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Neural Networks

/
u w € R% weights
A neural network is defined by a continuous mapping ® : R% x R% — R%
Definition Mg, := {(D(W, R 5 RY |w e RdW} C C(R%,R%)

is called the neuromanifold of ®.
Observation 1. ® piecewise smooth = Mg manifold with singularities
2. dim Mg < d,



Linear Networks

A linear network is defined by a map ® : R% x R% — R% of the form

d)(WaX) = W/—,Wh,:[ o W]_X7
where w = (Wh, .., W1) and W; € R%*91,

(SO dy = dpdp_1 + ...+ didp, dy = dy and dy = dh)
Example The neuromanifold of the linear network & is

N {M € R%X% | tk(M) < min{d, dy, ..., d,,}} i

= 6
1. If r = min{do, dp}, then Mg = R, “filling architecture”

2. If r < min{dp, dp}, “non-filling architecture”
then Mg is a determinantal variety.
Note: Mg is neither convex nor smooth  (Sing Mo = {M | k(M) < r —1})



Algebraic varieties

Definition
A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

The determinantal variety M, = {M € R%*% | tk(M) < r}
is the zero locus of the (r 4+ 1) x (r + 1) minors of M.



Loss Landscapes
A loss function on a neural network ® : R% x R% — R% js of the form
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wr—— d(w,)

where £ is a functional defined on a subset of C(R%,R%) containing M.

Visualizations
of L

Source: Li, Hao, et al. “Visualizing the loss landscape of neural nets.”
Advances in Neural Information Processing Systems. 2018.

Observation If ¢ € Crit(¢| ), then u=t(p) C Crit(L). IVt X |\ ‘



Linear Networks

A loss function on a linear network is of the form

L RF¥d—t x5 SO, [ R0 LR
(Wh,...,W1)+—> Wh~--W1

Recall: Mo = {M € R%*% | tk(M) < r}, where r := min{do, d1,. .., ds}.

Theorem Let M € My.
1. If tk(M) = r, then u~1(M) has 2° path-connected components

where b:=#{i |0<i< h,di=r}.

2. If k(M) < r, then u~%(M) is path-connected.



Linear Networks
A loss function on a linear network is of the form

LRGN O e M e R LR
(Wh,...,Wl)f—> Wy--- Wy

For linear networks, the loss L often has “no bad minima”,
i.e. every local minimum is global.

Proposition Let / be smooth and convex.
L has non-global minima < £|r, has non-global minima.

Corollary [Laurent & von Brecht '17]
If £ is smooth convex and r = min{dp, dx} (filling architecture),
then all local minima for L are global.

Corollary [Baldi & Hornik '89, Kawaguchi '16]
If £ is a quadratic loss, then all local minima for L are global.
(even in the non-filling case!)



The Quadratic Loss

Fixed data matrices X € R%*5 and Y € R%*s define a quadratic loss

Uiy RE29 R

Mi— | MX =¥
Observation If XX =14 (“whitened data"), then

Ix y(M) = |M — YXT||% + const.

Minimizing £x y on the determinantal variety M¢ = {M | tk(M) < r} is
equivalent to minimizing the Euclidean distance of YX7 to M.



Euclidean Distance to Varieties

Let Z C RN be an algebraic variety
(i.e., the common zero locus of some set of polynomials).

There is a constant § € Z~q such that for almost all g € RV the
minimization problem mig |z — ql|3 has & complex critical points.
ze

0 is called the ED degree of Z.

The other g € RN form a complex hypersurface, called ED discriminant of Z.

d(ellipse) = 4 d(circle) = 2




Eckart-Young Theorem
M, ={M | k(M) < r} C R™*" determinantal variety

EY Theorem
Let @ € R™*" be of full rank with pairwise distinct singular values.

1. min ||M— Q|2 has (™ntmn lex critical points.
Mrgaf” Q||% has (™M™™") complex critical points

= ED degree §(M,) = (™"imm)
2. All critical points are real.
= ED discriminant has codimension 2 over R
In fact: ED discriminant = { matrices with > 2 coinciding singular values }

3. min |[M — Q||% has unique local minimum
MEM,

Corollary [Baldi & Hornik '89, Kawaguchi '16]
If £ is a quadratic loss, then all local minima for the loss L = £ oy on a
linear network are global. (even in the non-filling case!)



Linear Networks Can Have Bad Local Minima
Let Z C RN be an algebraic variety.

There is a constant 62" € Z~¢ such that for almost all
linear coordinate changes f : RN — RN the ED degree of f(Z) is §8°".

08" is called the generic ED degree of Z.

d(ellipse) = 4 d(circle) = 2

08" (circle)
= 0(ellipse)
—

Equivalently: 68" is the ED degree of Z
under the perturbed Euclidean distance ||f(-)]]2.



Linear Networks Can Have Bad Local Minima

Example M; = {M |rk(M) < 1} C R®*3

i
2.

=

O(My) =3 7= 30 e R )

under almost all perturbed Euclidean distances ||f(-)||2,

the ED discriminant of Mj is a hypersurface over R

different number of real critical points in different open regions of R3*3
Also: different number of local minima in different open regions of R3x%3,
not all of them global !
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Linear Networks Can Have Bad Local Minima

number of critical points
N
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All determinantal varieties behave like this !



Linear Networks Can Have Bad Local Minima

Remark Closed formula for generic ED degree of
M, = {M | k(M) < r} C R™*" involving only m, n, r difficult to derive.

For—Hl
gen —"'H"" _1\S(om+nt+l—s e (m;’—l) (nj'_l)
FEM(My) =D (-1)°(2 D(m+n—s)| Y PETCE
b 3

d(M1) = min{m, n}



LELCWAEY

o determinantal varieties are examples of neuromanifolds

¢ for linear networks with smooth convex losses:

quadratic loss

filling

no bad min.

non-filling

special embedding of

no bad min.

other loss e
= convex optimization
= on vector space
bad min.

determinantal varieties

« future extensions to

© convolutional networks
(ongoing work with T. Merkh, G. Monttfar, M. Trager)

© networks with polynomial activation functions or

o ReLU networks (using semi-algebraic sets)



Informal Part 2:
Convergence to Global Minima

joint with Ludwig Hedlin



Convergence to Global Minima

Consider a linear network with a quadratic loss £x y.

Conjecture

For almost all data matrices X and Y and almost all initializations of the
network, gradient flow will converge to a global minimum of the loss
Lx,y =¥£x,y o p.

Theorem [Bah, Rauhut, Terstiege, Westdickenberg]

For almost all data matrices X and Y and almost all initializations of the
network, gradient flow will converge to a global minimum of the loss
Lx y = £x y o i or to another critical point whose Hessian has no
negative eigenvalues.

How can we exclude the latter?

Interesting sub case: Can we show that gradient flow will almost surely
avoid Hx,y := { critical points of Lx y with zero Hessian } 7



Convergence to Global Minima
Consider a linear network with a quadratic loss £x y.

Conjecture 2 (easier version)

For almost all data matrices X and Y and almost all initializations of the
network, gradient flow will not converge to

Hx,y = { critical points of Lx y = {x y o j1 with zero Hessian }.

Idea: By [Chitour, Liao, Couillet], we know that the algebraic map
51 (Wh, Who1, oo W (W,IW,, e, EE ] ST W1W1T)

is constant under gradient flow.
To prove Conjecture 2, it is enough to show

dim(im(dl3;, ) < dim(im(5))  for almost all X, Y.

This holds for h <5 ©



