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Moments of a Polytope

Let P ⊂ Rd be a full-dimensional polytope.

µP : uniform probability distribution on P

moments

mi1i2...id (P) :=

∫
Rd

w i1
1 w i2

2 . . .w
id
d dµP for i1, i2, . . . , id ∈ Z≥0

Known:
The list of all moments

(
mI (P) | I ∈ Zd

≥0

)
uniquely encodes P.

 Can recover P from its moments.
Caution: The moments are not independent of each other.

Our Goal:
Study the dependencies among the moments!
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Moment Varieties
We assume: P ⊂ Rd is full-dimensional, simplicial, and has n vertices

We can vary the vertices of P locally without changing the
combinatorial type P of P

 mI (P) is a locally defined function of the vertex coordinates

 For every combinatorial type P and every finite subset A ⊂ Zd
≥0,

we have a rational function

mP,A :
(
Rd
)n
99K R|A|,

P 7−→ (mI (P))I∈A

We assume: 0 ∈ A  mP,A : Cd×n 99K P|A|−1
C

Moment variety

MA(P) := mP,A (Cd×n) ⊂ P|A|−1
C
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Example: Line Segments

Let P = [a, b] ⊂ R1

⇒ mi (P) = mi (a, b) =
1

b − a

∫ b

a
w i dw =

1

i + 1

bi+1 − ai+1

b − a

=
1

i + 1

(
ai + ai−1b + ai−2b2 + . . .+ bi

)

⇒ mLineSegments,{0,1,...,r} : C2 99K Pr ,

(a, b) 7−→ (m0(a, b) : m1(a, b) : . . . : mr (a, b))

M{0,1,...,r}(LineSegments) is a surface in Pr
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Example: Line Segments

Moment surface M{0,1,2,3}(LineSegments) ⊂ P3 in affine chart {m0 = 1}

Defined by 2m3
1 − 3m0m1m2 + m2

0m3 = 0

Singular along {m0 = m1 = 0}
Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0
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Example: Line Segments

The moment surface M{0,1,...,r}(LineSegments) ⊂ Pr

has degree
(r

2

)
and its prime ideal is generated by the 3× 3 minors of 0 m0 2m1 3m2 4m3 · · · (r − 1)mr−2

m0 2m1 3m2 4m3 5m4 · · · r mr−1

2m1 3m2 4m3 5m4 6m5 · · · (r + 1)mr

 .

These cubics even form a Gröbner basis.
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One-Dimensional Moments

Let P be any combinatorial type of simplicial polytopes in Rd with n vertices,
and let A = {(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (r , 0, . . . , 0)}.

Theorem (K., Shapiro, Sturmfels)
MA(P) has degree

(r−n+d+1
n

)
and its prime ideal is generated by the

maximal minors of the Hankel matrix
c0 c1 · · · cn cn+1 · · · cr+d−n
c1 c2 · · · cn+1 cn+2 · · · cr+d−n+1

. . . . . . . . . . . . . . .
cn cn+1 · · · c2n c2n+1 · · · cr+d

 ,

where c0 = c1 = . . . = cd−1 = 0 and ci+d =
(d+i

d

)
mi for i = 0, 1, . . . , r .

These minors form a reduced Gröbner basis with respect to any antidiagonal
term order, with initial monomial ideal 〈mn−d ,mn−d+1, . . . ,mr−n〉n+1.
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Example: Triangles

Let A be as shown on the right.

The moment variety MA(4) ⊂ P9 has
dimension 6 and degree 30.

Its ideal is homogeneous with respect to the natural Z3-grading given by
degree(mi1i2) = (1, i1, i2).

The Z3-degrees of the minimal generators of its prime ideal are
(4, 2, 3), (4, 3, 2), (4, 2, 4), (4, 3, 3), (4, 3, 3), (4, 4, 2), (4, 3, 4), (4, 4, 3), (6, 6, 6).

The ideal generator of degree (4, 2, 3) equals

3m02m
2
10m01 − 6m11m10m

2
01 + 3m20m

3
01 −m03m

2
10m00 + 4m2

11m01m00 + m21m02m
2
00

− 4m20m02m01m00 + 2m12m10m01m00 −m21m
2
01m00 + m03m20m

2
00 − 2m12m11m

2
00.
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Example: Quadrilaterals

Let A be as shown on the right.

MA(�) = P8

m�,A : C2×4 99K P8 is generically 80-to-1.

The dihedral group of order 8 acts on each fiber.
 Each fiber consists of 10 “quadrilaterals”.
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Example: Quadrilaterals

Let A := {I ∈ Z2
≥0 | |I | ≤ 3}.

Can we compute the moment hypersurface
MA(�) ⊂ P9?

