The geometry of neural networks

Kathlén Kohn

KTH Stockholm

joint with Matthew Trager and Joan Bruna (both at Center for Data Science and Courant Institute at NYU)

Neural Networks

A neural network is defined by a continuous mapping $\Phi: \mathbb{R}^{d_w} imes \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$.

Observation 1. Φ piecewise smooth $\Rightarrow \mathcal{M}_{\Phi}$ manifold with singularities

2. dim
$$\mathcal{M}_{\Phi} \leq d_{W}$$

Linear Networks

A linear network is defined by a map $\Phi: \mathbb{R}^{d_w} \times \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ of the form

$$\Phi(w,x)=W_hW_{h-1}\dots W_1x,$$
 where $w=(W_h,\dots,W_1)$ and $W_i\in\mathbb{R}^{d_i imes d_{i-1}}$,

(so
$$d_w=d_hd_{h-1}+\ldots+d_1d_0$$
, $d_x=d_0$ and $d_y=d_h$).

Example The neuromanifold of the linear network Φ is

$$\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq \underbrace{\min\{d_0, d_1, \dots, d_h\}}_{=:r} \right\}.$$

1. If $r = \min\{d_0, d_h\}$, then $\mathcal{M}_{\Phi} = \mathbb{R}^{d_h \times d_0}$.

- "filling architecture"
- 2. If $r < \min\{d_0, d_h\}$, "non-filling architecture" then \mathcal{M}_{Φ} is a **determinantal variety**.
 - Note: \mathcal{M}_{Φ} is neither convex nor smooth $(\operatorname{Sing} \mathcal{M}_{\Phi} = \{M \mid \operatorname{rk}(M) \leq r 1\})$

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

The **determinantal variety** $\mathcal{M}_r = \{M \in \mathbb{R}^{d_h \times d_0} \mid \operatorname{rk}(M) \leq r\}$ is the zero locus of the $(r+1) \times (r+1)$ minors of M.

Loss Landscapes

A loss function on a neural network $\Phi: \mathbb{R}^{d_w} imes \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$ is of the form

$$L: \mathbb{R}^{d_w} \xrightarrow{\mu} \mathcal{M}_{\Phi} \xrightarrow{\ell|_{\mathcal{M}_{\Phi}}} \mathbb{R},$$

$$w \longmapsto \Phi(w,\cdot)$$

where ℓ is a functional defined on a subset of $\mathcal{C}(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$ containing \mathcal{M}_{Φ} .

Visualizations of *L*

Source: Li, Hao, et al. "Visualizing the loss landscape of neural nets."

Advances in Neural Information Processing Systems. 2018.

Observation If $\varphi \in \operatorname{Crit}(\ell|_{\mathcal{M}_{\Phi}})$, then $\mu^{-1}(\varphi) \subset \operatorname{Crit}(L)$.

Linear Networks

A loss function on a linear network is of the form

$$L: \mathbb{R}^{d_h \times d_{h-1}} \times \ldots \times \mathbb{R}^{d_1 \times d_0} \xrightarrow{\mu} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h \times d_0} \xrightarrow{\ell} \mathbb{R},$$
$$(W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$$

Recall: $\mathcal{M}_{\Phi} = \left\{ M \in \mathbb{R}^{d_h \times d_0} \mid \mathrm{rk}(M) \leq r \right\}$, where $r := \min \left\{ d_0, d_1, \dots, d_h \right\}$.

Theorem Let $M \in \mathcal{M}_{\Phi}$.

1. If rk(M) = r, then $\mu^{-1}(M)$ has 2^b path-connected components

where
$$b := \# \{i \mid 0 < i < h, d_i = r\}$$
.

2. If rk(M) < r, then $\mu^{-1}(M)$ is path-connected.

Linear Networks

A loss function on a linear network is of the form

$$L: \mathbb{R}^{d_h \times d_{h-1}} \times \ldots \times \mathbb{R}^{d_1 \times d_0} \xrightarrow{\mu} \mathcal{M}_{\Phi} \subset \mathbb{R}^{d_h \times d_0} \xrightarrow{\ell} \mathbb{R},$$
$$(W_h, \ldots, W_1) \longmapsto W_h \cdots W_1$$

For linear networks, the loss *L* often has "no bad minima", i.e. every local minimum is global.

