Kathlén Kohn KTH

algebraic statistics: moments of uniform distributions on polytopes

joint works with Kristian Ranestad (Universitetet i Oslo) /

The Adjoint of a Polygon

Wachspress (1975)

The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

$$(\deg A_P = |V(P)| - 3)$$

The Adjoint of a Polygon

Wachspress (1975)

Definition

The **adjoint** A_P of a polygon $P \subset \mathbb{P}^2$ is the minimal degree curve passing through the intersection points of pairs of lines containing non-adjacent edges of P.

Generalization to higher-dimensional polytopes?

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t=(t_1,\ldots,t_n)$$
 and $\ell_{\scriptscriptstyle V}(t)=1-{\scriptstyle V_1}t_1-{\scriptstyle V_2}t_2-\ldots-{\scriptstyle V_n}t_n$.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t=(t_1,\ldots,t_n)$$
 and $\ell_{
u}(t)=1-{\color{black}v_1}t_1-{\color{black}v_2}t_2-\ldots-{\color{black}v_n}t_n.$

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

Definition
$$\operatorname{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \operatorname{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t=(t_1,\ldots,t_n)$$
 and $\ell_{\scriptscriptstyle V}(t)=1-{\scriptstyle v_1t_1-\scriptstyle v_2t_2-\ldots-\scriptstyle v_nt_n}.$

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(adj_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \ge 0\}$ dual polytope of P)

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- V(P): set of vertices of P
- $\tau(P)$: triangulation of P using only the vertices of P

$$\textbf{Definition} \qquad \mathrm{adj}_{\tau(P)}(t) := \sum_{\sigma \in \tau(P)} \mathrm{vol}(\sigma) \prod_{v \in V(P) \setminus V(\sigma)} \ell_v(t),$$

where
$$t=(t_1,\ldots,t_n)$$
 and $\ell_{
u}(t)=1-{\color{black}v_1}t_1-{\color{black}v_2}t_2-\ldots-{\color{black}v_n}t_n.$

Theorem (Warren)

I $\operatorname{adj}_{\tau(P)}(t)$ is independent of the triangulation $\tau(P)$. So $\operatorname{adj}_P := \operatorname{adj}_{\tau(P)}$.

II If P is a polygon, then $Z(\operatorname{adj}_P) = A_{P^*}$.

(Recall: $P^* = \{x \in \mathbb{R}^n \mid \forall v \in V(P) : \ell_v(x) \ge 0\}$ dual polytope of P)

Geometric definition using a vanishing condition à la Wachspress?

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : **residual arrangement** of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

- P: polytope in \mathbb{P}^n
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes),

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- \mathcal{R}_P : residual arrangement of linear spaces that are intersections of hyperplanes in \mathcal{H}_P and do not contain any of face of P

Theorem (K., Ranestad)

- P: polytope in \mathbb{P}^n with d facets
- \mathcal{H}_P : hyperplane arrangement spanned by facets of P
- → R_P: residual arrangement of linear spaces that are intersections of hyperplanes in H_P and do not contain any of face of P

Theorem (K., Ranestad)

If \mathcal{H}_P is simple (i.e. through any point in \mathbb{P}^n pass $\leq n$ hyperplanes), there is a unique hypersurface A_P in \mathbb{P}^n of degree d-n-1 passing through \mathcal{R}_P . A_P is called the adjoint of P.

Proposition (K., Ranestad)

Warren's adjoint polynomial adj_P vanishes along \mathcal{R}_{P^*} . If \mathcal{H}_{P^*} is simple, then $Z(\operatorname{adj}_P) = A_{P^*}$.