Using monodromy methods from numerical algebraic geometry, we compute
that its defining equation has Z3-degree (18, 12, 12).

Lemma:
The defining equation of MA(�) is invariant under the natural action of the
affine group Aff2.

Goal:

Compute the invariant ring R[mI | I ∈ A]Aff2

Express the defining equation of MA(�) in these invariants.
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The Affine Group

Affd := GLd(R) nRd

acts on Rd via (A, b).x := Ax + b.

The combinatorial type of a polytope in Rd stays invariant under this
action.

The action induces an action on monomials and hence an action on
moments:

(A, b).mI =
∑

J:|J|≤|I |

νIJ(A, b) ·mJ ,

where νIJ(A, b) is the coefficient of the monomial xJ in the expansion of
(Ax + b)I

Example (d = 1):
Aff1 acts on R1 via (a, b).x := ax + b
It acts on moments via (a, b).mi =

∑i
j=0

(i
j

)
ajbi−jmj
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The Invariant Ring of the Affine Group
Theorem:
The invariant ring R[mI | |I | ≤ r ]Affd is isomorphic to the ring of covariants
of a homogeneous polynomial of degree r in d + 1 variables.
This isomorphism maps the covariants of

f (m, u) =
∑

I :|I |≤r

(
r

I , r − |I |

)
·mI · (u1, u2, . . . , ud)Iu

r−|I |
0

to invariants of Affd via u0 7→ 1 and ui 7→ 0 for i = 1, 2, . . . , d .

Example (d = 1, r = 3):
The binary cubic f (m, u) = m3u

3
1 + 3m2u

2
1u0 + 3m1u1u

2
0 + m0u

3
0 has the

classically known covariants: which yield invariants:

f

the Hessian of f

the Jacobian of f and its Hessian

its discriminant

m0

m0m2 −m2
1

m2
0m3 − 3m0m1m2 + 2m3

1

m2
0m

2
3 − 6m0m1m2m3 + 4m0m

3
2 +

4m3
1m3 − 3m2

1m
2
2
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Degrees of Covariants and Invariants
The degree of a covariant g(m, u) is its degree in the unknowns mI .

The order of a covariant g(m, u) is its degree in the unknowns uj .

Lemma:
Let g(m, u) be a covariant of a homogeneous polynomials of degree r in
d + 1 variables. If g has degree p and order o, then its associated affine
invariant has Zd+1-grading

(p, q, q, . . . , q) , where q :=
rp − o

d + 1
.

Example (d = 1, r = 3): f (m, u) = m3u
3
1 + 3m2u

2
1u0 + 3m1u1u

2
0 + m0u

3
0

f : deg 1, ord 3

the Hessian of f : deg 2, ord 2

the Jacobian of f and its Hessian:
deg 3, ord 3

its discriminant: deg 4, ord 0

m0: (1,0)

m0m2 −m2
1: (2,2)

m2
0m3 − 3m0m1m2 + 2m3

1: (3,3)

m2
0m

2
3 − 6m0m1m2m3 + 4m0m

3
2 +

4m3
1m3 − 3m2

1m
2
2: (4,6)
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Let g(m, u) be a covariant of a homogeneous polynomials of degree r in
d + 1 variables. If g has degree p and order o, then its associated affine
invariant has Zd+1-grading

(p, q, q, . . . , q) , where q :=
rp − o

d + 1
.
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Example: Line Segments

Moment surface M{0,1,2,3}(LineSegments) ⊂ P3 in affine chart {m0 = 1}

Defined by 2m3
1 − 3m0m1m2 + m2

0m3 = 0

Singular along {m0 = m1 = 0}
Contains twisted cubic curve (in red) corresponding to degenerate line
segments [a, a] of length 0
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Covariants of a Ternary Cubic
(d = 2, r = 3)

f (m, u) = m30u
3
1 + 3m21u

2
1u2 + 3m20u

2
1u0 + 3m12u1u

2
2 + 6m11u1u2u0

+3m10u1u
2
0 + m03u

3
2 + 3m02u

2
2u0 + 3m01u2u

2
0 + m00u

3
0

has 6 fundamental covariants:

covariant f S T H G J
(degree, order) (1, 3) (4, 0) (6, 0) (3, 3) (8, 6) (12, 9)

Aronhold invariants S and T

the Hessian H of f

G = det

f11 f12 f13 h1

f12 f22 f23 h2

f13 f23 f33 h3

h1 h2 h3 0

 with fij = ∂2f
∂ui∂uj

and hi = ∂H
∂ui

the Jacobian J of f , H and G (known as Brioschi covariant)
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R[mI | |I | ≤ 3]Aff2

f (m, u) = m30u
3
1 + 3m21u

2
1u2 + 3m20u

2
1u0 + 3m12u1u

2
2 + 6m11u1u2u0

+3m10u1u
2
0 + m03u

3
2 + 3m02u

2
2u0 + 3m01u2u

2
0 + m00u

3
0

has 6 fundamental covariants:

covariant f S T H G J
(degree, order) (1, 3) (4, 0) (6, 0) (3, 3) (8, 6) (12, 9)