Proposition Let ℓ be smooth and convex.

L has non-global minima $\Leftrightarrow \ell|_{\mathcal{M}_{\Phi}}$ has non-global minima.

Corollary [Laurent & von Brecht '17]

If ℓ is smooth convex and $r = \min\{d_0, d_h\}$ (filling architecture), then all local minima for L are global.

Corollary [Baldi & Hornik '89, Kawaguchi '16] If ℓ is a quadratic loss, then all local minima for L are global. (even in the non-filling case!)

The Quadratic Loss

Fixed data matrices $X \in \mathbb{R}^{d_0 \times s}$ and $Y \in \mathbb{R}^{d_h \times s}$ define a quadratic loss

$$\ell_{X,Y}: \mathbb{R}^{d_h \times d_0} \longrightarrow \mathbb{R},$$

$$M \longmapsto \|MX - Y\|_F^2$$

Observation If $XX^T=\mathrm{I}_{d_0}$ ("whitened data"), then $\ell_{X,Y}(M)=\|M-YX^T\|_F^2+\mathrm{const.}$

Minimizing $\ell_{X,Y}$ on the determinantal variety $\mathcal{M}_{\Phi} = \{M \mid \mathrm{rk}(M) \leq r\}$ is equivalent to minimizing the Euclidean distance of YX^T to \mathcal{M}_{Φ} .

Euclidean Distance to Varieties

Let $\mathcal{Z} \subset \mathbb{R}^N$ be an algebraic variety (i.e., the common zero locus of some set of polynomials).

There is a constant $\delta \in \mathbb{Z}_{>0}$ such that for almost all $q \in \mathbb{R}^N$ the minimization problem $\min_{z \in \mathcal{Z}} \|z - q\|_2^2$ has δ complex critical points. δ is called the **ED degree** of \mathcal{Z} .

The other $q \in \mathbb{R}^N$ form a complex hypersurface, called **ED** discriminant of \mathcal{Z} .

Eckart-Young Theorem

$$\mathcal{M}_r = \{M \mid \operatorname{rk}(M) \leq r\} \subset \mathbb{R}^{m \times n}$$
 determinantal variety

EY Theorem

Let $Q \in \mathbb{R}^{m \times n}$ be of full rank with pairwise distinct singular values.

- 1. $\min_{M \in \mathcal{M}_r} \|M Q\|_F^2$ has $\binom{\min\{m,n\}}{r}$ complex critical points. \Rightarrow ED degree $\delta(\mathcal{M}_r) = \binom{\min\{m,n\}}{r}$
- 2. All critical points are real.
 - \Rightarrow ED discriminant has codimension 2 over $\mathbb R$ In fact: ED discriminant = $\{$ matrices with \geq 2 coinciding singular values $\}$
- 3. $\min_{M \in \mathcal{M}_r} \|M Q\|_F^2$ has unique local minimum

Corollary [Baldi & Hornik '89, Kawaguchi '16] If ℓ is a quadratic loss, then all local minima for the loss $L=\ell\circ\mu$ on a linear network are global. (even in the non-filling case!)

Let $\mathcal{Z} \subset \mathbb{R}^N$ be an algebraic variety.

There is a constant $\delta^{\text{gen}} \in \mathbb{Z}_{>0}$ such that for almost all linear coordinate changes $f : \mathbb{R}^N \to \mathbb{R}^N$ the ED degree of $f(\mathcal{Z})$ is δ^{gen} .

 δ^{gen} is called the **generic ED degree** of \mathcal{Z} .

