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Neural Networks

w ∈ Rdw weights

x ∈ Rdx y ∈ Rdy

A neural network is defined by a continuous mapping Φ : Rdw ×Rdx −→ Rdy .

Definition MΦ :=
{

Φ(w , ·) : Rdx → Rdy | w ∈ Rdw
}
⊂ C (Rdx ,Rdy )

is called the neuromanifold of Φ.

Observation 1. Φ piecewise smooth ⇒ MΦ manifold with singularities

2. dimMΦ ≤ dw
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Linear Networks
A linear network is defined by a map Φ : Rdw × Rdx −→ Rdy of the form

Φ(w , x) = WhWh−1 . . .W1x ,

where w = (Wh, . . . ,W1) and Wi ∈ Rdi×di−1 ,

(so dw = dhdh−1 + . . .+ d1d0, dx = d0 and dy = dh).

Example The neuromanifold of the linear network Φ is

MΦ =
{
M ∈ Rdh×d0 | rk(M) ≤ min{d0, d1, . . . , dh}

}
.︸ ︷︷ ︸

=:r

1. If r = min{d0, dh}, then MΦ = Rdh×d0 . “filling architecture”

2. If r < min{d0, dh}, “non-filling architecture”
then MΦ is a determinantal variety.
Note: MΦ is neither convex nor smooth (SingMΦ = {M | rk(M) ≤ r − 1})

II - XIV



Algebraic varieties

Definition
A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

The determinantal variety Mr =
{
M ∈ Rdh×d0 | rk(M) ≤ r

}
is the zero locus of the (r + 1)× (r + 1) minors of M.
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Loss Landscapes
A loss function on a neural network Φ : Rdw × Rdx −→ Rdy is of the form

L : Rdw µ−−−−−→ MΦ

`|MΦ−−−−−−−→ R,
w 7−−−−−→ Φ(w , ·)

where ` is a functional defined on a subset of C (Rdx ,Rdy ) containing MΦ.

Visualizations
of L

Source: Li, Hao, et al. “Visualizing the loss landscape of neural nets.”
Advances in Neural Information Processing Systems. 2018.

Observation If ϕ ∈ Crit(`|MΦ
), then µ−1(ϕ) ⊂ Crit(L).
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Linear Networks

A loss function on a linear network is of the form

L : Rdh×dh−1 × . . .× Rd1×d0
µ−−−−−→ MΦ ⊂ Rdh×d0 `−−−−−→ R,

(Wh, . . . ,W1) 7−−−−−→Wh · · ·W1

Recall: MΦ =
{
M ∈ Rdh×d0 | rk(M) ≤ r

}
, where r := min {d0, d1, . . . , dh}.

Theorem Let M ∈MΦ.

1. If rk(M) = r , then µ−1(M) has 2b path-connected components

where b := # {i | 0 < i < h, di = r} .

2. If rk(M) < r , then µ−1(M) is path-connected.
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Linear Networks
A loss function on a linear network is of the form

L : Rdh×dh−1 × . . .× Rd1×d0
µ−−−−−→ MΦ ⊂ Rdh×d0 `−−−−−→ R,

(Wh, . . . ,W1) 7−−−−−→Wh · · ·W1

For linear networks, the loss L often has “no bad minima”,
i.e. every local minimum is global.

Proposition Let ` be smooth and convex.
L has non-global minima ⇔ `|MΦ

has non-global minima.

Corollary [Laurent & von Brecht ’17]
If ` is smooth convex and r = min{d0, dh} (filling architecture),
then all local minima for L are global.

Corollary [Baldi & Hornik ’89, Kawaguchi ’16]
If ` is a quadratic loss, then all local minima for L are global.
(even in the non-filling case!)
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The Quadratic Loss

Fixed data matrices X ∈ Rd0×s and Y ∈ Rdh×s define a quadratic loss

`X ,Y : Rdh×d0 −→ R,
M 7−→ ‖MX − Y ‖2

F

Observation If XXT = Id0 (“whitened data”), then

`X ,Y (M) = ‖M − YXT‖2
F + const.

Minimizing `X ,Y on the determinantal variety MΦ = {M | rk(M) ≤ r} is
equivalent to minimizing the Euclidean distance of YXT to MΦ.
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Euclidean Distance to Varieties

δ(ellipse) = 4 δ(circle) = 2

Let Z ⊂ RN be an algebraic variety
(i.e., the common zero locus of some set of polynomials).

There is a constant δ ∈ Z>0 such that for almost all q ∈ RN the
minimization problem min

z∈Z
‖z − q‖2

2 has δ complex critical points.

δ is called the ED degree of Z.

