The Adjoint of a Polytope

Kathlén Kohn KTH

classical algebraic geometry adjoint hypersurfaces

joint works with Kristian Ranestad (Universitetet i Oslo) /
Boris Shapiro (Stockholms universitet) \& Bernd Sturmfels (MPI MiS Leipzig / UC Berkeley)

The Adjoint of a Polygon

Wachspress (1975)

The Adjoint of a Polygon Wachspress (1975)

Definition

The adjoint A_{P} of a polygon $P \subset \mathbb{P}^{2}$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$\left(\operatorname{deg} A_{P}=|V(P)|-3\right)$

The Adjoint of a Polygon Wachspress (1975)

Definition

The adjoint A_{P} of a polygon $P \subset \mathbb{P}^{2}$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$\left(\operatorname{deg} A_{P}=|V(P)|-3\right)$

Generalization to higher-dimensional polytopes?

The Adjoint of a Polytope

```
Warren (1996)
```

- P : convex polytope in \mathbb{R}^{n}
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

The Adjoint of a Polytope

 Warren (1996)- P : convex polytope in \mathbb{R}^{n}
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition $\operatorname{adj}_{\tau(P)}(t):=\sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \backslash V(\sigma)} \ell_{v}(t)$,
where $t=\left(t_{1}, \ldots, t_{n}\right)$ and $\ell_{v}(t)=1-v_{1} t_{1}-v_{2} t_{2}-\ldots-v_{n} t_{n}$.

The Adjoint of a Polytope

 Warren (1996)- P : convex polytope in \mathbb{R}^{n}
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition $\operatorname{adj}_{\tau(P)}(t):=\sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \backslash V(\sigma)} \ell_{v}(t)$,
where $t=\left(t_{1}, \ldots, t_{n}\right)$ and $\ell_{v}(t)=1-v_{1} t_{1}-v_{2} t_{2}-\ldots-v_{n} t_{n}$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_{P}:=\operatorname{adj}_{\tau(P)}$.

The Adjoint of a Polytope

 Warren (1996)- P : convex polytope in \mathbb{R}^{n}
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition $\operatorname{adj}_{\tau(P)}(t):=\sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \backslash V(\sigma)} \ell_{V}(t)$,
where $t=\left(t_{1}, \ldots, t_{n}\right)$ and $\ell_{v}(t)=1-v_{1} t_{1}-v_{2} t_{2}-\ldots-v_{n} t_{n}$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_{P}:=\operatorname{adj}_{\tau(P)}$.
II If P is a polygon, then $Z\left(\operatorname{adj}_{P}\right)=A_{P *}$.
(Recall: $P^{*}=\left\{x \in \mathbb{R}^{n} \mid \forall v \in V(P): \ell_{v}(x) \geq 0\right\}$ dual polytope of P)

The Adjoint of a Polytope

 Warren (1996)- P : convex polytope in \mathbb{R}^{n}
- $V(P)$: set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition $\operatorname{adj}_{\tau(P)}(t):=\sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \backslash V(\sigma)} \ell_{V}(t)$,
where $t=\left(t_{1}, \ldots, t_{n}\right)$ and $\ell_{v}(t)=1-v_{1} t_{1}-v_{2} t_{2}-\ldots-v_{n} t_{n}$.

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_{P}:=\operatorname{adj}_{\tau(P)}$.
II If P is a polygon, then $Z\left(\operatorname{adj}_{P}\right)=A_{P *}$.
(Recall: $P^{*}=\left\{x \in \mathbb{R}^{n} \mid \forall v \in V(P): \ell_{v}(x) \geq 0\right\}$ dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

III - XII

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

III - XII

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n}
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes),

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n} with \boldsymbol{d} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes),

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n} with \boldsymbol{d} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{n} of degree $d-n-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n} with \boldsymbol{d} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{n} of degree $d-n-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n} with \boldsymbol{d} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

adjoint quadric surface

adjoint plane

Theorem (K., Ranestad)

If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{n} of degree $d-n-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n} with \boldsymbol{d} facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

adjoint double plane

adjoint quadric surface

adjoint plane Theorem (K., Ranestad)
If \mathcal{H}_{P} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{n} of degree $d-n-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n} with d facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{p} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{n} of degree $d-n-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

The Adjoint of a Polytope

- P : polytope in \mathbb{P}^{n} with d facets
- \mathcal{H}_{P} : hyperplane arrangement spanned by facets of P
- \mathcal{R}_{P} : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_{P} and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_{p} is simple (i.e. through any point in \mathbb{P}^{n} pass $\leq n$ hyperplanes), there is a unique hypersurface A_{P} in \mathbb{P}^{n} of degree $d-n-1$ passing through \mathcal{R}_{p}. A_{P} is called the adjoint of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_{P} vanishes along $\mathcal{R}_{P^{*}}$. If $\mathcal{H}_{P^{*}}$ is simple, then $Z\left(\operatorname{adj}_{P}\right)=A_{P^{*}}$.

