Chow and Hurwitz Complexes and their Singular Loci

Kathlén Kohn ${ }^{1}$
(joint work with B.I. Nødland ${ }^{2}$, P. Tripoli³)

${ }^{1}$ Institute of Mathematics, TU Berlin
${ }^{2}$ Department of Mathematics, University of Oslo
${ }^{3}$ Mathematics Institute, University of Warwick

December 8, 2016

Introduction to the Grassmannian $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$

$\mathbb{P}:=\mathbb{P}_{\mathbb{C}}, \operatorname{Gr}\left(1, \mathbb{P}^{3}\right):=\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}$
Let $L \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ be spanned by rows of $\left(\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ y_{0} & x_{3} \\ y_{1} & y_{2} & y_{3}\end{array}\right)$
\Rightarrow For $i<j$, let $p_{j j}$ be minor of $\left(\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3} \\ y_{0} & y_{1} & y_{2} & y_{3}\end{array}\right)$ using columns i, j
$\Rightarrow p_{i j}{ }^{\prime}$ s are called Plücker coordinates and satisfy the Plücker
relation $p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$
This gives the Plücker embedding

$$
\begin{aligned}
& \operatorname{Gr}\left(1, \mathbb{P}^{3}\right) \longrightarrow \mathbb{P}^{5}, \\
& L \longmapsto\left(p_{01}: p_{02}: p_{03}: p_{12}: p_{13}: p_{23}\right) .
\end{aligned}
$$

$\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$ is 4-dimensional variety in \mathbb{P}^{5} defined by Plücker relation.

Section 1

Chow Complexes

Chow complex

Definition

Let $C \subset \mathbb{P}^{3}$ be an irreducible curve.

$$
\mathrm{CH}_{0}(C):=\left\{L \in \operatorname{Gr}\left(1, \mathbb{P}^{3}\right) \mid \operatorname{L} \cap C \neq \varnothing\right\}
$$

is irreducible hypersurface (i.e., threefold) in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$, called Chow complex.
$\Rightarrow \mathrm{CH}_{0}(C)$ is defined by a polynomial in Plücker coordinates, which is unique up to the Plücker relation, called Chow form.

II - XVI

Degree of Chow complex

Definition

The degree of a line complex X (i.e., threefold in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$) is

$$
\#\{L \in X \mid p \in L \subset H\},
$$

where $H \subset \mathbb{P}^{3}$ is a general plane and $p \in H$ is a general point. This is also the degree of the defining polynomial of X.
$\Rightarrow \operatorname{deg} \mathrm{CH}_{0}(C)=\operatorname{deg} C$

III - XVI

Singular locus of Chow complex

Theorem (K., Nødland, Tripoli)
If deg $C \geq 2$, then

$$
\operatorname{Sing}\left(\mathrm{CH}_{0}(C)\right)=\operatorname{Sec}(C) \cup \bigcup_{x \in \operatorname{Sing}(C)} \mathcal{G}_{x},
$$

where

$$
\operatorname{Sec}(C):=\overline{\{L \mid \#(C \cap L) \geq 2\}} \subset \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)
$$

is the secant congruence of C and

$$
\mathcal{G}_{x}:=\{L \mid x \in L\} \subset \operatorname{Gr}\left(1, \mathbb{P}^{3}\right) .
$$

IV - XVI

Bidegree of secant congruence

Definition

The bidegree of a congruence X (i.e., surface in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$) is

$$
(\#\{L \in X \mid p \in L\}, \#\{L \in X \mid L \subset H\}),
$$

where $p \in \mathbb{P}^{3}$ is a general point and $H \subset \mathbb{P}^{3}$ is a general plane.
$\Rightarrow \operatorname{bideg}\left(\mathcal{G}_{X}\right)=(1,0)$

$$
\mathrm{V}-\mathrm{XVI}
$$

Bidegree of secant congruence

Definition

The bidegree of a congruence X (i.e., surface in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$) is

$$
(\#\{L \in X \mid p \in L\}, \#\{L \in X \mid L \subset H\}),
$$

where $p \in \mathbb{P}^{3}$ is a general point and $H \subset \mathbb{P}^{3}$ is a general plane.
Theorem (K., Nødland, Tripoli)
If C is not contained in any plane and has only ordinary singularities x_{1}, \ldots, x_{s} with multiplicities r_{1}, \ldots, r_{s}, then
$\operatorname{bideg}(\operatorname{Sec}(C))=\left(\frac{1}{2}(d-1)(d-2)-g-\frac{1}{2} \sum_{i=1}^{s} r_{i}\left(r_{i}-1\right), \frac{1}{2} d(d-1)\right)$,
where $d:=\operatorname{deg}(C)$ and g is the geometric genus of C. If C is contained in a plane and $d \geq 2$, then $\operatorname{bideg}(\operatorname{Sec}(C))=\left(0, \frac{1}{2} d(d-1)\right)$.

Section 2

Hurwitz Complexes

Hurwitz complex

Definition

Let $S \subset \mathbb{P}^{3}$ be an irreducible surface, $\operatorname{deg}(S) \geq 2$.

$$
\mathrm{CH}_{1}(S):=\overline{\{L \mid L \text { tangent to } S \text { at smooth point }\}} \subset \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)
$$

is irreducible hypersurface (i.e., threefold) in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$, called Hurwitz complex.
Its defining polynomial is called Hurwitz form.

