Chow and Hurwitz Complexes and their Singular Loci

Kathlén Kohn1
(joint work with B.I. Nødland2, P. Tripoli3)

1Institute of Mathematics, TU Berlin
2Department of Mathematics, University of Oslo
3Mathematics Institute, University of Warwick

December 8, 2016
Introduction to the Grassmannian

\(\text{Gr}(1, \mathbb{P}^3) \)

\(\mathbb{P} := \mathbb{P}_\mathbb{C}, \text{Gr}(1, \mathbb{P}^3) := \{ \text{lines in } \mathbb{P}^3 \} \)

Let \(L \in \text{Gr}(1, \mathbb{P}^3) \) be spanned by rows of \(\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix} \)

\(\Rightarrow \) For \(i < j \), let \(p_{ij} \) be minor of \(\begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix} \) using columns \(i, j \)

\(\Rightarrow p_{ij} \)'s are called \text{Plücker coordinates} and satisfy the \text{Plücker relation} \(p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0 \)

This gives the \text{Plücker embedding}

\[\text{Gr}(1, \mathbb{P}^3) \rightarrow \mathbb{P}^5, \]

\[L \mapsto (p_{01} : p_{02} : p_{03} : p_{12} : p_{13} : p_{23}). \]

\(\text{Gr}(1, \mathbb{P}^3) \) is 4-dimensional variety in \(\mathbb{P}^5 \) defined by \text{Plücker relation}.
Section 1

Chow Complexes
Chow complex

Definition
Let \(C \subset \mathbb{P}^3 \) be an irreducible curve.

\[
\text{CH}_0(C) := \left\{ L \in \text{Gr}(1, \mathbb{P}^3) \mid L \cap C \neq \emptyset \right\}
\]

is irreducible hypersurface (i.e., threefold) in \(\text{Gr}(1, \mathbb{P}^3) \), called Chow complex.

\(\Rightarrow \text{CH}_0(C) \) is defined by a polynomial in Plücker coordinates, which is unique up to the Plücker relation, called Chow form.
Degree of Chow complex

Definition
The degree of a line complex \(X \) (i.e., threefold in \(\text{Gr}(1, \mathbb{P}^3) \)) is

\[
\#\{L \in X \mid p \in L \subset H\},
\]

where \(H \subset \mathbb{P}^3 \) is a general plane and \(p \in H \) is a general point. This is also the degree of the defining polynomial of \(X \).

\[\Rightarrow \deg \text{CH}_0(C) = \deg C \]
Singular locus of Chow complex

Theorem (K., Nødland, Tripoli)

If \(\deg C \geq 2 \), then

\[
\text{Sing}(\text{CH}_0(C)) = \text{Sec}(C) \cup \bigcup_{x \in \text{Sing}(C)} G_x,
\]

where

\[
\text{Sec}(C) := \{ L \mid \#(C \cap L) \geq 2 \} \subset \text{Gr}(1, \mathbb{P}^3)
\]

is the **secant congruence** of \(C \) and

\[
G_x := \{ L \mid x \in L \} \subset \text{Gr}(1, \mathbb{P}^3).
\]
Bidegree of secant congruence

Definition
The bidegree of a congruence X (i.e., surface in $\text{Gr}(1, \mathbb{P}^3)$) is

$$\left(\#\{L \in X \mid p \in L\}, \#\{L \in X \mid L \subset H\}\right),$$

where $p \in \mathbb{P}^3$ is a general point and $H \subset \mathbb{P}^3$ is a general plane.

$\Rightarrow \text{bideg}(G_x) = (1, 0)$
Bidegree of secant congruence

Definition
The bidegree of a congruence X (i.e., surface in $\text{Gr}(1, \mathbb{P}^3)$) is

$$
\left(\#\{L \in X \mid p \in L\}, \#\{L \in X \mid L \subset H\} \right),
$$

where $p \in \mathbb{P}^3$ is a general point and $H \subset \mathbb{P}^3$ is a general plane.

Theorem (K., Nødland, Tripoli)

If C is not contained in any plane and has only ordinary singularities x_1, \ldots, x_s with multiplicities r_1, \ldots, r_s, then

$$
\text{bideg}(\text{Sec}(C)) = \left(\frac{1}{2} (d - 1)(d - 2) - g - \frac{1}{2} \sum_{i=1}^{s} r_i(r_i - 1), \frac{1}{2} d(d - 1) \right),
$$

where $d := \deg(C)$ and g is the geometric genus of C.

If C is contained in a plane and $d \geq 2$, then

$$
\text{bideg}(\text{Sec}(C)) = (0, \frac{1}{2} d(d - 1)).
$$
Section 2

Hurwitz Complexes
Hurwitz complex

Definition
Let $S \subset \mathbb{P}^3$ be an irreducible surface, $\deg(S) \geq 2$.

$$\text{CH}_1(S) := \{L \mid L \text{ tangent to } S \text{ at smooth point}\} \subset \text{Gr}(1, \mathbb{P}^3)$$

is irreducible hypersurface (i.e., threefold) in $\text{Gr}(1, \mathbb{P}^3)$, called Hurwitz complex.

