0}=m_{1}=0\right\}$
- Contains twisted cubic curve (in red) corresponding to degenerate line segments [a, a] of length 0
IV - XXII

Example: Line Segments

The moment surface $\mathcal{M}_{\{0,1, \ldots, r\}}($ LineSegments $) \subset \mathbb{P}^{p}$

- has degree $\binom{r}{2}$
- and its prime ideal is generated by the 3×3 minors of

$$
\left(\begin{array}{ccccccc}
0 & m_{0} & 2 m_{1} & 3 m_{2} & 4 m_{3} & \cdots & (r-1) m_{r-2} \\
m_{0} & 2 m_{1} & 3 m_{2} & 4 m_{3} & 5 m_{4} & \cdots & r m_{r-1} \\
2 m_{1} & 3 m_{2} & 4 m_{3} & 5 m_{4} & 6 m_{5} & \cdots & (r+1) m_{r}
\end{array}\right) .
$$

- These cubics even form a Gröbner basis.

One-Dimensional Moments

Let \mathcal{P} be any combinatorial type of simplicial polytopes in \mathbb{R}^{d} with n vertices, and let $\mathcal{A}=\{(0,0, \ldots, 0),(1,0, \ldots, 0), \ldots,(r, 0, \ldots, 0)\}$.

One-Dimensional Moments

Let \mathcal{P} be any combinatorial type of simplicial polytopes in \mathbb{R}^{d} with n vertices, and let $\mathcal{A}=\{(0,0, \ldots, 0),(1,0, \ldots, 0), \ldots,(r, 0, \ldots, 0)\}$.

Theorem (K., Shapiro, Sturmfels)

$\mathcal{M}_{\mathcal{A}}(\mathcal{P})$ has degree $\binom{r-n+d+1}{n}$ and its prime ideal is generated by the maximal minors of the Hankel matrix

$$
\left(\begin{array}{ccccccc}
c_{0} & c_{1} & \cdots & c_{n} & c_{n+1} & \cdots & c_{r+d-n} \\
c_{1} & c_{2} & \cdots & c_{n+1} & c_{n+2} & \cdots & c_{r+d-n+1} \\
\cdots & \cdots & & \cdots & \cdots & & \cdots \\
c_{n} & c_{n+1} & \cdots & c_{2 n} & c_{2 n+1} & \cdots & c_{r+d}
\end{array}\right)
$$

where $c_{0}=c_{1}=\ldots=c_{d-1}=0$ and $c_{i+d}=\binom{d+i}{d} m_{i}$ for $i=0,1, \ldots, r$.
These minors form a reduced Gröbner basis with respect to any antidiagonal term order, with initial monomial ideal $\left\langle m_{n-d}, m_{n-d+1}, \ldots, m_{r-n}\right\rangle^{n+1}$.

Example: Triangles

Let \mathcal{A} be as shown on the right.
The moment variety $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^{9}$ has dimension 6 and degree 30.

Example: Triangles

Let \mathcal{A} be as shown on the right.
The moment variety $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^{9}$ has dimension 6 and degree 30.

Its ideal is homogeneous with respect to the natural \mathbb{Z}^{3}-grading given by $\operatorname{degree}\left(m_{i_{1} i_{2}}\right)=\left(1, i_{1}, i_{2}\right)$.

Example: Triangles

Let \mathcal{A} be as shown on the right.
The moment variety $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^{9}$ has dimension 6 and degree 30 .

Its ideal is homogeneous with respect to the natural \mathbb{Z}^{3}-grading given by $\operatorname{degree}\left(m_{i_{1} i_{2}}\right)=\left(1, i_{1}, i_{2}\right)$.

The \mathbb{Z}^{3}-degrees of the minimal generators of its prime ideal are $(4,2,3),(4,3,2),(4,2,4),(4,3,3),(4,3,3),(4,4,2),(4,3,4),(4,4,3),(6,6,6)$.

Example: Triangles

Let \mathcal{A} be as shown on the right.
The moment variety $\mathcal{M}_{\mathcal{A}}(\triangle) \subset \mathbb{P}^{9}$ has dimension 6 and degree 30.

Its ideal is homogeneous with respect to the natural \mathbb{Z}^{3}-grading given by $\operatorname{degree}\left(m_{i_{1} i_{2}}\right)=\left(1, i_{1}, i_{2}\right)$.

The \mathbb{Z}^{3}-degrees of the minimal generators of its prime ideal are $(4,2,3),(4,3,2),(4,2,4),(4,3,3),(4,3,3),(4,4,2),(4,3,4),(4,4,3),(6,6,6)$.

The ideal generator of degree $(4,2,3)$ equals $3 m_{02} m_{10}^{2} m_{01}-6 m_{11} m_{10} m_{01}^{2}+3 m_{20} m_{01}^{3}-m_{03} m_{10}^{2} m_{00}+4 m_{11}^{2} m_{01} m_{00}+m_{21} m_{02} m_{00}^{2}$ $-4 m_{20} m_{02} m_{01} m_{00}+2 m_{12} m_{10} m_{01} m_{00}-m_{21} m_{01}^{2} m_{00}+m_{03} m_{20} m_{00}^{2}-2 m_{12} m_{11} m_{00}^{2}$.

Example: Quadrilaterals

Let \mathcal{A} be as shown on the right. $\mathcal{M}_{\mathcal{A}}(\square)=\mathbb{P}^{8}$

Example: Quadrilaterals

Let \mathcal{A} be as shown on the right.
$\mathcal{M}_{\mathcal{A}}(\square)=\mathbb{P}^{8}$
$m_{\square, \mathcal{A}}: \mathbb{C}^{2 \times 4} \rightarrow \mathbb{P}^{8}$ is generically 80-to-1.

Example: Quadrilaterals

Let \mathcal{A} be as shown on the right.
$\mathcal{M}_{\mathcal{A}}(\square)=\mathbb{P}^{8}$
$m_{\square, \mathcal{A}}: \mathbb{C}^{2 \times 4} \longrightarrow \mathbb{P}^{8}$ is generically 80-to-1.
The dihedral group of order 8 acts on each fiber. \rightsquigarrow Each fiber consists of 10 "quadrilaterals".