Application 1: Segre Classes of Monomial Schemes

Aluffi

- V : smooth variety
- X_{1}, \ldots, X_{n} : smooth hypersurfaces meeting with normal crossings in V

Application 1: Segre Classes of Monomial Schemes

Aluffi

- V : smooth variety
- X_{1}, \ldots, X_{n} : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking $X_{i_{j}}$ with multiplicity i_{j} for $\mathcal{I}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$

Application 1: Segre Classes of Monomial Schemes

Aluffi

- V : smooth variety
- X_{1}, \ldots, X_{n} : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking $X_{i_{j}}$ with multiplicity i_{j} for $\mathcal{I}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{n}$ defines a monomial subscheme
$S_{\mathcal{A}}=\bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$

Application 1: Segre Classes of Monomial Schemes

Aluffi

- V : smooth variety
- X_{1}, \ldots, X_{n} : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking $X_{i_{j}}$ with multiplicity i_{j} for $\mathcal{I}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{n}$ defines a monomial subscheme
$S_{\mathcal{A}}=\bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$ and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}_{\geq 0}^{n}$

Example: $n=2$
$\mathcal{A}=\{(2,6),(3,4)$,
$(4,3),(5,1),(7,0)\}$

Application 1: Segre Classes of Monomial Schemes

Aluffi

- V : smooth variety
- X_{1}, \ldots, X_{n} : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking $X_{i_{j}}$ with multiplicity i_{j}

$$
\text { for } \mathcal{I}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}
$$

- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{n}$ defines a monomial subscheme
$S_{\mathcal{A}}=\bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$ and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}_{\geq 0}^{n}$
Example: $n=2$
$\mathcal{A}=\{(2,6),(3,4)$,
$(4,3),(5,1),(7,0)\}$

$$
N_{\mathcal{A}}:=\mathbb{R}_{\geq 0}^{n} \backslash \operatorname{convHull}\left(\bigcup_{\mathcal{I} \in \mathcal{A}}\left(\mathbb{R}_{>0}^{n}+\mathcal{I}\right)\right)
$$

Application 1: Segre Classes of Monomial Schemes

Aluffi

- V: smooth variety
- X_{1}, \ldots, X_{n} : smooth hypersurfaces meeting with normal crossings in V
- X^{I} : hypersurface obtained by taking $X_{i_{j}}$ with multiplicity i_{j}

$$
\text { for } \mathcal{I}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}
$$

- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^{n}$ defines a monomial subscheme
$S_{\mathcal{A}}=\bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$ and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}_{\geq 0}^{n}$
Example: $n=2$
$\mathcal{A}=\{(2,6),(3,4)$,
$(4,3),(5,1),(7,0)\}$

$$
N_{\mathcal{A}}:=\mathbb{R}_{\geq 0}^{n} \backslash \operatorname{convHull}\left(\bigcup_{\mathcal{I} \in \mathcal{A}}\left(\mathbb{R}_{>0}^{n}+\mathcal{I}\right)\right)
$$

Theorem (Aluffi, (K., Ranestad))
The Segre class of $S_{\mathcal{A}}$ in the Chow ring of V is
$\frac{n!X_{1} \cdots X_{n} \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod_{v \in V\left(N_{\mathcal{A}}\right)} \ell_{v}(-X)}$, if $N_{\mathcal{A}}$ is finite.

Application 1: Segre Classes of Monomial Schemes
Aluffi

- $N_{\mathcal{A}}$ may have vertices at ∞ in the direction of the standard basis vectors e_{1}, \ldots, e_{n}

Example: $n=2$
$\mathcal{A}=\{(2,6),(3,4)$,
$(4,3),(5,1),(7,0)\}$

Application 1: Segre Classes of Monomial Schemes

Aluffi

- $N_{\mathcal{A}}$ may have vertices at ∞ in the direction of the standard basis vectors e_{1}, \ldots, e_{n}
- for vertex v_{i} at ∞ in direction of e_{i} :
$\ell_{v_{i}}(t):=-t_{i}$
Theorem (Aluffi, (K., Ranestad))
The Segre class of $S_{\mathcal{A}}$ in the Chow ring of V is

$$
\frac{n!X_{1} \cdots X_{n} \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod_{v \in V\left(N_{\mathcal{A}}\right)} \ell_{v}(-X)}
$$

