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Chow Complexes Hurwitz Complexes Duality

Introduction to the Grassmannian
Gr(1,P3)

P ∶= PC, Gr(1,P3) ∶= { lines in P3}

Let L ∈ Gr(1,P3) be spanned by rows of ( x0 x1 x2 x3
y0 y1 y2 y3

)
⇒ For i < j, let pij be minor of ( x0 x1 x2 x3

y0 y1 y2 y3
) using columns i, j

⇒ pij’s are called Plücker coordinates and satisfy the Plücker
relation p01p23 −p02p13 +p03p12 = 0

This gives the Plücker embedding

Gr(1,P3)Ð→ P5,

L z→ (p01 ∶ p02 ∶ p03 ∶ p12 ∶ p13 ∶ p23) .

Gr(1,P3) is 4-dimensional variety in P5 defined by Plücker
relation.
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Chow complex
Definition
Let C ⊂ P3 be an irreducible curve.

CH0(C) ∶= {L ∈ Gr(1,P3) ∣ L ∩C ≠ ∅}

is irreducible hypersurface (i.e., threefold) in Gr(1,P3), called
Chow complex.
⇒ CH0(C) is defined by a polynomial in Plücker coordinates,
which is unique up to the Plücker relation, called Chow form.
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Degree of Chow complex
Definition
The degree of a line complex X (i.e., threefold in Gr(1,P3)) is

#{L ∈ X ∣ p ∈ L ⊂ H},

where H ⊂ P3 is a general plane and p ∈ H is a general point.
This is also the degree of the defining polynomial of X .

⇒ deg CH0(C) = deg C
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Singular locus of Chow complex

Theorem (K., Nødland, Tripoli)
If deg C ≥ 2, then

Sing(CH0(C)) = Sec(C) ∪ ⋃
x∈Sing(C)

Gx ,

where

Sec(C) ∶= {L ∣#(C ∩ L) ≥ 2} ⊂ Gr(1,P3)

is the secant congruence of C and

Gx ∶= {L ∣ x ∈ L} ⊂ Gr(1,P3) .
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Bidegree of secant congruence

Definition
The bidegree of a congruence X (i.e., surface in Gr(1,P3)) is

(#{L ∈ X ∣ p ∈ L}, #{L ∈ X ∣ L ⊂ H}) ,

where p ∈ P3 is a general point and H ⊂ P3 is a general plane.

⇒ bideg(Gx) = (1,0)
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Bidegree of secant congruence
Definition
The bidegree of a congruence X (i.e., surface in Gr(1,P3)) is

(#{L ∈ X ∣ p ∈ L}, #{L ∈ X ∣ L ⊂ H}) ,

where p ∈ P3 is a general point and H ⊂ P3 is a general plane.

Theorem (K., Nødland, Tripoli)
If C is not contained in any plane and has only ordinary
singularities x1, . . . , xs with multiplicities r1, . . . , rs, then

bideg(Sec(C)) = (1
2
(d − 1)(d − 2) −g − 1

2

s

∑
i=1

ri(ri − 1), 1
2

d(d − 1)) ,

where d ∶= deg(C) and g is the geometric genus of C.
If C is contained in a plane and d ≥ 2, then
bideg(Sec(C)) = (0, 1

2d(d − 1)).
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Hurwitz complex
Definition
Let S ⊂ P3 be an irreducible surface, deg(S) ≥ 2.

CH1(S) ∶= {L ∣ L tangent to S at smooth point} ⊂ Gr(1,P3)

is irreducible hypersurface (i.e., threefold) in Gr(1,P3), called
Hurwitz complex.
Its defining polynomial is called Hurwitz form.
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Degree of Hurwitz complex

Definition
The degree of a line complex X (i.e., threefold in Gr(1,P3)) is

#{L ∈ X ∣ p ∈ L ⊂ H},

where H ⊂ P3 is a general point and p ∈ H is a general point.
This is also the degree of the defining polynomial of X .