Replacing (u0, u1, u3) 7→ (1, 0, 0) yields six fundamental affine invariants:

affine invariant m00 s t h g j
Z3-degree (1, 0, 0) (4, 4, 4) (6, 6, 6) (3, 2, 2) (8, 6, 6) (12, 9, 9)
# terms 1 25 103 5 168 892
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Back to Quadrilaterals

Let A := {I ∈ Z2
≥0 | |I | ≤ 3}.

The defining equation of the moment hypersurface
MA(�) ⊂ P9 has Z3-degree (18, 12, 12).

It is an Aff2-invariant.

It can be expressed in the 6 six fundamental affine
invariants m00, s, t, h, g , j .

We use the moments of various random quadrilaterals to interpolate.

The hypersurface MA(�) ⊂ P9 is defined by

2125764 h6 + 5484996m2
00h

4s − 1574640m00gh
3 + 364500m3

00h
3t

+3458700m4
00h

2s2 − 2041200m3
00ghs + 472500m5

00hst − 122500m6
00s

3 + 291600m2
00g

2

−135000m4
00gt + 15625m6

00t
2.

This polynomial has 5100 terms in the mi1i2 .
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The moments of order ≤ 3 of probability measures on the triangle 4 ⊂ R2

whose densities are linear functions

form a hypersurface in P9 of Z3-degree
(52, 36, 36):

12288754756878336m16s9 − 125913170530271232h2m14s8 − 11555266180939776hm15s7t − 423695444226048m16s6t2

−242587475329941504h4m12s7 − 67888179490848768h3m13s6t − 2253544388296704h2m14s5t2 + 92156256976896hm15s4t3

+4239929831616m16s3t4 − 2425179321925632ghm13s7 + 767341894828032gm14s6t − 1302706722212675584h6m10s6

−108262506929061888h5m11s5t + 673312350928896h4m12s4t2 + 535497484271616h3m13s3t3 + 31959518257152h2m14s2t4

+440798423040hm15st5 + 195936798885543936gh3m11s6 − 410140620619776gh2m12s5t − 412398826108747776gh6m8s3t

−2360537593675776ghm13s4t2 − 89805332054016gm14s3t3 − 486870353365172224h8m8s5 + 6819936693387264h7m9s4t

+29422733985054720h6m10s3t2 + 2782917213290496h5m11s2t3 + 58246341746688h4m12st4 − 587731230720h3m13t5

+3602104581095424g2m12s6 − 157746980481662976gh5m9s5 − 79828890012352512gh4m10s4t − 10700934975848448gh3m11s3t2

−668738492301312gh2m12s2t3 − 10448555212800ghm13st4 + 275499014400gm14t5 + 1321196639636946944h10m6s4

+814698134331457536h9m7s3t + 92179893357379584h8m8s2t2 + 2541749079638016h7m9st3 − 13792092880896h6m10t4

+58678654946770944g2h2m10s5 + 16167862146170880g2hm11s4t + 705486447968256g2m12s3t2 − 1103687847816200192gh7m7s4

+13931406950400gh3m11t4 − 44584171418419200gh5m9s2t2 − 9685512225m16t6 − 1132386035171328gh4m10st3

+7839053087502237696h12m4s3 + 1352219532013338624h11m5s2t + 51427969540816896h10m6st2 − 147941222252544h9m7t3

+356552602772570112g2h4m8s4 + 65355404946702336g2h3m9s3t + 5201278745444352g2h2m10s2t2 + 99067782758400g2hm11st3

−3265173504000g2m12t4 − 5301992678571900928gh9m5s3 − 984505782412247040gh8m6s2t − 37440870596739072gh7m7st2

+260713381625856gh6m8t3 + 7163309458867617792h14m2s2 + 495888540219998208h13m3st − 613682107121664h12m4t2

−33414364526542848g3hm9s4 − 2441030167166976g3m10s3t + 1297818789047435264g2h6m6s3 + 235088951956733952g2h5m7s2t

+8250658482290688g2h4m8st2 − 132090377011200g2h3m9t3 − 7123133303988682752gh11m3s2 − 506754841838616576gh10m4st

+2079004689432576gh9m5t2 + 1846757322198614016h16s − 126388861612851200g3h3m7s3 − 17847573389770752g3h2m8s2t

−469654673817600g3hm9st2 + 20639121408000g3m10t3 + 2594242435278176256g2h8m4s2 + 183620365983940608g2h7m5st