Aluffi

- ♦ V: smooth variety
- ullet X_1,\ldots,X_n : smooth hypersurfaces meeting with normal crossings in V

- V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$

Aluffi

- ♦ V: smooth variety
- ullet X_1,\ldots,X_n : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- $\mathcal{A} \subset \mathbb{Z}_{\geq 0}^n$ defines a monomial subscheme

$$S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$

- ◆ *V*: smooth variety
- X_1, \ldots, X_n : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- $\mathcal{A} \subset \mathbb{Z}^n_{\geq 0}$ defines a monomial subscheme

$$S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example:
$$n = 2$$

 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

- ♦ V: smooth variety
- ullet X_1,\ldots,X_n : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- $\mathcal{A} \subset \mathbb{Z}^n_{\geq 0}$ defines a monomial subscheme

$$S_{\mathcal{A}} = igcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

$$\mathcal{N}_{\mathcal{A}} := \mathbb{R}^n_{\geq 0} \setminus \operatorname{convHull} \left(\bigcup_{\mathcal{I} \in \mathcal{A}} (\mathbb{R}^n_{> 0} + \mathcal{I}) \right)$$

Example:
$$n = 2$$

 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

- ♦ V: smooth variety
- X_1, \ldots, X_n : smooth hypersurfaces meeting with normal crossings in V
- $X^{\mathcal{I}}$: hypersurface obtained by taking X_{i_j} with multiplicity i_j for $\mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{>0}^n$
- $\mathcal{A} \subset \mathbb{Z}^n_{\geq 0}$ defines a monomial subscheme

$$S_{\mathcal{A}} = \bigcap_{\mathcal{I} \in \mathcal{A}} X^{\mathcal{I}}$$
 and a Newton region $N_{\mathcal{A}} \subset \mathbb{R}^n_{\geq 0}$

Example:
$$n = 2$$

 $\mathcal{A} = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

$$N_{\mathcal{A}} := \mathbb{R}^n_{\geq 0} \setminus \operatorname{convHull} \left(\bigcup_{\mathcal{I} \in \mathcal{A}} (\mathbb{R}^n_{> 0} + \mathcal{I}) \right)$$

Theorem (Aluffi, (K., Ranestad))

The Segre class of $S_{\mathcal{A}}$ in the Chow ring of V is

$$\frac{n! \ X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod\limits_{v \in V(N_{\mathcal{A}})} \ell_v(-X)}, \ \text{if } N_{\mathcal{A}} \ \text{is finite}.$$

• N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n

Example: n = 2 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

- N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n
- for vertex v_i at ∞ in direction of e_i : $\ell_{v_i}(t) := -t_i$

Theorem (Aluffi, (K., Ranestad))

The Segre class of S_A in the Chow ring of V is

$$\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod\limits_{v \in V(N_{\mathcal{A}})} \ell_v(-X)}.$$

Example: n = 2 $A = \{(2,6), (3,4), (4,3), (5,1), (7,0)\}$

- N_A may have vertices at ∞ in the direction of the standard basis vectors e_1, \ldots, e_n
- for vertex v_i at ∞ in direction of e_i : $\ell_{v_i}(t) := -t_i$

Theorem (Aluffi, (K., Ranestad))

The Segre class of S_A in the Chow ring of V is

$$\frac{n! X_1 \cdots X_n \operatorname{adj}_{N_{\mathcal{A}}}(-X)}{\prod\limits_{v \in V(N_{\mathcal{A}})} \ell_v(-X)}.$$

Example: n=2 $A = \{(2,6), (3,4),$

$$2X_1X_2 \operatorname{adj}_{N_A}(-X_1, -X_2)$$

$$\overline{X_2(1+2X_1+6X_2)(1+3X_1+4X_2)(1+5X_1+X_2)(1+7X_1)}$$

where

$$\operatorname{adj}_{N_{\mathcal{A}}}(t) = 1 - 15t_1 - 22t_2 + 71t_1^2 + 212t_1t_2 + 95t_2^2 - 105t_1^3 - 476t_1^2t_2 - 511t_1t_2^2 - 84t_2^3.$$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P) := \int_{\mathbb{R}^n} w_1^{i_1} w_2^{i_2} \dots w_n^{i_n} d\mu_P \quad \text{for } \mathcal{I} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}_{\geq 0}^n$$

Application 2: Moments of Probability Distributions

K., Shapiro, Sturmfels

- P: convex polytope in \mathbb{R}^n
- μ_P : uniform probability distribution on P
- moments

$$m_{\mathcal{I}}(P):=\int_{\mathbb{R}^n}w_1^{i_1}w_2^{i_2}\ldots w_n^{i_n}d\mu_P\quad ext{for }\mathcal{I}=(i_1,i_2,\ldots,i_n)\in\mathbb{Z}^n_{\geq 0}$$