Example: Quadrilaterals

Let \mathcal{A} be as shown on the right.
$\mathcal{M}_{\mathcal{A}}(\square)=\mathbb{P}^{8}$
$m_{\square, \mathcal{A}}: \mathbb{C}^{2 \times 4} \rightarrow \mathbb{P}^{8}$ is generically 80-to-1.
The dihedral group of order 8 acts on each fiber. \rightsquigarrow Each fiber consists of 10 "quadrilaterals".

Example: Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| | H \leq 3\right\}$.
Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9} ?$

Example: Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| | I \mid \leq 3\right\}$.
Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$?

Using monodromy methods from numerical algebraic geometry, we compute that its defining equation has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, 12,12)$.

Example: Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| | I \mid \leq 3\right\}$.
Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9} ?$

Using monodromy methods from numerical algebraic geometry, we compute thàt its defining equation has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, 12,12)$.

Lemma:

The defining equation of $\mathcal{M}_{\mathcal{A}}(\square)$ is invariant under the natural action of the affine group Aff2.

Example: Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| | I \mid \leq 3\right\}$.
Can we compute the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9} ?$

Using monodromy methods from numerical algebraic geometry, we compute thàt its defining equation has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, 12,12)$.

Lemma:

The defining equation of $\mathcal{M}_{\mathcal{A}}(\square)$ is invariant under the natural action of the affine group Aff 2 .

Goal:

- Compute the invariant ring $\mathbb{R}\left[m_{I} \mid / \in \mathcal{A}\right]^{\text {Aff }_{2}}$
- Express the defining equation of $\mathcal{M}_{\mathcal{A}}(\square)$ in these invariants.

The Affine Group

$$
\mathrm{Aff}_{d}:=\mathrm{GL}_{d}(\mathbb{R}) \ltimes \mathbb{R}^{d}
$$

acts on \mathbb{R}^{d} via $(A, b) \cdot x:=A x+b$.

The Affine Group

$$
\begin{gathered}
\mathrm{Aff}_{d}:=\mathrm{GL}_{d}(\mathbb{R}) \ltimes \mathbb{R}^{d} \\
\text { acts on } \mathbb{R}^{d} \text { via }(A, b) \cdot x:=A x+b .
\end{gathered}
$$

- The combinatorial type of a polytope in \mathbb{R}^{d} stays invariant under this action.

The Affine Group

$$
\begin{gathered}
\mathrm{Aff}_{d}:=\mathrm{GL}_{d}(\mathbb{R}) \ltimes \mathbb{R}^{d} \\
\text { acts on } \mathbb{R}^{d} \text { via }(A, b) \cdot x:=A x+b .
\end{gathered}
$$

- The combinatorial type of a polytope in \mathbb{R}^{d} stays invariant under this action.
- The action induces an action on monomials and hence an action on moments:

$$
(A, b) \cdot m_{I}=\sum_{J:|J| \leq|I|} \nu_{I J}(A, b) \cdot m_{J},
$$

where $\nu_{I J}(A, b)$ is the coefficient of the monomial x^{J} in the expansion of $(A x+b)^{\prime}$

The Affine Group

$$
\begin{gathered}
\mathrm{Aff}_{d}:=\mathrm{GL}_{d}(\mathbb{R}) \ltimes \mathbb{R}^{d} \\
\text { acts on } \mathbb{R}^{d} \text { via }(A, b) \cdot x:=A x+b .
\end{gathered}
$$

- The combinatorial type of a polytope in \mathbb{R}^{d} stays invariant under this action.
- The action induces an action on monomials and hence an action on moments:

$$
(A, b) \cdot m_{I}=\sum_{J:|J| \leq|I|} \nu_{I J}(A, b) \cdot m_{J},
$$

where $\nu_{I J}(A, b)$ is the coefficient of the monomial x^{J} in the expansion of $(A x+b)^{\prime}$

Example ($d=1$):

Aff $_{1}$ acts on \mathbb{R}^{1} via $(a, b) \cdot x:=a x+b$
It acts on moments via $(a, b) \cdot m_{i}=\sum_{j=0}^{i}\binom{i}{j} a^{j} b^{i-j} m_{j}$

The Invariant Ring of the Affine Group

Theorem:

The invariant ring $\mathbb{R}\left[m_{l}| || | \leq r\right]^{\text {Aff }_{d}}$ is isomorphic to the ring of covariants of a homogeneous polynomial of degree r in $d+1$ variables.
This isomorphism maps the covariants of

$$
f(m, u)=\sum_{I:|| | \leq r}\binom{r}{I, r-|I|} \cdot m_{I} \cdot\left(u_{1}, u_{2}, \ldots, u_{d}\right)^{\prime} u_{0}^{r-|I|}
$$

to invariants of Aff_{d} via $u_{0} \mapsto 1$ and $u_{i} \mapsto 0$ for $i=1,2, \ldots, d$.

The Invariant Ring of the Affine Group

Theorem:

The invariant ring $\mathbb{R}\left[m_{l}| | / \mid \leq r\right]^{\mathrm{Aff}_{d}}$ is isomorphic to the ring of covariants of a homogeneous polynomial of degree r in $d+1$ variables.
This isomorphism maps the covariants of

$$
f(m, u)=\sum_{I:|I| \leq r}\binom{r}{I, r-|I|} \cdot m_{l} \cdot\left(u_{1}, u_{2}, \ldots, u_{d}\right)^{\prime} u_{0}^{r-|I|}
$$

to invariants of Aff_{d} via $u_{0} \mapsto 1$ and $u_{i} \mapsto 0$ for $i=1,2, \ldots, d$.