The other q ∈ RN form a complex hypersurface, called EDdiscriminant of Z.
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Eckart-Young Theorem

Mr = {M | rk(M) ≤ r} ⊂ Rm×n determinantal variety

EY Theorem
Let Q ∈ Rm×n be of full rank with pairwise distinct singular values.

1. min
M∈Mr

‖M − Q‖2
F has

(min{m,n}
r

)
complex critical points.

⇒ ED degree δ(Mr ) =
(min{m,n}

r

)
2. All critical points are real.
⇒ ED discriminant has codimension 2 over R

In fact: ED discriminant = { matrices with ≥ 2 coinciding singular values }
3. min

M∈Mr

‖M − Q‖2
F has unique local minimum

Corollary [Baldi & Hornik ’89, Kawaguchi ’16]
If ` is a quadratic loss, then all local minima for the loss L = ` ◦ µ on a
linear network are global. (even in the non-filling case!)
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Linear Networks Can Have Bad Local Minima

δ(ellipse) = 4 δ(circle) = 2

Let Z ⊂ RN be an algebraic variety.

There is a constant δgen ∈ Z>0 such that for almost all
linear coordinate changes f : RN → RN the ED degree of f (Z) is δgen.

δgen is called the generic ED degree of Z.

δgen(circle)
= δ(ellipse)

= 4

Equivalently: δgen is the ED degree of Z
under the perturbed Euclidean distance ‖f (·)‖2. X - XIV



Linear Networks Can Have Bad Local Minima
Example M1 = {M | rk(M) ≤ 1} ⊂ R3×3

1. δ(M1) = 3 < 39 = δgen(M1)
2. under almost all perturbed Euclidean distances ‖f (·)‖2,

the ED discriminant of M1 is a hypersurface over R
⇒ different number of real critical points in different open regions of R3×3

3. Also: different number of local minima in different open regions of R3×3,
not all of them global !
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Linear Networks Can Have Bad Local Minima

# real critical points
1 3 5 7 9 11 13

1 0 476 120 1 0 0 0
# local 2 0 0 805 190 10 0 0
minima 3 0 0 0 228 116 21 0

4 0 0 0 0 16 12 5

All determinantal varieties behave like this !XII - XIV



Linear Networks Can Have Bad Local Minima

Remark Closed formula for generic ED degree of
Mr = {M | rk(M) ≤ r} ⊂ Rm×n involving only m, n, r difficult to derive.

For r = 1,

δgen(M1) =
m+n∑
s=0

(−1)s(2m+n+1−s − 1)(m + n − s)!

 ∑
i+j=s

i≤m, j≤n

(m+1
i

)(n+1
j

)
(m − i)!(n − j)!


δ(M1) = min{m, n}
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Take Away

convex optimization

on vector space
←−

special embedding of

determinantal varieties

↑

determinantal varieties are examples of neuromanifolds

for linear networks with smooth convex losses:
quadratic loss other loss

filling no bad min. no bad min.

non-filling no bad min. bad min.

future extensions to

� convolutional networks
(ongoing work with T. Merkh, G. Montúfar, M. Trager)

� networks with polynomial activation functions or
� ReLU networks (using semi-algebraic sets)
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Informal Part 2:
Convergence to Global Minima

joint with Ludwig Hedlin



Convergence to Global Minima
Consider a linear network with a quadratic loss `X ,Y .

Conjecture
For almost all data matrices X and Y and almost all initializations of the
network, gradient flow will converge to a global minimum of the loss
LX ,Y = `X ,Y ◦ µ.

Theorem [Bah, Rauhut, Terstiege, Westdickenberg]
For almost all data matrices X and Y and almost all initializations of the
network, gradient flow will converge to a global minimum of the loss
LX ,Y = `X ,Y ◦ µ or to another critical point whose Hessian has no
negative eigenvalues.

How can we exclude the latter?

Interesting sub case: Can we show that gradient flow will almost surely
avoid HX ,Y := { critical points of LX ,Y with zero Hessian } ?
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Convergence to Global Minima
Consider a linear network with a quadratic loss `X ,Y .

Conjecture 2 (easier version)
For almost all data matrices X and Y and almost all initializations of the
network, gradient flow will not converge to
HX ,Y := { critical points of LX ,Y = `X ,Y ◦ µ with zero Hessian }.

Idea: By [Chitour, Liao, Couillet], we know that the algebraic map

δ : (Wh,Wh−1, . . . ,W1) 7−→
(
W T

h Wh −Wh−1W
T
h−1, . . . , W

T
2 W2 −W1W

T
1

)
is constant under gradient flow.
To prove Conjecture 2, it is enough to show

dim(im(δ|HX ,Y
)) < dim(im(δ)) for almost all X ,Y .

This holds for h ≤ 5 , but not for large h /
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