Proposition (K., Shapiro, Sturmfels)

$$\sum_{\mathcal{I} \in \mathbb{Z}_{\geq 0}^n} c_{\mathcal{I}} \, m_{\mathcal{I}}(P) \, t^{\mathcal{I}} = \frac{\operatorname{adj}_{P}(t)}{\operatorname{vol}(P) \prod\limits_{v \in V(P)} \ell_{v}(t)},$$

where
$$c_{\mathcal{I}} := \binom{i_1 + i_2 + ... + i_n + n}{i_1, i_2, ..., i_n, n}$$
.

Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

- $\forall u \in V(P) : \beta_u(p) > 0$,
- ullet $\sum_{u\in V(P)}eta_u(p)=1$, and

Definition

Let P be a convex polytope in \mathbb{R}^n . A set of functions $\{\beta_u: P^\circ \to \mathbb{R} \mid u \in V(P)\}$ is called **generalized barycentric coordinates** for P if, for all $p \in P^\circ$,

- $\forall u \in V(P) : \beta_u(p) > 0$,
- ullet $\sum_{u\in V(P)}eta_u(p)=1$, and

Barycentric coordinates for simplices are uniquely determined from (i)-(iii).

This is not true for other polytopes!

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

Examples of generalized barycentric coordinates for arbitrary polytopes:

- mean value coordinates
- Wachspress coordinates

Applications of generalized barycentric coordinates include:

- mesh parameterizations in geometric modelling
- deformations in computer graphics
- polyhedral finite element methods

The Wachspress coordinates are the unique generalized barycentric coordinates which are rational functions of minimal degree.

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
$$v \longmapsto F_v$$

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{1:1}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $v \longmapsto F_v$

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} V(P^*)$$
 $F \longmapsto v_F$

Warren (1996)

- P: convex polytope in \mathbb{R}^n
- $\mathcal{F}(P)$: set of facets of P

$$V(P) \stackrel{\text{1:1}}{\longleftrightarrow} \mathcal{F}(P^*)$$
 $\mathcal{F}(P) \stackrel{\text{1:1}}{\longleftrightarrow} V(P^*)$ $F \longmapsto v_F$

Definition (Warren)

The Wachspress coordinates of P are

$$\forall u \in V(P): \quad \beta_u(t) := \frac{\operatorname{adj}_{F_u}(t) \cdot \prod\limits_{F \in \mathcal{F}(P): \, u \notin F} \ell_{v_F}(t)}{\operatorname{adj}_{P^*}(t)}.$$

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

Idea:

 $P \longrightarrow \mathcal{H}_P$

hypersurface of degree d

- P: polytope in \mathbb{P}^n with d facets
- $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- ullet \mathcal{R}^c_P : codimension-c part of \mathcal{R}_P

Idea:

 $P \longrightarrow \mathcal{H}_P \longrightarrow D$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- $lackbox{$\scriptstyle\bullet$} \mathcal{R}^c_P \colon \operatorname{codimension-} c \ \operatorname{part} \ \operatorname{of} \ \mathcal{R}_P \ \longrightarrow \ \mathcal{H}_P \longrightarrow \mathcal{H}_P \longrightarrow \mathcal{D} \longrightarrow \mathcal{D} \ \operatorname{smooth}$

hypersurface of degree d

polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

hypersurface of degree d polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

hypersurface of degree d polytopal hypersurface: hypersurface of degree d, multiplicity c along \mathcal{R}_P^c , smooth outside of \mathcal{R}_P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P
- $lackbox{$\scriptstyle\bullet$} \mathcal{R}^c_P \colon \operatorname{codimension-} c \ \operatorname{part} \ \operatorname{of} \ \mathcal{R}_P \ \longrightarrow \ \mathcal{H}_P \longrightarrow \mathcal{H}_P \longrightarrow \mathcal{D} \ \longrightarrow \ \mathcal{$

 $\begin{array}{ccc} & \textbf{polytopal hypersurface:} \\ \text{hypersurface} & \text{hypersurface of degree } d \\ \text{of degree } d & \text{multiplicity } c \text{ along } \mathcal{R}_p^c, \\ \text{smooth outside of } \mathcal{R}_P \end{array}$

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

 $ilde{D}$ has a unique adjoint A in X, and thus a unique canonical divisor: $A\cap ilde{D}$. Moreover, $\pi(A)=A_P$.

