The geometry of neural networks

Kathlén Kohn

KTH Stockholm
joint with Matthew Trager and Joan Bruna
(both at Center for Data Science and Courant Institute at NYU)

A neural network is defined by a continuous mapping $\Phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$.
Definition $\quad \mathcal{M}_{\Phi}:=\left\{\Phi(w, \cdot): \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{y}} \mid w \in \mathbb{R}^{d_{w}}\right\} \subset C\left(\mathbb{R}^{d_{x}}, \mathbb{R}^{d_{y}}\right)$
is called the neuromanifold of Φ.
Observation 1. Φ piecewise smooth $\Rightarrow \mathcal{M}_{\Phi}$ manifold with singularities
2. $\operatorname{dim} \mathcal{M}_{\Phi} \leq d_{w}$

Linear Networks

A linear network is defined by a $\operatorname{map} \phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$ of the form

$$
\begin{aligned}
& \Phi(w, x)=W_{h} W_{h-1} \ldots W_{1} x \\
& \text { where } w=\left(W_{h}, \ldots, W_{1}\right) \text { and } W_{i} \in \mathbb{R}^{d_{i} \times d_{i-1}},
\end{aligned}
$$

(so $d_{w}=d_{h} d_{h-1}+\ldots+d_{1} d_{0}, d_{x}=d_{0}$ and $d_{y}=d_{h}$).
Example The neuromanifold of the linear network Φ is

$$
\mathcal{M}_{\phi}=\{M \in \mathbb{R}^{d_{h} \times d_{0}} \mid \operatorname{rk}(M) \leq \underbrace{\min \left\{d_{0}, d_{1}, \ldots, d_{h}\right\}}_{=: r}\} .
$$

1. If $r=\min \left\{d_{0}, d_{h}\right\}$, then $\mathcal{M}_{\Phi}=\mathbb{R}^{d_{h} \times d_{0}}$.
2. If $r<\min \left\{d_{0}, d_{h}\right\}$, then \mathcal{M}_{ϕ} is a determinantal variety. Note: \mathcal{M}_{Φ} is neither convex nor smooth
"filling architecture"
"non-filling architecture"

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

The determinantal variety $\mathcal{M}_{r}=\left\{M \in \mathbb{R}^{d_{h} \times d_{0}} \mid \operatorname{rk}(M) \leq r\right\}$ is the zero locus of the $(r+1) \times(r+1)$ minors of M.

Loss Landscapes

A loss function on a neural network $\Phi: \mathbb{R}^{d_{w}} \times \mathbb{R}^{d_{x}} \longrightarrow \mathbb{R}^{d_{y}}$ is of the form

$$
\begin{aligned}
L: \mathbb{R}^{d_{w}} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\ell_{\mathcal{M}_{\phi}}} \mathbb{R}, \\
w(w, \cdot)
\end{aligned}
$$

where ℓ is a functional defined on a subset of $C\left(\mathbb{R}^{d_{x}}, \mathbb{R}^{d_{y}}\right)$ containing \mathcal{M}_{Φ}.

Source: Li, Hao, et al. "Visualizing the loss landscape of neural nets."
Advances in Neural Information Processing Systems. 2018.
Observation If $\varphi \in \operatorname{Crit}\left(\left.\ell\right|_{\mathcal{M}_{\Phi}}\right)$, then $\mu^{-1}(\varphi) \subset \operatorname{Crit}(L)$.

Linear Networks

A loss function on a linear network is of the form

$$
\begin{gathered}
L: \mathbb{R}^{d_{h} \times d_{h-1}} \times \ldots \times \mathbb{R}^{d_{1} \times d_{0}} \xrightarrow{\mu} \mathcal{M}_{\phi} \subset \mathbb{R}^{d_{h} \times d_{0}} \xrightarrow{\ell} \mathbb{R}, \\
\left(W_{h}, \ldots, W_{1}\right) \longmapsto W_{h} \cdots W_{1}
\end{gathered}
$$

Recall: $\mathcal{M}_{\Phi}=\left\{M \in \mathbb{R}^{d_{h} \times d_{0}} \mid \operatorname{rk}(M) \leq r\right\}$, where $r:=\min \left\{d_{0}, d_{1}, \ldots, d_{h}\right\}$.
Theorem Let $M \in \mathcal{M}_{\phi}$.