Example ($d=1, r=3$):

The binary cubic $f(m, u)=m_{3} u_{1}^{3}+3 m_{2} u_{1}^{2} u_{0}+3 m_{1} u_{1} u_{0}^{2}+m_{0} u_{0}^{3}$ has the classically known covariants:

- f
- the Hessian of f
- the Jacobian of f and its Hessian
- its discriminant

The Invariant Ring of the Affine Group

Theorem:

The invariant ring $\mathbb{R}\left[m_{l}| | I \mid \leq r\right]^{\text {Aff }_{d}}$ is isomorphic to the ring of covariants of a homogeneous polynomial of degree r in $d+1$ variables.
This isomorphism maps the covariants of

$$
f(m, u)=\sum_{I:|I| \leq r}\binom{r}{I, r-|I|} \cdot m_{l} \cdot\left(u_{1}, u_{2}, \ldots, u_{d}\right)^{\prime} u_{0}^{r-|I|}
$$

to invariants of Aff_{d} via $u_{0} \mapsto 1$ and $u_{i} \mapsto 0$ for $i=1,2, \ldots, d$.

Example ($d=1, r=3$):

The binary cubic $f(m, u)=m_{3} u_{1}^{3}+3 m_{2} u_{1}^{2} u_{0}+3 m_{1} u_{1} u_{0}^{2}+m_{0} u_{0}^{3}$ has the classically known covariants: which yield invariants:

- f
- the Hessian of f
- the Jacobian of f and its Hessian
- its discriminant
$\bullet m_{0}$
- $m_{0} m_{2}-m_{1}^{2}$
- $m_{0}^{2} m_{3}-3 m_{0} m_{1} m_{2}+2 m_{1}^{3}$
- $m_{0}^{2} m_{3}^{2}-6 m_{0} m_{1} m_{2} m_{3}+4 m_{0} m_{2}^{3}+$ $4 m_{1}^{3} m_{3}-3 m_{1}^{2} m_{2}^{2}$

Degrees of Covariants and Invariants

- The degree of a covariant $g(m, u)$ is its degree in the unknowns m_{l}.
- The order of a covariant $g(m, u)$ is its degree in the unknowns u_{j}.

Degrees of Covariants and Invariants

- The degree of a covariant $g(m, u)$ is its degree in the unknowns m_{l}.
- The order of a covariant $g(m, u)$ is its degree in the unknowns u_{j}.

Lemma:

Let $g(m, u)$ be a covariant of a homogeneous polynomials of degree r in $d+1$ variables. If g has degree p and order o, then its associated affine invariant has \mathbb{Z}^{d+1}-grading

$$
(p, q, q, \ldots, q), \text { where } q:=\frac{r p-o}{d+1}
$$

Degrees of Covariants and Invariants

- The degree of a covariant $g(m, u)$ is its degree in the unknowns m_{l}.
- The order of a covariant $g(m, u)$ is its degree in the unknowns u_{j}.

Lemma:

Let $g(m, u)$ be a covariant of a homogeneous polynomials of degree r in $d+1$ variables. If g has degree p and order o, then its associated affine invariant has \mathbb{Z}^{d+1}-grading

$$
(p, q, q, \ldots, q), \text { where } q:=\frac{r p-o}{d+1}
$$

Example $(d=1, r=3): f(m, u)=m_{3} u_{1}^{3}+3 m_{2} u_{1}^{2} u_{0}+3 m_{1} u_{1} u_{0}^{2}+m_{0} u_{0}^{3}$

- f : deg 1, ord 3
- $m_{0}:(1,0)$

Degrees of Covariants and Invariants

- The degree of a covariant $g(m, u)$ is its degree in the unknowns m_{l}.
- The order of a covariant $g(m, u)$ is its degree in the unknowns u_{j}.

Lemma:

Let $g(m, u)$ be a covariant of a homogeneous polynomials of degree r in $d+1$ variables. If g has degree p and order o, then its associated affine invariant has \mathbb{Z}^{d+1}-grading

$$
(p, q, q, \ldots, q), \text { where } q:=\frac{r p-o}{d+1}
$$

Example $(\boldsymbol{d}=1, r=3): f(m, u)=m_{3} u_{1}^{3}+3 m_{2} u_{1}^{2} u_{0}+3 m_{1} u_{1} u_{0}^{2}+m_{0} u_{0}^{3}$

- f : deg 1, ord 3
- $m_{0}:(1,0)$
- the Hessian of f : deg 2, ord 2
- $m_{0} m_{2}-m_{1}^{2}:(2,2)$

Degrees of Covariants and Invariants

- The degree of a covariant $g(m, u)$ is its degree in the unknowns m_{l}.
- The order of a covariant $g(m, u)$ is its degree in the unknowns u_{j}.

Lemma:

Let $g(m, u)$ be a covariant of a homogeneous polynomials of degree r in $d+1$ variables. If g has degree p and order o, then its associated affine invariant has \mathbb{Z}^{d+1}-grading

$$
(p, q, q, \ldots, q), \text { where } q:=\frac{r p-o}{d+1}
$$

Example $(\boldsymbol{d}=1, r=3): f(m, u)=m_{3} u_{1}^{3}+3 m_{2} u_{1}^{2} u_{0}+3 m_{1} u_{1} u_{0}^{2}+m_{0} u_{0}^{3}$

- f : deg 1 , ord 3
- $m_{0}:(1,0)$
- the Hessian of f : $\operatorname{deg} 2$, ord 2
- $m_{0} m_{2}-m_{1}^{2}:(2,2)$
- the Jacobian of f and its Hessian:
- $m_{0}^{2} m_{3}-3 m_{0} m_{1} m_{2}+2 m_{1}^{3}:(3,3)$ deg 3, ord 3

Degrees of Covariants and Invariants

- The degree of a covariant $g(m, u)$ is its degree in the unknowns m_{l}.
- The order of a covariant $g(m, u)$ is its degree in the unknowns u_{j}.