Its defining polynomial is called Hurwitz form.
Definition
The degree of a line complex X (i.e., threefold in $\text{Gr}(1, \mathbb{P}^3)$) is

$$\#\{L \in X \mid p \in L \subset H\},$$

where $H \subset \mathbb{P}^3$ is a general point and $p \in H$ is a general point. This is also the degree of the defining polynomial of X.

\Rightarrow For general surface S of degree d: $\deg(\text{CH}_1(S)) = d(d - 1)$
Singular locus of Hurwitz complex

Theorem (K., Nødland, Tripoli)

If S is smooth, does not contain any lines, and $\deg(S) \geq 4$, then

$$\text{Sing}(\text{CH}_1(S)) = \text{Bit}(S) \cup \text{Infl}(S),$$

where

$$\text{Bit}(S) := \{L | L \text{ tangent to } S \text{ at two smooth points}\} \subset \text{Gr}(1, \mathbb{P}^3)$$

is the **bitangent congruence** of S and

$$\text{Infl}(S) := \{L | L \text{ intersects } S \text{ at some smooth point with multiplicity } 3\} \subset \text{Gr}(1, \mathbb{P}^3)$$

is the **inflectional congruence** of S.
Bidegree of bitangent and inflectional congruence

Definition
The bidegree of a congruence X (i.e., surface in $\text{Gr}(1, \mathbb{P}^3)$) is

$$\left(\# \{ L \in X \mid p \in L \}, \# \{ L \in X \mid L \subset H \} \right),$$

where $p \in \mathbb{P}^3$ is a general point and $H \subset \mathbb{P}^3$ is a general plane.

Theorem (K., Nødland, Tripoli; Arrondo, Bertolini, Turrini)
If S is a general surface of degree $d \geq 4$, then

$$\text{bideg}(\text{Bit}(S)) = \left(\frac{1}{2} d(d - 1)(d - 2)(d - 3), \frac{1}{2} d(d - 2)(d - 3)(d + 3) \right),$$

$$\text{bideg}(\text{Infl}(S)) = (d(d - 1)(d - 2), 3d(d - 2)).$$
Section 3

Duality
Projectively dual varieties

Definition

$(\mathbb{P}^n)^*$ is the projectivization of the dual vector space $(\mathbb{C}^{n+1})^*$. Equivalently, $(\mathbb{P}^n)^* = \{ H \subset \mathbb{P}^n \mid \text{hyperplane}\}$.

$\Rightarrow (\mathbb{P}^n)^* = \mathbb{P}^n$

Definition

Let $X \subset \mathbb{P}^n$ be an irreducible variety.

$X^\vee := \{ H \mid H \text{ tangent to } X \text{ at smooth point} \} \subset (\mathbb{P}^n)^*$

is an irreducible variety, called the projectively dual variety to X.

(Figure: Gel’fand-Kapranov-Zelevinsky)
Theorem (e.g. Gel’fand-Kapranov-Zelevinsky)

\((X^\vee)^\vee = X\).

For smooth points \(x \in X, H \in X^\vee\):

\(H\) is tangent to \(X\) at \(x\) \(\iff\) \(x\) is tangent to \(X^\vee\) at \(H\).
Plücker’s formula

Proposition (e.g. Griffiths-Harris)

Let $C \subset \mathbb{P}^2$ be an irreducible curve of degree d with exactly κ cusps and ν nodes as singularities. Then

$$\deg(C^\vee) = d(d - 1) - 3\kappa - 2\nu.$$

Corollary

For general surface $S \subset \mathbb{P}^3$ of degree d:

$$\deg(CH_1(S)) = \deg((S \cap H)^\vee) = d(d - 1),$$

where $H \subset \mathbb{P}^3$ is a general plane.
Proof of

\[\text{bideg}(\text{Bit}(S)) = \frac{1}{2} d(d-1)(d-2)(d-3), \]
\[\text{bideg}(\text{Infl}(S)) = (d(d-1)(d-2), \]

lines through general point

Corollary

A general irreducible plane curve of degree \(d \) has

\[\frac{1}{2} d(d-2)(d-3)(d+3) \] bitangents and \(3d(d-2) \) inflectional lines.
Proof of

\[\text{bideg}(\text{Bit}(S)) = \left(\frac{1}{2} d(d - 1)(d - 2)(d - 3), \right. \]
\[\left. (d(d - 1)(d - 2), \right) \]

lines through general point

\[\text{bideg}(\text{Infl}(S)) = \left(\frac{1}{2} d(d - 2)(d - 3)(d + 3), \right. \]
\[\left. \frac{1}{3} d(d - 2) \right) \]

lines in general plane

bitangents to \(S \) through \(p \) \(\leftrightarrow \) nodes of \(C \)
inflectional lines to \(S \) through \(p \) \(\leftrightarrow \) cusps of \(C \)
Congruences of dual varieties

Theorem (K., Nødland, Tripoli)
Let $C \subset \mathbb{P}^3$ be an irreducible smooth curve, not contained in any plane. Then

$$L \in \text{CH}_0(C) \iff L^\vee \in \text{CH}_1(C^\vee),$$

$$L \in \text{Sec}(C) \iff L^\vee \in \text{Bit}(C^\vee),$$

L tangent to $C \iff L^\vee \in \text{Infl}(C^\vee)$.

Thanks for your attention!