Chow and Hurwitz Complexes and their Singular Loci

(joint work with B.I. Nødland², P. Tripoli³)

¹Institute of Mathematics, TU Berlin ²Department of Mathematics, University of Oslo ³Mathematics Institute, University of Warwick

December 8, 2016

Introduction to the Grassmannian $Gr(1, \mathbb{P}^3)$ $\mathbb{P} := \mathbb{P}_{\mathbb{C}}, Gr(1, \mathbb{P}^3) := \{ \text{ lines in } \mathbb{P}^3 \}$

Let $L \in Gr(1, \mathbb{P}^3)$ be spanned by rows of $\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix}$ \Rightarrow For i < j, let p_{ij} be minor of $\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix}$ using columns i, j $\Rightarrow p_{ij}$'s are called Plücker coordinates and satisfy the Plücker relation $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$

This gives the Plücker embedding

$$Gr(1, \mathbb{P}^3) \longrightarrow \mathbb{P}^5,$$

$$L \longmapsto (p_{01} : p_{02} : p_{03} : p_{12} : p_{13} : p_{23})$$

 $Gr(1,\mathbb{P}^3)$ is 4-dimensional variety in \mathbb{P}^5 defined by Plücker relation.

Section 1

Chow Complexes

Hurwitz Complexe

Duality

Chow complex

Definition Let $C \subset \mathbb{P}^3$ be an irreducible curve.

$$\mathsf{CH}_0(C) \coloneqq \left\{ L \in \mathsf{Gr}(1, \mathbb{P}^3) \mid L \cap C \neq \emptyset \right\}$$

is irreducible hypersurface (i.e., threefold) in $Gr(1, \mathbb{P}^3)$, called Chow complex.

 \Rightarrow CH₀(C) is defined by a polynomial in Plücker coordinates, which is unique up to the Plücker relation, called Chow form.

Degree of Chow complex

Definition

The degree of a line complex X (i.e., threefold in $Gr(1, \mathbb{P}^3)$) is

 $\#\{L \in X \mid p \in L \subset H\},\$

where $H \subset \mathbb{P}^3$ is a general plane and $p \in H$ is a general point. This is also the degree of the defining polynomial of X.

 $\Rightarrow \deg CH_0(C) = \deg C$

Hurwitz Complexes

Dualit

Singular locus of Chow complex

Theorem (K., Nødland, Tripoli) If deg $C \ge 2$, then

 $\operatorname{Sing}(\operatorname{CH}_0(C)) = \operatorname{Sec}(C) \cup \bigcup_{x \in \operatorname{Sing}(C)} \mathcal{G}_x,$

where

 $\operatorname{Sec}(C) \coloneqq \overline{\{L \mid \#(C \cap L) \ge 2\}} \subset \operatorname{Gr}(1, \mathbb{P}^3)$

is the secant congruence of C and

 $\mathcal{G}_{X} := \{L \mid x \in L\} \subset \mathrm{Gr}(1, \mathbb{P}^{3}).$

IV - XVI

Bidegree of secant congruence

Definition

The bidegree of a congruence X (i.e., surface in $Gr(1, \mathbb{P}^3)$) is

 $(\#\{L \in X \mid p \in L\}, \#\{L \in X \mid L \subset H\}),$

where $p \in \mathbb{P}^3$ is a general point and $H \subset \mathbb{P}^3$ is a general plane. \Rightarrow bideg(\mathcal{G}_{χ}) = (1,0)

Bidegree of secant congruence Definition

The bidegree of a congruence X (i.e., surface in $Gr(1, \mathbb{P}^3)$) is

 $(\#\{L \in X \mid p \in L\}, \#\{L \in X \mid L \subset H\}),$

where $p \in \mathbb{P}^3$ is a general point and $H \subset \mathbb{P}^3$ is a general plane. Theorem (K., Nødland, Tripoli) If C is not contained in any plane and has only ordinary singularities x_1, \ldots, x_s with multiplicities r_1, \ldots, r_s , then

bideg(Sec(C)) = $\left(\frac{1}{2}(d-1)(d-2) - g - \frac{1}{2}\sum_{i=1}^{s}r_i(r_i-1), \frac{1}{2}d(d-1)\right),$

where $d := \deg(C)$ and g is the geometric genus of C. If C is contained in a plane and $d \ge 2$, then bideg(Sec(C)) = $(0, \frac{1}{2}d(d-1))$. ∖/I - X

Section 2

Hurwitz Complexes

Hurwitz Complexes

Duali

Hurwitz complex

Definition Let $S \subset \mathbb{P}^3$ be an irreducible surface, deg $(S) \ge 2$.

 $CH_1(S) := \overline{\{L \mid L \text{ tangent to } S \text{ at smooth point}\}} \subset Gr(1, \mathbb{P}^3)$

is irreducible hypersurface (i.e., threefold) in $Gr(1, \mathbb{P}^3)$, called Hurwitz complex. Its defining polynomial is called Hurwitz form.

Hurwitz Complexes

Duali

Degree of Hurwitz complex

Definition

The degree of a line complex X (i.e., threefold in $Gr(1,\mathbb{P}^3)$) is

 $#\{L \in X \mid p \in L \subset H\},\$

where $H \subset \mathbb{P}^3$ is a general point and $p \in H$ is a general point. This is also the degree of the defining polynomial of X.