Lemma:

Let $g(m, u)$ be a covariant of a homogeneous polynomials of degree r in $d+1$ variables. If g has degree p and order o, then its associated affine invariant has \mathbb{Z}^{d+1}-grading

$$
(p, q, q, \ldots, q), \text { where } q:=\frac{r p-o}{d+1} .
$$

Example $(\boldsymbol{d}=1, r=3): f(m, u)=m_{3} u_{1}^{3}+3 m_{2} u_{1}^{2} u_{0}+3 m_{1} u_{1} u_{0}^{2}+m_{0} u_{0}^{3}$

- f : deg 1, ord 3
- $m_{0}:(1,0)$
- the Hessian of f : $\operatorname{deg} 2$, ord 2
- $m_{0} m_{2}-m_{1}^{2}:(2,2)$
- the Jacobian of f and its Hessian:
- $m_{0}^{2} m_{3}-3 m_{0} m_{1} m_{2}+2 m_{1}^{3}:(3,3)$ deg 3, ord 3
- its discriminant: deg 4, ord 0
- $m_{0}^{2} m_{3}^{2}-6 m_{0} m_{1} m_{2} m_{3}+4 m_{0} m_{2}^{3}+$ $4 m_{1}^{3} m_{3}-3 m_{1}^{2} m_{2}^{2}:(4,6)$

Example: Line Segments

Moment surface $\mathcal{M}_{\{0,1,2,3\}}($ LineSegments $) \subset \mathbb{P}^{3}$ in affine chart $\left\{m_{0}=1\right\}$

- Defined by $2 m_{1}^{3}-3 m_{0} m_{1} m_{2}+m_{0}^{2} m_{3}=0$
- Singular along $\left\{m_{0}=m_{1}=0\right\}$
- Contains twisted cubic curve (in red) corresponding to degenerate line segments [a, a] of length 0
XIII - XXII

Covariants of a Ternary Cubic

$$
(d=2, r=3)
$$

$$
\begin{aligned}
f(m, u)= & m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
& +3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{aligned}
$$

Covariants of a Ternary Cubic

$$
(d=2, r=3)
$$

$$
\begin{aligned}
f(m, u)= & m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
& +3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{aligned}
$$

has 6 fundamental covariants:

covariant	f	S	T	H	G	J
(degree, order)	$(1,3)$	$(4,0)$	$(6,0)$	$(3,3)$	$(8,6)$	$(12,9)$

Covariants of a Ternary Cubic

$$
(d=2, r=3)
$$

$$
\begin{aligned}
f(m, u)= & m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
& +3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{aligned}
$$

has 6 fundamental covariants:

covariant	f	S	T	H	G	J
(degree, order)	$(1,3)$	$(4,0)$	$(6,0)$	$(3,3)$	$(8,6)$	$(12,9)$

- Aronhold invariants S and T

Covariants of a Ternary Cubic

$$
(d=2, r=3)
$$

$$
\begin{aligned}
f(m, u)= & m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
& +3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{aligned}
$$

has 6 fundamental covariants:

covariant	f	S	T	H	G	J
(degree, order)	$(1,3)$	$(4,0)$	$(6,0)$	$(3,3)$	$(8,6)$	$(12,9)$

- Aronhold invariants S and T
- the Hessian H of f

Covariants of a Ternary Cubic

$$
(d=2, r=3)
$$

$$
\begin{aligned}
f(m, u)= & m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
& +3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{aligned}
$$

has 6 fundamental covariants:

covariant	f	S	T	H	G	J
(degree, order)	$(1,3)$	$(4,0)$	$(6,0)$	$(3,3)$	$(8,6)$	$(12,9)$

- Aronhold invariants S and T
- the Hessian H of f
- $G=\operatorname{det}\left(\begin{array}{llll}f_{11} & f_{12} & f_{13} & h_{1} \\ f_{12} & f_{22} & f_{23} & h_{2} \\ f_{13} & f_{23} & f_{33} & h_{3} \\ h_{1} & h_{2} & h_{3} & 0\end{array}\right)$ with $f_{i j}=\frac{\partial^{2} f}{\partial u_{i} \partial u_{j}}$ and $h_{i}=\frac{\partial H}{\partial u_{i}}$

Covariants of a Ternary Cubic

$$
(d=2, r=3)
$$

$$
\begin{aligned}
f(m, u)= & m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
& +3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{aligned}
$$

has 6 fundamental covariants:

covariant	f	S	T	H	G	J
(degree, order)	$(1,3)$	$(4,0)$	$(6,0)$	$(3,3)$	$(8,6)$	$(12,9)$

- Aronhold invariants S and T
- the Hessian H of f
- $G=\operatorname{det}\left(\begin{array}{llll}f_{11} & f_{12} & f_{13} & h_{1} \\ f_{12} & f_{22} & f_{23} & h_{2} \\ f_{13} & f_{23} & f_{33} & h_{3} \\ h_{1} & h_{2} & h_{3} & 0\end{array}\right)$ with $f_{i j}=\frac{\partial^{2} f}{\partial u_{i} \partial u_{j}}$ and $h_{i}=\frac{\partial H}{\partial u_{i}}$
- the Jacobian J of f, H and G (known as Brioschi covariant)

$\mathbb{R}\left[m_{l}| || | \leq 3\right]^{\text {Afi }}$

$$
\begin{gathered}
f(m, u)=m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
+3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{gathered}
$$

has 6 fundamental covariants:

covariant	f	S	T	H	G	J.
(degree, order)	$(1,3)$	$(4,0)$	$(6,0)$	$(3,3)$	$(8,6)$	$(12,9)$

$\mathbb{R}\left[m_{l}| || | \leq 3\right]^{\text {Afi }_{2}}$

$$
\begin{aligned}
f(m, u)= & m_{30} u_{1}^{3}+3 m_{21} u_{1}^{2} u_{2}+3 m_{20} u_{1}^{2} u_{0}+3 m_{12} u_{1} u_{2}^{2}+6 m_{11} u_{1} u_{2} u_{0} \\
& +3 m_{10} u_{1} u_{0}^{2}+m_{03} u_{2}^{3}+3 m_{02} u_{2}^{2} u_{0}+3 m_{01} u_{2} u_{0}^{2}+m_{00} u_{0}^{3}
\end{aligned}
$$

has 6 fundamental covariants:

covariant	f	S	T	H	G	J
(degree, order)	$(1,3)$	$(4,0)$	$(6,0)$	$(3,3)$	$(8,6)$	$(12,9)$

Replacing $\left(u_{0}, u_{1}, u_{3}\right) \mapsto(1,0,0)$ yields six fundamental affine invariants:
affine invariant \mathbb{Z}^{3}-degree \# terms
m_{00}
$(1,0,0)$
1 25
s
$(4,4,4)$
25

h
$(3,2,2)$
$(8,6,6)$
$(12,9,9)$
168

Back to Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| | I \mid \leq 3\right\}$.