Example: $n=2$
$\mathcal{A}=\{(2,6),(3,4)$,
$(4,3),(5,1),(7,0)\}$

Application 1: Segre Classes of Monomial Schemes

Aluffi

- $N_{\mathcal{A}}$ may have vertices at ∞ in the direction of the standard basis vectors e_{1}, \ldots, e_{n}

Example: $n=2$
$\mathcal{A}=\{(2,6),(3,4)$,

- for vertex v_{i} at ∞ in direction of e_{i} :
$(4,3),(5,1),(7,0)\}$
$\ell_{v_{i}}(t):=-t_{i}$
Theorem (Aluffi, (K., Ranestad))
The Segre class of $S_{\mathcal{A}}$ in the Chow ring of V is

$$
\frac{n!X_{1} \cdots X_{n} \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod_{v \in V\left(N_{\mathcal{A}}\right)} \ell_{v}(-X)}
$$

Example: $\quad 2 X_{1} X_{2} \operatorname{adj}_{N_{A}}\left(-X_{1},-X_{2}\right)$

$$
X_{2}\left(1+2 X_{1}+6 X_{2}\right)\left(1+3 X_{1}+4 X_{2}\right)\left(1+5 X_{1}+X_{2}\right)\left(1+7 X_{1}\right), \quad \text { where }
$$

$\operatorname{adj}_{N_{A}}(t)=1-15 t_{1}-22 t_{2}+71 t_{1}^{2}+212 t_{1} t_{2}+95 t_{2}^{2}-105 t_{1}^{3}-476 t_{1}^{2} t_{2}-511 t_{1} t_{2}^{2}-84 t_{2}^{3}$.

Application 2: Moments of Probability Distributions
K., Shapiro, Sturmfels

- P : convex polytope in \mathbb{R}^{n}
- μ_{P} : uniform probability distribution on P

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P : convex polytope in \mathbb{R}^{n}
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{\mathcal{I}}(P):=\int_{\mathbb{R}^{n}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{n}^{i_{n}} d \mu_{P} \quad \text { for } \mathcal{I}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}
$$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P : convex polytope in \mathbb{R}^{n}
- μ_{P} : uniform probability distribution on P
- moments

$$
m_{\mathcal{I}}(P):=\int_{\mathbb{R}^{n}} w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{n}^{i_{n}} d \mu P \quad \text { for } \mathcal{I}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}
$$

Proposition (K., Shapiro, Sturmfels)

$$
\begin{gathered}
\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^{n}} c_{\mathcal{I}} m_{\mathcal{I}}(P) t^{\mathcal{I}}=\frac{\operatorname{adj}(\mathrm{j})}{\operatorname{vol}(P) \prod_{V \in V(P)} \ell_{V}(t)}, \\
\text { where } c_{\mathcal{I}}:=\binom{i_{1}+i_{1}+\ldots+i_{n}+n}{i_{1}, i_{2}, \ldots, i_{n}, n}
\end{gathered}
$$

Application 3: Barycentric Coordinates

Application 3: Barycentric Coordinates

Definition

Let P be a convex polytope in \mathbb{R}^{n}. A set of functions $\left\{\beta_{u}: P^{\circ} \rightarrow \mathbb{R} \mid u \in V(P)\right\}$ is called generalized barycentric coordinates for P if, for all $p \in P^{\circ}$,

- $\forall u \in V(P): \beta_{u}(p)>0$,
- $\sum_{u \in V(P)} \beta_{u}(p)=1$, and
- $\sum_{u \in V(P)} \beta_{u}(p) u=p$.

Application 3: Barycentric Coordinates

Definition

Let P be a convex polytope in \mathbb{R}^{n}. A set of functions $\left\{\beta_{u}: P^{\circ} \rightarrow \mathbb{R} \mid u \in V(P)\right\}$ is called generalized barycentric coordinates for P if, for all $p \in P^{\circ}$,

- $\forall u \in V(P): \beta_{u}(p)>0$,
- $\sum_{u \in V(P)} \beta_{u}(p)=1$, and

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!

- $\sum_{u \in V(P)} \beta_{u}(p) u=p$.

Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

Application 3: Barycentric Coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric coordinates which are rational functions of minimal degree.