⇒ For general surface S of degree d: deg(CH1(S)) = d(d − 1)
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Singular locus of Hurwitz complex

Theorem (K., Nødland, Tripoli)
If S is smooth, does not contain any lines, and deg(S) ≥ 4, then

Sing(CH1(S)) = Bit(S) ∪ Infl(S),

where

Bit(S) ∶= {L ∣ L tangent to S at two smooth points} ⊂ Gr(1,P3)

is the bitangent congruence of S and

Infl(S) ∶={L ∣ L intersects S at some smooth point with multiplicity 3}

⊂Gr(1,P3)

is the inflectional congruence of S.
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Bidegree of bitangent and inflectional
congruence

Definition
The bidegree of a congruence X (i.e., surface in Gr(1,P3)) is

(#{L ∈ X ∣ p ∈ L}, #{L ∈ X ∣ L ⊂ H}) ,

where p ∈ P3 is a general point and H ⊂ P3 is a general plane.

Theorem (K., Nødland, Tripoli; Arrondo, Bertolini, Turrini)
If S is a general surface of degree d ≥ 4, then

bideg(Bit(S)) = (1
2

d(d − 1)(d − 2)(d − 3), 1
2

d(d − 2)(d − 3)(d + 3)) ,

bideg(Infl(S)) = (d(d − 1)(d − 2), 3d(d − 2)) .
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Projectively dual varieties
Definition
(Pn)∗ is the projectivization of the dual vector space (Cn+1)∗.
Equivalently (Pn)∗ = {H ⊂ Pn ∣ hyperplane}.
⇒ ((Pn)∗)∗ = Pn

Definition
Let X ⊂ Pn be an irreducible variety.

X∨ ∶= {H ∣ H tangent to X at smooth point} ⊂ (Pn)∗

is an irreducible variety, called the projectively dual variety to X .

(Figure: Gel’fand-Kapranov-Zelevinsky) XI - XVI
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Biduality

(Figure: Gel’fand-Kapranov-Zelevinsky)

Theorem (e.g. Gel’fand-Kapranov-Zelevinsky)
(X∨)∨ = X.
For smooth points x ∈ X ,H ∈ X∨:
H is tangent to X at x ⇔ x is tangent to X∨ at H.
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Plücker’s formula
Proposition (e.g. Griffiths-Harris)
Let C ⊂ P2 be an irreducible curve of degree d with exactly κ
cusps and ν nodes as singularities. Then

deg(C∨) = d(d − 1) − 3κ − 2ν.

Corollary
For general surface S ⊂ P3 of degree d:

deg(CH1(S)) = deg ((S ∩H)∨) = d(d − 1),

where H ⊂ P3 is a general plane.
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Proof of
bideg(Bit(S)) = ( 1

2 d(d − 1)(d − 2)(d − 3), 1
2 d(d − 2)(d − 3)(d + 3))

bideg(Infl(S)) = (d(d − 1)(d − 2), 3d(d − 2))
lines through general point lines in general plane

Corollary
A general irreducible plane curve of degree d has
1
2d(d − 2)(d − 3)(d + 3) bitangents and 3d(d − 2) inflectional
lines.
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Proof of
bideg(Bit(S)) = ( 1

2 d(d − 1)(d − 2)(d − 3), 1
2 d(d − 2)(d − 3)(d + 3))

bideg(Infl(S)) = (d(d − 1)(d − 2), 3d(d − 2))
lines through general point lines in general plane

bitangents to S through p↭ nodes of C

inflectional lines to S through p↭ cusps of C
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Congruences of dual varieties
Theorem (K., Nødland, Tripoli)
Let C ⊂ P3 be an irreducible smooth curve, not contained in
any plane. Then

L ∈ CH0(C)⇔ L∨ ∈ CH1(C∨),
L ∈ Sec(C)⇔ L∨ ∈ Bit(C∨),

L tangent to C ⇔ L∨ ∈ Infl(C∨).

Thanks for your attention!
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