The defining equation of the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, 12,12)$.
It is an Aff_{2}-invariant.

Back to Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| | I \mid \leq 3\right\}$.

The defining equation of the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, 12,12)$.
It is an Aff ${ }_{2}$-invariant.
It can be expressed in the 6 six fundamental affine invariants m_{00}, s, t, h, g, j.

Back to Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| | I \mid \leq 3\right\}$.

The defining equation of the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, 12,12)$.
It is an Aff ${ }_{2}$-invariant.
It can be expressed in the 6 six fundamental affine invariants m_{00}, s, t, h, g, j.

We use the moments of various random quadrilaterals to interpolate.

Back to Quadrilaterals

Let $\mathcal{A}:=\left\{I \in \mathbb{Z}_{\geq 0}^{2}| || | \leq 3\right\}$.
The defining equation of the moment hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ has \mathbb{Z}^{3}-degree $(\mathbf{1 8}, 12,12)$.
It is an Aff ${ }_{2}$-invariant.
It can be expressed in the 6 six fundamental affine invariants m_{00}, s, t, h, g, j.

We use the moments of various random quadrilaterals to interpolate.
The hypersurface $\mathcal{M}_{\mathcal{A}}(\square) \subset \mathbb{P}^{9}$ is defined by

$$
\begin{gathered}
2125764 h^{6}+5484996 m_{00}^{2} h^{4} s-1574640 m_{00} g h^{3}+364500 m_{00}^{3} h^{3} t \\
+3458700 m_{00}^{4} h^{2} s^{2}-2041200 m_{00}^{3} g h s+472500 m_{00}^{5} h s t-122500 m_{00}^{6} s^{3}+291600 m_{00}^{2} g^{2} \\
-135000 m_{00 g}^{4}+15625 m_{00}^{6} t^{2} .
\end{gathered}
$$

This polynomial has 5100 terms in the $m_{i_{1} i_{2}}$.

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^{2}$ whose densities are linear functions

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^{2}$ whose densities are linear functions form a hypersurface in \mathbb{P}^{9} of \mathbb{Z}^{3}-degree $(52,36,36)$:

The moments of order ≤ 3 of probability measures on the triangle $\triangle \subset \mathbb{R}^{2}$ whose densities are linear functions form a hypersurface in \mathbb{P}^{9} of \mathbb{Z}^{3}-degree