 \Rightarrow For general surface S of degree d: deg(CH₁(S)) = d(d-1)

VIII - XVI

Duality

Singular locus of Hurwitz complex

Theorem (K., Nødland, Tripoli)

If S is smooth, does not contain any lines, and $deg(S) \ge 4$, then

 $\operatorname{Sing}(\operatorname{CH}_1(S)) = \operatorname{Bit}(S) \cup \operatorname{Infl}(S),$

where

Bit(S) := $\overline{\{L \mid L \text{ tangent to S at two smooth points}\}} \subset Gr(1, \mathbb{P}^3)$

is the bitangent congruence of S and

 $Infl(S) := \overline{\{L \mid L \text{ intersects } S \text{ at some smooth point with multiplicity } 3\}} \\ \subset Gr(1, \mathbb{P}^3)$

is the inflectional congruence of S.

IX - XVI

Bidegree of bitangent and inflectional congruence

Definition

The bidegree of a congruence X (i.e., surface in ${
m Gr}(1,{\mathbb P}^3)$) is

 $(\#\{L \in X \mid p \in L\}, \ \overline{\#\{L \in X \mid L \subset H\}}),$

where $p \in \mathbb{P}^3$ is a general point and $H \subset \mathbb{P}^3$ is a general plane.

Theorem (K., Nødland, Tripoli; Arrondo, Bertolini, Turrini) If S is a general surface of degree $d \ge 4$, then

bideg(Bit(S)) = $\left(\frac{1}{2}d(d-1)(d-2)(d-3), \frac{1}{2}d(d-2)(d-3)(d+3)\right)$, bideg(Infl(S)) = $\left(d(d-1)(d-2), 3d(d-2)\right)$.

X - XVI

Section 3

Duality

Projectively dual varieties

Definition

 $(\mathbb{P}^n)^*$ is the projectivization of the dual vector space $(\mathbb{C}^{n+1})^*$. Equivalently $(\mathbb{P}^n)^* = \{ H \subset \mathbb{P}^n \mid \text{hyperplane} \}.$

$$\Rightarrow \left((\mathbb{P}^n)^* \right)^* = \mathbb{P}^n$$

Definition Let $X \subset \mathbb{P}^n$ be an irreducible variety.

 $X^{\vee} := \overline{\{H \mid H \text{ tangent to } X \text{ at smooth point}\}} \subset (\mathbb{P}^n)^*$

is an irreducible variety, called the projectively dual variety to X.

(Figure: Gel'fand-Kapranov-Zelevinsky)

Hurwitz Complexes

Duality

Biduality

Theorem (e.g. Gel'fand-Kapranov-Zelevinsky) $(X^{\vee})^{\vee} = X$. For smooth points $x \in X, H \in X^{\vee}$: H is tangent to X at $x \Leftrightarrow x$ is tangent to X^{\vee} at H.

XII - XVI

H∩S

Plücker's formula

Proposition (e.g. Griffiths-Harris)

Let $C \subset \mathbb{P}^2$ be an irreducible curve of degree d with exactly κ cusps and ν nodes as singularities. Then

 $\deg(C^{\vee}) = d(d-1) - 3\kappa - 2\nu.$

Corollary

For general surface $S \subset \mathbb{P}^3$ of degree d:

 $\deg(\operatorname{CH}_1(S)) = \deg((S \cap H)^{\vee}) = d(d-1),$

where $H \subset \mathbb{P}^3$ is a general plane.

lurwitz Complexes

Duality

bideg(Bit(S)) =bideg(Infl(S)) = Proof of $(\frac{1}{2}d(d-1)(d-2)(d-3),$ (d(d-1)(d-2),lines through general point

 $\frac{1}{2}d(d-2)(d-3)(d+3)$ 3d(d-2))lines in general plane

Corollary

A general irreducible plane curve of degree d has $\frac{1}{2}d(d-2)(d-3)(d+3)$ bitangents and 3d(d-2) inflectional lines.

lurwitz Complexe:

Duality

bideg(Bit(S)) =bideg(Infl(S)) =

Proof of $(\frac{1}{2}d(d-1)(d-2)(d-3),$ (d(d-1)(d-2),lines through general point li

 $\frac{1}{2}d(d-2)(d-3)(d+3)$ $\frac{1}{3}d(d-2))$ lines in general plane

bitangents to S through $p \leftrightarrow$ nodes of C inflectional lines to S through $p \leftrightarrow$ cusps of C

XV - XVI

Hurwitz Complexe

Duality

Congruences of dual varieties

Theorem (K., Nødland, Tripoli) Let $C \subset \mathbb{P}^3$ be an irreducible smooth curve, not contained in any plane. Then

 $L \in CH_0(C) \Leftrightarrow L^{\vee} \in CH_1(C^{\vee}),$ $L \in Sec(C) \Leftrightarrow L^{\vee} \in Bit(C^{\vee}),$ $L \text{ tangent to } C \Leftrightarrow L^{\vee} \in Infl(C^{\vee}).$

Thanks for your attention!

XVI - XVI