1. If $\operatorname{rk}(M)=r$, then $\mu^{-1}(M)$ has 2^{b} path-connected components

$$
\text { where } b:=\#\left\{i \mid 0<i<h, d_{i}=r\right\} .
$$

2. If $\operatorname{rk}(M)<r$, then $\mu^{-1}(M)$ is path-connected.

Linear Networks

A loss function on a linear network is of the form

$$
\begin{gathered}
L: \mathbb{R}^{d_{h} \times d_{h-1}} \times \ldots \times \mathbb{R}^{d_{1} \times d_{0}} \xrightarrow{\mu} \mathcal{M}_{\phi} \subset \mathbb{R}^{d_{h} \times d_{0}} \xrightarrow{\ell} \mathbb{R}, \\
\left(W_{h}, \ldots, W_{1}\right) \longmapsto W_{1}
\end{gathered}
$$

For linear networks, the loss L often has "no bad minima", ie. every local minimum is global.

Proposition Let ℓ be smooth and convex.
L has non-global minima $\left.\Leftrightarrow \ell\right|_{\mathcal{M}_{\phi}}$ has non-global minima.
Corollary [Laurent \& von Brecht '17]
If ℓ is smooth convex and $r=\min \left\{d_{0}, d_{h}\right\}$ (filling architecture), then all local minima for L are global.
Corollary [Baldi \& Hornik '89, Kawaguchi '16]
If ℓ is a quadratic loss, then all local minima for L are global.
(even in the non-filling case!)

The Quadratic Loss

Fixed data matrices $X \in \mathbb{R}^{d_{0} \times s}$ and $Y \in \mathbb{R}^{d_{h} \times s}$ define a quadratic loss

$$
\begin{aligned}
\ell_{X, Y}: \mathbb{R}^{d_{h} \times d_{0}} & \longrightarrow \mathbb{R} \\
M & \longmapsto\|M X-Y\|_{F}^{2}
\end{aligned}
$$

Observation If $X X^{T}=\mathrm{I}_{d_{0}}$ ("whitened data"), then

$$
\ell_{X, Y}(M)=\left\|M-Y X^{T}\right\|_{F}^{2}+\text { const } .
$$

Minimizing $\ell_{X, Y}$ on the determinantal variety $\mathcal{M}_{\Phi}=\{M \mid \operatorname{rk}(M) \leq r\}$ is equivalent to minimizing the Euclidean distance of $Y X^{\top}$ to \mathcal{M}_{Φ}.

Euclidean Distance to Varieties

Let $\mathcal{Z} \subset \mathbb{R}^{N}$ be an algebraic variety (i.e., the common zero locus of some set of polynomials).

There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{R}^{N}$ the minimization problem $\min _{z \in \mathbb{Z}}\|z-q\|_{2}^{2}$ has δ complex critical points. δ is called the ED degree of \mathcal{Z}.
The other $q \in \mathbb{R}^{N}$ form a complex hypersurface, called ED discriminant of \mathcal{Z}.

$$
\delta(\text { circle })=2
$$

Eckart-Young Theorem

$\mathcal{M}_{r}=\{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{R}^{m \times n}$ determinantal variety

EY Theorem

Let $Q \in \mathbb{R}^{m \times n}$ be of full rank with pairwise distinct singular values.

1. $\min _{M \in \mathcal{M}_{r}}\|M-Q\|_{F}^{2}$ has $(\underset{r}{\min \{m, n\}})$ complex critical points.
\Rightarrow ED degree $\delta\left(\mathcal{M}_{r}\right)=(\underset{r}{\min \{m, n\}})$
2. All critical points are real.
\Rightarrow ED discriminant has codimension 2 over \mathbb{R}
In fact: ED discriminant $=\{$ matrices with ≥ 2 coinciding singular values $\}$
3. $\min _{M \in \mathcal{M}_{r}}\|M-Q\|_{F}^{2}$ has unique local minimum

Corollary [Baldi \& Hornik '89, Kawaguchi '16]
If ℓ is a quadratic loss, then all local minima for the loss $L=\ell \circ \mu$ on a linear network are global.
(even in the non-filling case!)

Linear Networks Can Have Bad Local Minima

Let $\mathcal{Z} \subset \mathbb{R}^{N}$ be an algebraic variety.
There is a constant $\delta^{\text {gen }} \in \mathbb{Z}_{>0}$ such that for almost all linear coordinate changes $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ the ED degree of $f(\mathcal{Z})$ is $\delta^{\text {gen }}$. $\delta^{\text {gen }}$ is called the generic ED degree of \mathcal{Z}.

$\delta($ circle $)=2$
$\delta^{\text {gen }}$ (circle)
$=\delta$ (ellipse)
$=4$

Equivalently: $\delta^{\text {gen }}$ is the ED degree of \mathcal{Z} under the perturbed Euclidean distance $\|f(\cdot)\|_{2}$.