 (52, 36, 36):$12288754756878336 m^{16} s^{9}-125913170530271232 h^{2} m^{14} s^{8}-11555266180939776 h m^{15} s^{7} t-423695444226048 m^{16} s^{6} t^{2}$ $-242587475329941504 h^{4} m^{12} s^{7}-67888179490848768 h^{3} m^{13} s^{6} t-2253544388296704 h^{2} m^{14} s^{5} t^{2}+92156256976896 h m^{15} s^{4} t^{3}$ $+4239929831616 \mathrm{~m}^{16} s^{3} t^{4}-2425179321925632 \mathrm{ghm}^{13} s^{7}+767341894828032 \mathrm{gm}^{14} s^{6} t-1302706722212675584 h^{6} \mathrm{~m}^{10} s^{6}$
$-108262506929061888 h^{5} m^{11} s^{5} t+673312350928896 h^{4} m^{12} s^{4} t^{2}+535497484271616 h^{3} m^{13} s^{3} t^{3}+31959518257152 h^{2} m^{14} s^{2} t^{4}$ $+440798423040 h m^{15} s t^{5}+195936798885543936 \mathrm{gh}^{3} \mathrm{~m}^{11} s^{6}-410140620619776 \mathrm{gh}^{2} \mathrm{~m}^{12} s^{5} t-412398826108747776 \mathrm{gh}^{6} \mathrm{~m}^{8} s^{3} t$ $-2360537593675776 \mathrm{ghm}^{13} s^{4} t^{2}-89805332054016 \mathrm{gm}^{14} s^{3} t^{3}-486870353365172224 \mathrm{~h}^{8} \mathrm{~m}^{8} s^{5}+6819936693387264 h^{7} \mathrm{~m}^{9} s^{4} t$ $+29422733985054720 h^{6} m^{10} s^{3} t^{2}+2782917213290496 h^{5} m^{11} s^{2} t^{3}+58246341746688 h^{4} m^{12} s t^{4}-587731230720 h^{3} m^{13} t^{5}$ $+3602104581095424 g^{2} m^{12} s^{6}-157746980481662976 \mathrm{gh}^{5} \mathrm{~m}^{9} s^{5}-79828890012352512 \mathrm{gh}^{4} \mathrm{~m}^{10} s^{4} t-10700934975848448 \mathrm{gh}^{3} \mathrm{~m}^{11} s^{3} t^{2}$ $-668738492301312 \mathrm{gh}^{2} \mathrm{~m}^{12} \mathrm{~s}^{2} t^{3}-10448555212800 \mathrm{ghm}^{13} s t^{4}+275499014400 \mathrm{gm}^{14} t^{5}+1321196639636946944 h^{10} \mathrm{~m}^{6} \mathrm{~s}^{4}$ $+814698134331457536 h^{9} m^{7} s^{3} t+92179893357379584 h^{8} m^{8} s^{2} t^{2}+2541749079638016 h^{7} m^{9} s t^{3}-13792092880896 h^{6} m^{10} t^{4}$ $+58678654946770944 g^{2} h^{2} m^{10} s^{5}+16167862146170880 g^{2} h m^{11} s^{4} t+705486447968256 g^{2} \mathrm{~m}^{12} s^{3} t^{2}-1103687847816200192 \mathrm{gh}^{7} \mathrm{~m}^{7} s^{4}$ $+13931406950400 \mathrm{gh}^{3} \mathrm{~m}^{11} t^{4}-44584171418419200 \mathrm{gh}^{5} \mathrm{~m}^{9} s^{2} t^{2}-9685512225 m^{16} t^{6}-1132386035171328 \mathrm{gh}^{4} \mathrm{~m}^{10} s t^{3}$ $+7839053087502237696 h^{12} m^{4} s^{3}+1352219532013338624 h^{11} m^{5} s^{2} t+51427969540816896 h^{10} m^{6} s t^{2}-147941222252544 h^{9} m^{7} t^{3}$ $+356552602772570112 g^{2} h^{4} m^{8} s^{4}+65355404946702336 g^{2} h^{3} m^{9} s^{3} t+5201278745444352 g^{2} h^{2} m^{10} s^{2} t^{2}+99067782758400 g^{2} h m^{11} s t^{3}$ $-3265173504000 \mathrm{~g}^{2} m^{12} t^{4}-5301992678571900928 \mathrm{gh}^{9} m^{5} s^{3}-984505782412247040 \mathrm{gh}^{8} \mathrm{~m}^{6} s^{2} t-37440870596739072 \mathrm{gh}^{7} \mathrm{~m}^{7} s t^{2}$ $+260713381625856 \mathrm{gh}^{6} \mathrm{~m}^{8} t^{3}+7163309458867617792 h^{14} m^{2} s^{2}+495888540219998208 h^{13} m^{3} s t-613682107121664 h^{12} m^{4} t^{2}$ $-33414364526542848 g^{3} h m^{9} s^{4}-2441030167166976 g^{3} m^{10} s^{3} t+1297818789047435264 g^{2} h^{6} m^{6} s^{3}+235088951956733952 g^{2} h^{5} m^{7} s^{2} t$ $+8250658482290688 g^{2} h^{4} m^{8} s t^{2}-132090377011200 \mathrm{~g}^{2} h^{3} m^{9} t^{3}-7123133303988682752 \mathrm{gh}^{11} \mathrm{~m}^{3} \mathrm{~s}^{2}-506754841838616576 \mathrm{gh}^{10} \mathrm{~m}^{4} s t$ $+2079004689432576 \mathrm{gh}^{9} m^{5} t^{2}+1846757322198614016 h^{16} s-126388861612851200 \mathrm{~g}^{3} h^{3} m^{7} s^{3}-17847573389770752 g^{3} h^{2} m^{8} s^{2} t$ $-469654673817600 g^{3} h m^{9} s t^{2}+20639121408000 g^{3} m^{10} t^{3}+2594242435278176256 g^{2} h^{8} m^{4} s^{2}+183620365983940608 g^{2} h^{7} m^{5} s t$ $-1848091141472256 \mathrm{~g}^{2} h^{6} m^{6} t^{2}-2445243491429646336 \mathrm{gh} h^{13} \mathrm{~ms}+5610807836540928 \mathrm{gh}^{12} \mathrm{~m}^{2} t+3143555283419136 \mathrm{~g}^{4} \mathrm{~m}^{8} s^{3}$ $-408993036765233152 g^{3} h^{5} m^{5} s^{2}-26702361435045888 g^{3} h^{4} m^{6} s t+626206231756800 g^{3} h^{3} m^{7} t^{2}+1246806603479384064 g^{2} h^{10} m^{2} s$ $-9737274975584256 \mathrm{~g}^{2} h^{9} m^{3} t+22822562857746432 g^{4} h^{2} m^{6} s^{2}+1113255523123200 g^{4} h^{7} s t-73383542784000 g^{4} m^{8} t^{2}$ $-299841218941026304 g^{3} h^{7} m^{3} s+5822326385934336 g^{3} h^{6} m^{4} t-12824703626379264 g^{2} h^{12}+32389413531025408 g^{4} h^{4} m^{4} s$ $-1484340697497600 g^{4} h^{3} m^{5} t+15199648742375424 g^{3} h^{9} m-1055531162664960 g^{5} h^{5} s+139156940390400 g^{5} m^{6} t$ $-6878544743366656 g^{4} h^{6} m^{2}+1407374883553280 g^{5} h^{3} m^{3}-109951162777600 g^{6} m^{4}$.

Back to Quadrilaterals

Every partition λ of 10 could possibly yield a moment hypersurface $\mathcal{M}_{\lambda}(\square) \subset \mathbb{P}^{9}$.
On the right: $\lambda=4321$

Back to Quadrilaterals

Every partition λ of 10 could possibly yield a moment hypersurface $\mathcal{M}_{\lambda}(\square) \subset \mathbb{P}^{9}$.
On the right: $\lambda=4321$

These partitions do not yield hypersurfaces:

λ	λ^{c}	$\operatorname{dim} \mathcal{M}_{\lambda}(\square)$
10	1^{10}	5
91	21^{8}	6
82	$2^{2} 1^{6}$	7
81^{2}	31^{7}	7