- P: polytope in \mathbb{P}^n with d facets
- ullet $\mathcal{H}_{\mathcal{P}}$: simple hyperplane arrangement spanned by facets of P

Adjunction formula: $K_{\tilde{D}} = (K_X + [\tilde{D}])|_{\tilde{D}}$

Def.: An adjoint to \tilde{D} in X is a hypersurface A in X s.t. $[A] = K_X + [\tilde{D}]$.

Proposition (K., Ranestad)

 \tilde{D} has a unique adjoint A in X, and thus a unique canonical divisor: $A\cap \tilde{D}$. Moreover, $\pi(A)=A_P$.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Polytopal Hypersurfaces

Proposition (K., Ranestad)

Let P be a general d-gon in \mathbb{P}^2 . There is a polygonal curve D iff $d \leq 6$. In that case, D is an elliptic curve.

Theorem (K., Ranestad)

Let $\mathcal C$ be a combinatorial type of simple polytopes in $\mathbb P^3$ and let P be a general polytope of type $\mathcal C$. There is a polytopal surface D iff $\mathcal C$ is one of:

In that case, the general D is either an elliptic surface or a K3-surface.

comb. type	facet sizes	\mathcal{R}_P	(a,b,c)	W_P (deg., sec. genus)	$\overline{w_P(A_P)}$ (deg., sec. genus)	$\dim \Gamma_P$	$\overline{w_P(D)}$ (deg., sec. genus)
	3333		(0, 0, 0)	$\mathbb{P}^3 $ $(1,0)$	0	34	$\begin{array}{c} \text{minimal K3} \\ \text{(smooth quartic in } \mathbb{P}^3\text{)} \end{array}$
	44433	•	(1, 0, 0)	$\mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5$ $(3,0)$	line	23	$\begin{array}{c} \text{minimal K3} \\ (8,5) \end{array}$
	444444		(0, 0, 0)	$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7$ $(6,1)$	${\it twisted cubic curve}$	26	$\begin{array}{c} \text{minimal K3} \\ (12,7) \end{array}$
	554433	\ <u>•</u> •/	(2, 2, 0)	$W_P\subset \mathbb{P}^7 \ (8,3)$	quadric surface $(2,0)$	17	non-minimal K3 $(14,9)$
	5554443	**	(1, 6, 0)	$W_P \subset \mathbb{P}^9$ $(15,9)$	$\frac{\operatorname{del}\operatorname{Pezzo}\operatorname{surface}\operatorname{in}\mathbb{P}^5}{(5,1)}$	7	non-minimal K3 $(19, 12)$
	5544444		(0, 5, 0)	Fano 3-fold in \mathbb{P}^9 (14, 8)	rational scroll in \mathbb{P}^5 $(4,0)$	12	non-minimal K3 $(18, 11)$
	6644433		(3, 6, 1)	$W_P \subset \mathbb{P}^9$ $(17,11)$	rational elliptic surface in \mathbb{P}^5 $(7,3)$	4	$\begin{array}{c} {\rm minimal elliptic} \\ (22,15) \end{array}$
	66444444	/	(0, 12, 2)	$W_P \subset \mathbb{P}^{11}$ $(27,22)$	elliptic K3-surface in \mathbb{P}^7 $(12,7)$	3	$\begin{array}{c} {\rm minimalelliptic} \\ (26,17) \end{array}$
	55554444		(0, 16, 0)	$W_P \subset \mathbb{P}^{11}$ $(27, 22)$	K3-surface in \mathbb{P}^7 (12, 7)	1	non-minimal K3 $(24, 15)$