−1848091141472256g2h6m6t2 − 2445243491429646336gh13ms + 5610807836540928gh12m2t + 3143555283419136g4m8s3

−408993036765233152g3h5m5s2 − 26702361435045888g3h4m6st + 626206231756800g3h3m7t2 + 1246806603479384064g2h10m2s

−9737274975584256g2h9m3t + 22822562857746432g4h2m6s2 + 1113255523123200g4hm7st − 73383542784000g4m8t2

−299841218941026304g3h7m3s + 5822326385934336g3h6m4t − 12824703626379264g2h12 + 32389413531025408g4h4m4s

−1484340697497600g4h3m5t + 15199648742375424g3h9m − 1055531162664960g5hm5s + 139156940390400g5m6t

−6878544743366656g4h6m2 + 1407374883553280g5h3m3 − 109951162777600g6m4.
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Back to Quadrilaterals

Every partition λ of 10 could possibly yield a moment
hypersurface Mλ(�) ⊂ P9.

On the right: λ = 4 3 2 1

These partitions do not yield hypersurfaces:

λ λc dimMλ(�)

10 110 5
9 1 2 18 6
8 2 22 16 7
8 12 3 17 7
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Hypersurfaces Mλ(�) ⊂ P9

λ λc degMλ(�) degm�,λ

7 3 23 14 (5, 10, 0) 144
7 2 1 3 2 15 (5, 10, 0) 144
7 12 4 16 (5, 10, 0) 144
6 4 24 12 (27, 3, 36) 8

6 3 1 3 22 13 (51, 6, 54) 8
6 22 32 14 (96, 12, 90) 8

6 2 12 4 2 14 (136, 18, 126) 8
6 14 5 15 (480, 72, 424) 8
52 25 (33, 6, 39) 8

5 4 1 3 23 1 (36, 6, 36) 8
5 3 2 32 2 12 (42, 12, 36) 8
5 3 12 4 22 12 (60, 18, 48) 8
5 22 1 4 3 13 (72, 36, 42) 8
5 2 13 5 2 13 (139, 70, 72) 8
42 2 32 22 (42, 16, 32) 8
42 12 4 23 (60, 24, 42) 8
4 32 33 1 (47, 20, 34) 8

4 3 2 1 4 3 2 1 (18, 12, 12) 8

degm�,λ denotes the size

of the general fiber of

m�,λ : C2×4 99K P9
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Generating Functions

Let 4d ⊂ Rd be the d-dimensional simplex.
We denote its vertices by xk = (xk1, xk2, . . . , xkd) for k = 1, 2, . . . , d + 1.

∑
I∈Zd

≥0

(
|I |+ d

I , d

)
·mI (4d) · t I =

d+1∏
k=1

1

1− 〈xk , t〉

Example (d = 1): 41 = [a, b] ⊂ R1

∞∑
i=0

(i + 1) ·mi · t i =
1

(1− at)(1− bt)
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Generating Functions
Let P ⊂ Rd be a simplicial polytope with vertices x1, x2, . . . , xn.
Let Σ be a triangulation of P that uses only these vertices.
We identify a simplex σ ∈ Σ with the set of vertices it uses.

∑
I∈Zd

≥0

(
|I |+ d

I , d

)
·mI (P) · t I =

1

vol(P)

∑
σ∈Σ

vol(σ)∏
k∈σ(1− 〈xk , t〉)

:=
AdP(t)∏n

k=1(1− 〈xk , t〉)

The numerator AdP(t)

is an inhomogeneous polynomial of degree n − d − 1 in t = (t1, . . . , td),

is called the adjoint of P,

was introduced by Joe Warren to study barycentric coordinates in
geometric modeling (ca. 1996),

is independent of the triangulation Σ of the polytope P.
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Adjoints
The dual polytope P∗ is the set of points (t1, t2, . . . , td) for which all
linear factors 1− 〈xk , t〉 are non-negative.

Since P is simplicial, P∗ is simple.
P∗ is defined by n hyperplanes.
The residual subspace arrangement R(P∗) of P∗ consists of all
intersections of several hyperplanes which are not faces of P∗.

Proposition (K., Shapiro, Sturmfels)
The adjoint AdP vanishes on the residual subspace arrangement R(P∗).

Conjecture (K., Shapiro, Sturmfels) For every simplicial d-polytope P
with n vertices, the adjoint AdP is the unique polynomial of degree n− d − 1
with constant term 1 that vanishes on R(P∗).

Theorem (K. & Ranestad at ICERM!) Let P be a simplicial d-polytope
with n vertices such that the n hyperplanes defining P∗ form a simple
hyperplane arrangement. Then the adjoint AdP is the unique polynomial of
degree n − d − 1 with constant term 1 that vanishes on R(P∗).
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attention