Hypersurfaces $\mathcal{M}_{\lambda}(\square) \subset \mathbb{P}^{9}$

λ	λ^{c}	$\operatorname{deg} \mathcal{M}_{\lambda}(\square)$	$\operatorname{deg} m_{\square, \lambda}$	
73	$2^{3} 1^{4}$	$(5,10,0)$	144	
721	321^{5}	$(5,10,0)$	144	
71^{2}	41^{6}	$(5,10,0)$	144	
64	$2^{4} 1^{2}$	$(27,3,36)$	8	
631	$32^{2} 1^{3}$	$(51,6,54)$	8	
62^{2}	$3^{2} 1^{4}$	$(96,12,90)$	8	
621^{2}	421^{4}	$(136,18,126)$	8	$\operatorname{deg} m_{\square, \lambda}$ denotes the size
61^{4}	51^{5}	$(480,72,424)$	8	of the general fiber of
5^{2}	2^{5}	$(33,6,39)$	8	$m_{\square, \lambda}: \mathbb{C}^{2 \times 4} \ldots \mathbb{P}^{9}$
541	$32^{3} 1$	$(36,6,36)$	8	
532	$3^{2} 21^{2}$	$(42,12,36)$	8	
531^{2}	$42^{2} 1^{2}$	$(60,18,48)$	8	
$52^{2} 1$	431^{3}	$(72,36,42)$	8	
521^{3}	521^{3}	$(139,70,72)$	8	
$4^{2} 2$	$3^{2} 2^{2}$	$(42,16,32)$	8	
$4^{2} 1^{2}$	42^{3}	$(60,24,42)$	8	
43^{2}	$3^{3} 1$	$(47,20,34)$	8	
4321	4321	$(18,12,12)$	8	

Generating Functions

Let $\triangle_{d} \subset \mathbb{R}^{d}$ be the d-dimensional simplex.
We denote its vertices by $x_{k}=\left(x_{k 1}, x_{k 2}, \ldots, x_{k d}\right)$ for $k=1,2, \ldots, d+1$.

Generating Functions

Let $\triangle_{d} \subset \mathbb{R}^{d}$ be the d-dimensional simplex.
We denote its vertices by $x_{k}=\left(x_{k 1}, x_{k 2}, \ldots, x_{k d}\right)$ for $k=1,2, \ldots, d+1$.

$$
\sum_{I \in \mathbb{Z}_{\geq 0}^{d}}\binom{|I|+d}{I, d} \cdot m_{l}\left(\triangle_{d}\right) \cdot t^{\prime}=\prod_{k=1}^{d+1} \frac{1}{1-\left\langle x_{k}, t\right\rangle}
$$

Generating Functions

Let $\triangle_{d} \subset \mathbb{R}^{d}$ be the d-dimensional simplex.
We denote its vertices by $x_{k}=\left(x_{k 1}, x_{k 2}, \ldots, x_{k d}\right)$ for $k=1,2, \ldots, d+1$.

$$
\sum_{I \in \mathbb{Z} \geq 0}\binom{|I|+d}{I, d} \cdot m_{l}\left(\triangle_{d}\right) \cdot t^{\prime}=\prod_{k=1}^{d+1} \frac{1}{1-\left\langle x_{k}, t\right\rangle}
$$

Example $(d=1): \triangle_{1}=[a, b] \subset \mathbb{R}^{1}$

$$
\sum_{i=0}^{\infty}(i+1) \cdot m_{i} \cdot t^{i}=\frac{1}{(1-a t)(1-b t)}
$$

Generating Functions

Let $P \subset \mathbb{R}^{d}$ be a simplicial polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let Σ be a triangulation of P that uses only these vertices. We identify a simplex $\sigma \in \Sigma$ with the set of vertices it uses.

Generating Functions

Let $P \subset \mathbb{R}^{d}$ be a simplicial polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let Σ be a triangulation of P that uses only these vertices. We identify a simplex $\sigma \in \Sigma$ with the set of vertices it uses.

$$
\sum_{I \in \mathbb{Z} \geq 0}\binom{|I|+d}{I, d} \cdot m_{l}(P) \cdot t^{\prime}=\frac{1}{\operatorname{vol}(P)} \sum_{\sigma \in \Sigma} \frac{\operatorname{vol}(\sigma)}{\prod_{k \in \sigma}\left(1-\left\langle x_{k}, t\right\rangle\right)}
$$

Generating Functions

Let $P \subset \mathbb{R}^{d}$ be a simplicial polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let Σ be a triangulation of P that uses only these vertices. We identify a simplex $\sigma \in \Sigma$ with the set of vertices it uses.

$$
\begin{aligned}
\sum_{I \in \mathbb{Z} \geq 0}^{d}\binom{|I|+d}{I, d} \cdot m_{l}(P) \cdot t^{\prime} & =\frac{1}{\operatorname{vol}(P)} \sum_{\sigma \in \Sigma} \frac{\operatorname{vol}(\sigma)}{\prod_{k \in \sigma}\left(1-\left\langle x_{k}, t\right\rangle\right)} \\
& :=\frac{\operatorname{Ad}_{P}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
\end{aligned}
$$

Generating Functions

Let $P \subset \mathbb{R}^{d}$ be a simplicial polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let Σ be a triangulation of P that uses only these vertices. We identify a simplex $\sigma \in \Sigma$ with the set of vertices it uses.

$$
\begin{aligned}
\sum_{I \in \mathbb{Z} \geq 0}^{d}\binom{|I|+d}{I, d} \cdot m_{l}(P) \cdot t^{\prime} & =\frac{1}{\operatorname{vol}(P)} \sum_{\sigma \in \Sigma} \frac{\operatorname{vol}(\sigma)}{\prod_{k \in \sigma}\left(1-\left\langle x_{k}, t\right\rangle\right)} \\
& :=\frac{\operatorname{Ad}_{P}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
\end{aligned}
$$

The numerator $\operatorname{Ad}_{p}(t)$

- is an inhomogeneous polynomial of degree $n-d-1$ in $t=\left(t_{1}, \ldots, t_{d}\right)$,

Generating Functions

Let $P \subset \mathbb{R}^{d}$ be a simplicial polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let Σ be a triangulation of P that uses only these vertices. We identify a simplex $\sigma \in \Sigma$ with the set of vertices it uses.

$$
\begin{aligned}
& \sum_{I \in \mathbb{Z} \geq 0}^{d} \\
&\binom{|I|+d}{I, d} \cdot m_{l}(P) \cdot t^{\prime}=\frac{1}{\operatorname{vol}(P)} \sum_{\sigma \in \Sigma} \frac{\operatorname{vol}(\sigma)}{\prod_{k \in \sigma}\left(1-\left\langle x_{k}, t\right\rangle\right)} \\
&:=\frac{\operatorname{Ad}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
\end{aligned}
$$