Wachspress Coordinates
 Warren (1996)

- P : convex polytope in \mathbb{R}^{n}
- $\mathcal{F}(P)$: set of facets of P

Wachspress Coordinates
 Warren (1996)

- P : convex polytope in \mathbb{R}^{n}
- $\mathcal{F}(P)$: set of facets of P

$$
\begin{aligned}
V(P) & \stackrel{1: 1}{\longleftrightarrow} \mathcal{F}\left(P^{*}\right) \\
V & \longmapsto F_{v}
\end{aligned}
$$

Wachspress Coordinates
 Warren (1996)

- P : convex polytope in \mathbb{R}^{n}
- $\mathcal{F}(P)$: set of facets of P

$$
\begin{array}{rlrl}
V(P) & \stackrel{1: 1}{\longleftrightarrow} \mathcal{F}\left(P^{*}\right) & \mathcal{F}(P) \stackrel{1: 1}{\longleftrightarrow} V\left(P^{*}\right) \\
V & \longmapsto F_{V} & F & \longmapsto v_{F}
\end{array}
$$

Wachspress Coordinates
 Warren (1996)

- P : convex polytope in \mathbb{R}^{n}
- $\mathcal{F}(P)$: set of facets of P

$$
\begin{array}{rlrl}
V(P) & \stackrel{1: 1}{\longleftrightarrow} \mathcal{F}\left(P^{*}\right) & \mathcal{F}(P) \stackrel{1: 1}{\longleftrightarrow} V\left(P^{*}\right) \\
V & \longmapsto F_{V} & F & \longmapsto v_{F}
\end{array}
$$

Definition (Warren)

The Wachspress coordinates of P are

$$
\forall u \in V(P): \quad \beta_{u}(t):=\frac{\operatorname{adj}_{F_{u}}(t) \cdot \prod_{F \in \mathcal{F}(P): u \notin F} \ell_{V_{F}}(t)}{\operatorname{adj}_{P^{*}}(t)} .
$$

geometric modeling barycentric coordinates for arbitrary polytopes

intersection
theory:
Segre classes of monomial schemes

Why "Adjoint"?

- P: polytope in \mathbb{P}^{n} with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

Idea:
P ュunu \mathcal{H}_{P}

Why "Adjoint"?

- P: polytope in \mathbb{P}^{n} with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p}^{c} : codimension- c part of \mathcal{R}_{P}

Idea:

polytopal hypersurface:
hypersurface of degree d
hypersurface of degree d, multiplicity c along \mathcal{R}_{P}^{c}, smooth outside of \mathcal{R}_{P}

Why "Adjoint"?

- P : polytope in \mathbb{P}^{n} with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p}^{c} : codimension- c part of \mathcal{R}_{P}

Idea:

$P \rightarrow \mathcal{H}_{P} \rightarrow \tilde{D}$ smooth

Why "Adjoint"?

- P : polytope in \mathbb{P}^{n} with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p}^{c} : codimension- c part of \mathcal{R}_{P}

Idea:

$P \rightarrow \mathcal{H}_{P} \rightarrow \tilde{D}$ smooth
Adjunction formula: $K_{\tilde{D}}=\left.\left(K_{X}+[\tilde{D}]\right)\right|_{\tilde{D}}$

Why "Adjoint"?

- P : polytope in \mathbb{P}^{n} with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p}^{c} : codimension- c part of \mathcal{R}_{P}

Idea:

$P \rightarrow \mathcal{H}_{P} \rightarrow \tilde{D}$ smooth
Adjunction formula: $K_{\tilde{D}}=\left.\left(K_{X}+[\tilde{D}]\right)\right|_{\tilde{D}}$
Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A]=K_{X}+[\tilde{D}]$.

Why "Adjoint"?

- P : polytope in \mathbb{P}^{n} with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p}^{c} : codimension- c part of \mathcal{R}_{P} Idea:

$P \rightarrow \mathcal{H}$ P $\sim D$ smons
Adjunction formula: $K_{\tilde{D}}=\left.\left(K_{X}+[\tilde{D}]\right)\right|_{\tilde{D}}$
Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A]=K_{X}+[\tilde{D}]$.

Proposition (K., Ranestad)

\tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A)=A_{P}$.

Why "Adjoint"?

- P : polytope in \mathbb{P}^{n} with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- \mathcal{R}_{p}^{c} : codimension- c part of \mathcal{R}_{P} Idea: \mathbb{P}^{n} blowup $\pi \quad X$ smooth

Adjunction formula: $K_{\tilde{D}}=\left.\left(K_{X}+[\tilde{D}]\right)\right|_{\tilde{D}}$
Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A]=K_{X}+[\tilde{D}]$.

Proposition (K., Ranestad)

\tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A \cap \tilde{D}$. Moreover, $\pi(A)=A_{P}$.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^{2}. There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^{2}. There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let \mathcal{C} be a combinatorial type of simple polytopes in \mathbb{P}^{3} and let P be a general polytope of type \mathcal{C}. There is a polytopal surface D iff \mathcal{C} is one of:

In that case, the general D is either an elliptic surface or a K3-surface.

comb. facet sizes	\mathcal{R}_{P}	(a, b, c)	W_{P} (deg., sec. genus)	$\overline{w_{P}\left(A_{P}\right)}$ (deg., sec. genus)	dim Γ_{P}	$\overline{w_{P}(D)}$ (deg., sec. genus)