Equivalently: $\delta^{ ext{gen}}$ is the ED degree of $\mathcal Z$ under the perturbed Euclidean distance $\|f(\cdot)\|_2$. $\qquad \qquad = \sum \|\cdot\|_2$

Example $\mathcal{M}_1 = \{M \mid \operatorname{rk}(M) \leq 1\} \subset \mathbb{R}^{3 \times 3}$

- 1. $\delta(\mathcal{M}_1) = 3$ < $39 = \delta^{\mathrm{gen}}(\mathcal{M}_1)$
- 2. under almost all perturbed Euclidean distances $\|f(\cdot)\|_2$, the ED discriminant of \mathcal{M}_1 is a hypersurface over \mathbb{R}
- \Rightarrow different number of real critical points in different open regions of $\mathbb{R}^{3 imes3}$
- 3. Also: different number of local minima in different open regions of $\mathbb{R}^{3\times3}$, not all of them global !

	# real critical points								
		1	3	5	7	9	11	13	
	1	0	476	120	1	0	0	0	
# local	2	0	0	805	190	10	0	0	
minima	3	0	0	0	228	116	21	0	
	4	0	0	0	0	16	12	5	

All determinantal varieties behave like this |X|| – X|V

Remark Closed formula for generic ED degree of $\mathcal{M}_r = \{M \mid \mathrm{rk}(M) \leq r\} \subset \mathbb{R}^{m \times n}$ involving only m, n, r difficult to derive.

For r = 1,

$$\delta^{\text{gen}}(\mathcal{M}_1) = \sum_{s=0}^{m+n} (-1)^s (2^{m+n+1-s} - 1)(m+n-s)! \left[\sum_{\substack{i+j=s \\ i \leq m, \ j \leq n}} \frac{\binom{m+1}{i} \binom{n+1}{j}}{(m-i)!(n-j)!} \right]$$

$$\delta(\mathcal{M}_1) = \min\{m, n\}$$

Take Away

- determinantal varieties are examples of neuromanifolds
- for linear networks with smooth convex losses:

	quadratic loss	other loss		
filling	no bad min.	no bad min.		convex optimization on vector space
non-filling	no bad min.	/ bad min.		on vector space
	†			

special embedding of determinantal varieties

- future extensions to
 - convolutional networks (ongoing work with T. Merkh, G. Montúfar, M. Trager)
 - networks with polynomial activation functions or
 - ReLU networks (using semi-algebraic sets)

Informal Part 2: Convergence to Global Minima

joint with Ludwig Hedlin

Convergence to Global Minima

Consider a linear network with a quadratic loss $\ell_{X,Y}$.

Conjecture

For almost all data matrices X and Y and almost all initializations of the network, gradient flow will converge to a global minimum of the loss $L_{X,Y} = \ell_{X,Y} \circ \mu$.

Theorem [Bah, Rauhut, Terstiege, Westdickenberg]

For almost all data matrices X and Y and almost all initializations of the network, gradient flow will converge to a global minimum of the loss $L_{X,Y} = \ell_{X,Y} \circ \mu$ or to another critical point whose Hessian has no negative eigenvalues.

How can we exclude the latter?

Interesting sub case: Can we show that gradient flow will almost surely avoid $\mathcal{H}_{X,Y} := \{ \text{ critical points of } L_{X,Y} \text{ with zero Hessian } \}$?

Convergence to Global Minima

Consider a linear network with a quadratic loss $\ell_{X,Y}$.

Conjecture 2 (easier version)

For almost all data matrices X and Y and almost all initializations of the network, gradient flow will **not** converge to

$$\mathcal{H}_{X,Y} := \{ \text{ critical points of } L_{X,Y} = \ell_{X,Y} \circ \mu \text{ with zero Hessian } \}.$$

Idea: By [Chitour, Liao, Couillet], we know that the algebraic map

$$\delta: (W_h, W_{h-1}, \dots, W_1) \longmapsto \left(W_h^T W_h - W_{h-1} W_{h-1}^T, \dots, W_2^T W_2 - W_1 W_1^T\right)$$

is constant under gradient flow.

To prove Conjecture 2, it is enough to show

$$\dim(\operatorname{im}(\delta|_{\mathcal{H}_{X,Y}})) < \dim(\operatorname{im}(\delta))$$
 for almost all X, Y .

This holds for h < 5 \odot but not for large h \odot