The numerator $\operatorname{Ad}_{p}(t)$

- is an inhomogeneous polynomial of degree $n-d-1$ in $t=\left(t_{1}, \ldots, t_{d}\right)$,
- is called the adjoint of P,

Generating Functions

Let $P \subset \mathbb{R}^{d}$ be a simplicial polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let Σ be a triangulation of P that uses only these vertices. We identify a simplex $\sigma \in \Sigma$ with the set of vertices it uses.

$$
\begin{aligned}
& \sum_{I \in \mathbb{Z}}^{\geq 0} \\
&\binom{|I|+d}{I, d} \cdot m_{l}(P) \cdot t^{\prime}=\frac{1}{\operatorname{vol}(P)} \sum_{\sigma \in \Sigma} \frac{\operatorname{vol}(\sigma)}{\prod_{k \in \sigma}\left(1-\left\langle x_{k}, t\right\rangle\right)} \\
&:=\frac{\operatorname{Ad}_{P}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
\end{aligned}
$$

The numerator $\operatorname{Ad}_{p}(t)$

- is an inhomogeneous polynomial of degree $n-d-1$ in $t=\left(t_{1}, \ldots, t_{d}\right)$,
- is called the adjoint of P,
- was introduced by Joe Warren to study barycentric coordinates in geometric modeling (ca. 1996),

Generating Functions

Let $P \subset \mathbb{R}^{d}$ be a simplicial polytope with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let Σ be a triangulation of P that uses only these vertices. We identify a simplex $\sigma \in \Sigma$ with the set of vertices it uses.

$$
\begin{aligned}
\sum_{I \in \mathbb{Z}_{\geq 0}^{d}}\binom{|I|+d}{I, d} \cdot m_{l}(P) \cdot t^{\prime} & =\frac{1}{\operatorname{vol}(P)} \sum_{\sigma \in \Sigma} \frac{\operatorname{vol}(\sigma)}{\prod_{k \in \sigma}\left(1-\left\langle x_{k}, t\right\rangle\right)} \\
& :=\frac{\operatorname{Ad}_{P}(t)}{\prod_{k=1}^{n}\left(1-\left\langle x_{k}, t\right\rangle\right)}
\end{aligned}
$$

The numerator $\operatorname{Ad}_{p}(t)$

- is an inhomogeneous polynomial of degree $n-d-1$ in $t=\left(t_{1}, \ldots, t_{d}\right)$,
- is called the adjoint of P,
- was introduced by Joe Warren to study barycentric coordinates in geometric modeling (ca. 1996),
- is independent of the triangulation Σ of the polytope P.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.
- Since P is simplicial, P^{*} is simple.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.
- Since P is simplicial, P^{*} is simple.
- P^{*} is defined by n hyperplanes.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.
- Since P is simplicial, P^{*} is simple.
- P^{*} is defined by n hyperplanes.
- The residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$ of P^{*} consists of all intersections of several hyperplanes which are not faces of P^{*}.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.
- Since P is simplicial, P^{*} is simple.
- P^{*} is defined by n hyperplanes.
- The residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$ of P^{*} consists of all intersections of several hyperplanes which are not faces of P^{*}.

Proposition (K., Shapiro, Sturmfels)

The adjoint A_{p} vanishes on the residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.
- Since P is simplicial, P^{*} is simple.
- P^{*} is defined by n hyperplanes.
- The residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$ of P^{*} consists of all intersections of several hyperplanes which are not faces of P^{*}.

Proposition (K., Shapiro, Sturmfels)

The adjoint A_{P} vanishes on the residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$.
Conjecture (K., Shapiro, Sturmfels) For every simplicial d-polytope P with n vertices, the adjoint Ad_{p} is the unique polynomial of degree $n-d-1$ with constant term 1 that vanishes on $\mathcal{R}\left(P^{*}\right)$.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.
- Since P is simplicial, P^{*} is simple.
- P^{*} is defined by n hyperplanes.
- The residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$ of P^{*} consists of all intersections of several hyperplanes which are not faces of P^{*}.

Proposition (K., Shapiro, Sturmfels)

The adjoint $A_{p}{ }_{P}$ vanishes on the residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$.
Conjecture (K., Shapiro, Sturmfels) For every simplicial d-polytope P with n vertices, the adjoint Ad_{ρ} is the unique polynomial of degree $n-d-1$ with constant term 1 that vanishes on $\mathcal{R}\left(P^{*}\right)$.

Theorem (K. \& Ranestad at ICERM!) Let P be a simplicial d-polytope with n vertices such that the n hyperplanes defining P^{*} form a simple hyperplane arrangement.

Adjoints

- The dual polytope P^{*} is the set of points $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ for which all linear factors $1-\left\langle x_{k}, t\right\rangle$ are non-negative.
- Since P is simplicial, P^{*} is simple.
- P^{*} is defined by n hyperplanes.
- The residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$ of P^{*} consists of all intersections of several hyperplanes which are not faces of P^{*}.

Proposition (K., Shapiro, Sturmfels)

The adjoint A_{P} vanishes on the residual subspace arrangement $\mathcal{R}\left(P^{*}\right)$.
Conjecture (K., Shapiro, Sturmfels) For every simplicial d-polytope P with n vertices, the adjoint $\operatorname{Ad} p$ is the unique polynomial of degree $n-d-1$ with constant term 1 that vanishes on $\mathcal{R}\left(P^{*}\right)$.

Theorem (K. \& Ranestad at ICERM!) Let P be a simplicial d-polytope with n vertices such that the n hyperplanes defining P^{*} form a simple hyperplane arrangement. Then the adjoint Ad_{P} is the unique polynomial of degree $n-d-1$ with constant term 1 that vanishes on $\mathcal{R}\left(P^{*}\right)$