Linear Networks Can Have Bad Local Minima

Example $\mathcal{M}_{1}=\{M \mid \operatorname{rk}(M) \leq 1\} \subset \mathbb{R}^{3 \times 3}$

1. $\delta\left(\mathcal{M}_{1}\right)=3<39=\delta^{\text {gen }}\left(\mathcal{M}_{1}\right)$
2. under almost all perturbed Euclidean distances $\|f(\cdot)\|_{2}$, the ED discriminant of \mathcal{M}_{1} is a hypersurface over \mathbb{R}
\Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 \times 3}$
3. Also: different number of local minima in different open regions of $\mathbb{R}^{3 \times 3}$, not all of them global!

Linear Networks Can Have Bad Local Minima

	\# real critical points								
	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{1 3}$		
	$\mathbf{1}$	0	476	120	1	0	0	0	
\# local	$\mathbf{2}$	0	0	805	190	10	0	0	
minima	3	0	0	0	228	116	21	0	
	$\mathbf{4}$	0	0	0	0	16	12	5	

All determinantal varieties behave like this ! XII - XIV

Linear Networks Can Have Bad Local Minima

Remark Closed formula for generic ED degree of $\mathcal{M}_{r}=\{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{R}^{m \times n}$ involving only m, n, r difficult to derive.

For $r=1$,
$\delta^{\text {gen }}\left(\mathcal{M}_{1}\right)=\sum_{s=0}^{m+n}(-1)^{s}\left(2^{m+n+1-s}-1\right)(m+n-s)!\left[\sum_{\substack{i+j=s \\ i \leq m, j \leq n}} \frac{\binom{m+1}{i}\binom{n+1}{j}}{(m-i)!(n-j)!}\right]$

$$
\delta\left(\mathcal{M}_{1}\right)=\min \{m, n\}
$$

Take Away

- determinantal varieties are examples of neuromanifolds
- for linear networks with smooth convex losses:

	quadratic loss	other loss		
filling	no bad min.	no bad min.		
non-filling	no bad min.	bad min.	\longleftarrow	convex optimization
:---				
on vector space				

\uparrow
 special embedding of
 determinantal varieties

- future extensions to
\diamond convolutional networks
(ongoing work with T. Merkh, G. Montúfar, M. Trager)
\diamond networks with polynomial activation functions or
\diamond ReLU networks (using semi-algebraic sets)

Informal Part 2:
 Convergence to Global Minima

joint with Ludwig Hedlin

Convergence to Global Minima

Consider a linear network with a quadratic loss $\ell X, Y$.

Conjecture

For almost all data matrices X and Y and almost all initializations of the network, gradient flow will converge to a global minimum of the loss $L_{X, Y}=\ell_{X, Y} \circ \mu$.

Theorem [Bah, Rauhut, Terstiege, Westdickenberg] For almost all data matrices X and Y and almost all initializations of the network, gradient flow will converge to a global minimum of the loss $L_{X, Y}=\ell_{X, Y} \circ \mu$ or to another critical point whose Hessian has no negative eigenvalues.

How can we exclude the latter?

Interesting sub case: Can we show that gradient flow will almost surely avoid $\mathcal{H}_{X, Y}:=\left\{\right.$ critical points of $L_{X, Y}$ with zero Hessian $\}$?

Convergence to Global Minima

Consider a linear network with a quadratic loss $\ell_{X, Y}$.
Conjecture 2 (easier version)
For almost all data matrices X and Y and almost all initializations of the network, gradient flow will not converge to
$\mathcal{H}_{X, Y}:=\left\{\right.$ critical points of $L_{X, Y}=\ell_{X, Y} \circ \mu$ with zero Hessian $\}$.
Idea: By [Chitour, Liao, Couillet], we know that the algebraic map
$\delta:\left(W_{h}, W_{h-1}, \ldots, W_{1}\right) \longmapsto\left(W_{h}^{\top} W_{h}-W_{h-1} W_{h-1}^{\top}, \ldots, W_{2}^{\top} W_{2}-W_{1} W_{1}^{\top}\right)$
is constant under gradient flow.
To prove Conjecture 2, it is enough to show

$$
\operatorname{dim}\left(\operatorname{im}\left(\left.\delta\right|_{\mathcal{H}_{X, Y}}\right)\right)<\operatorname{dim}(\operatorname{im}(\delta)) \quad \text { for almost all } X, Y .
$$

This holds for $\boldsymbol{h} \leq 5$ () but not for large h
II - II