Degree of Hurwitz complex

Definition

The degree of a line complex X (i.e., threefold in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$) is

$$
\#\{L \in X \mid p \in L \subset H\},
$$

where $H \subset \mathbb{P}^{3}$ is a general point and $p \in H$ is a general point. This is also the degree of the defining polynomial of X.
\Rightarrow For general surface S of degree d : $\operatorname{deg}\left(\mathrm{CH}_{1}(S)\right)=d(d-1)$

Singular locus of Hurwitz complex

Theorem (K., Nødland, Tripoli)

If S is smooth, does not contain any lines, and $\operatorname{deg}(S) \geq 4$, then

$$
\operatorname{Sing}\left(\mathrm{CH}_{1}(S)\right)=\operatorname{Bit}(S) \cup \operatorname{lnfl}(S),
$$

where

$$
\operatorname{Bit}(S):=\overline{\{L \mid L \text { tangent to } S \text { at two smooth points }\}} \subset \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)
$$

is the bitangent congruence of S and
Infi(S) :=\{L| L intersects S at some smooth point with multiplicity 3$\}$ $c \operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$
is the inflectional congruence of S.

Bidegree of bitangent and inflectional congruence

Definition

The bidegree of a congruence X (i.e., surface in $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right)$) is

$$
(\#\{L \in X \mid p \in L\}, \#\{L \in X \mid L \subset H\}),
$$

where $p \in \mathbb{P}^{3}$ is a general point and $H \subset \mathbb{P}^{3}$ is a general plane.
Theorem (K., Nødland, Tripoli; Arrondo, Bertolini, Turrini) If S is a general surface of degree $d \geq 4$, then
$\operatorname{bideg}(\operatorname{Bit}(S))=\left(\frac{1}{2} d(d-1)(d-2)(d-3), \frac{1}{2} d(d-2)(d-3)(d+3)\right)$ bideg $(\operatorname{Infl}(S))=(d(d-1)(d-2), 3 d(d-2))$.

Section 3

Duality

Projectively dual varieties

Definition

$\left(\mathbb{P}^{n}\right)^{*}$ is the projectivization of the dual vector space $\left(\mathbb{C}^{n+1}\right)^{*}$.
Equivalently $\left(\mathbb{P}^{n}\right)^{*}=\left\{H \subset \mathbb{P}^{n} \mid\right.$ hyperplane $\}$.
$\Rightarrow\left(\left(\mathbb{P}^{n}\right)^{*}\right)^{*}=\mathbb{P}^{n}$

Definition

Let $X \subset \mathbb{P}^{n}$ be an irreducible variety.

$$
X^{\vee}:=\overline{\{H \mid H \text { tangent to } X \text { at smooth point }\}} \subset\left(\mathbb{P}^{n}\right)^{*}
$$

is an irreducible variety, called the projectively dual variety to X.

Biduality

Theorem (e.g. Gel'fand-Kapranov-Zelevinsky)
$\left(X^{\vee}\right)^{\vee}=X$.
For smooth points $x \in X, H \in X^{v}$:
H is tangent to X at $X \Leftrightarrow X$ is tangent to X^{\vee} at H.

Plücker's formula

Proposition (e.g. Griffiths-Harris)

Let $C \subset \mathbb{P}^{2}$ be an irreducible curve of degree d with exactly κ cusps and ν nodes as singularities. Then

$$
\operatorname{deg}\left(C^{\vee}\right)=d(d-1)-3 \kappa-2 \nu .
$$

Corollary

For general surface $S \subset \mathbb{P}^{3}$ of degree d:

$$
\operatorname{deg}\left(\mathrm{CH}_{1}(S)\right)=\operatorname{deg}\left((S \cap H)^{v}\right)=d(d-1),
$$

where $H \subset \mathbb{P}^{3}$ is a general plane.

Proof of

$\operatorname{bideg}(\operatorname{Bit}(S))=\left(\frac{1}{2} d(d-1)(d-2)(d-3), \quad \frac{1}{2} d(d-2)(d-3)(d+3)\right)$ $\operatorname{bideg}(\operatorname{lnf} \mid(S))=\quad(d(d-1)(d-2), \quad 3 d(d-2))$
lines through general point lines in general plane

Corollary

A general irreducible plane curve of degree d has $\frac{1}{2} d(d-2)(d-3)(d+3)$ bitangents and $3 d(d-2)$ inflectional lines.

XIV - XVI

Proof of

$$
\begin{array}{rll}
\operatorname{bideg}(\operatorname{Bit}(S))= & \left(\frac{1}{2} d(d-1)(d-2)(d-3),\right. & \left.\frac{1}{2} d(d-2)(d-3)(d+3)\right) \\
\operatorname{bideg}(\operatorname{Infl}(S))= & (d(d-1)(d-2), & 3 d(d-2)) \\
& \text { lines through general point } & \text { lines in general plane }
\end{array}
$$

bitangents to S through $p \rightsquigarrow$ nodes of C inflectional lines to S through $p \rightsquigarrow$ cusps of C
XV - XVI

Congruences of dual varieties

Theorem (K., Nødland, Tripoli)

Let $C \subset \mathbb{P}^{3}$ be an irreducible smooth curve, not contained in any plane. Then

$$
\begin{aligned}
L \in C H_{0}(C) & \Leftrightarrow L^{v} \in C H_{1}\left(C^{v}\right), \\
L \in \operatorname{Sec}(C) & \Leftrightarrow L^{v} \in \operatorname{Bit}\left(C^{v}\right), \\
L \text { tangent to } C & \Leftrightarrow L^{v} \in \operatorname{Infl}\left(C^{v}\right) .
\end{aligned}
$$

Thanks for your attention!

$$
\mathrm{XVI}-\mathrm{XVI}
$$

