understanding Linear Convolutional Neural Networks via
sparse factorizations of real polynomials

Kathlén Kohn
S

WALLENBERG A
% OCH KONST, % \/\//\SP|AUIUNUMUUSSVSTEM5
?&e gﬁi AND SOFTWARE PROGRAM

joint work with

Guido Montdfar Vahid Shahverdi Matthew Trager
MPI MiS Leipzig & UCLA KTH Amazon Alexa Al, NYC

. - @‘

| 1@ |



feedforward neural networks

| - XVII



feedforward neural networks

are parametrized families of functions
Lo RY £ A
0 — fL’QO...Of]_ﬁ



feedforward neural networks

are parametrized families of functions
Lo RY £ A
0 — fL’QO...Of]_ﬁ

M = function space / neuromanifold, L = # layers
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Given training data D, the goal is to minimize the loss
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Geometric questions:

¢ How does the network architecture affect the geometry of the function
space?

¢ How does the geometry of the function space impact the training of the
network?

In this talk:
What is the impact of changing from dense layers to convolutional layers?
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linear dense networks
In this example:

i R2><4 % R3><2 S ]R3><4
(Wl, W2) o> W2W1.

M = {W € R¥* | rank(W) < 2}

In general:
M:RlekO XszXkl S XRkLXkL_l RkLXkO,

(Wl,WQ,...,WL)i—> WL'~~W2W1.

M = {W € Rkxko | rank(W) < min(ko, ...,k )} is an algebraic variety and
we know its singularities etc.
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Linear Convolutional Networks (LCNs)

with 1D-convolutions

e RPoelRe RS,

(4, v) — Ty 1T, 2, where

T up U3 U 0] 0]
2 =
P e 0P80 o <ur - Uo
O' Tii=T ]
In general: g : (wy,...,wp) = T, s = - Twy,s, Where
WO ... Ws e Wkil
WO DR Wk—]_
Tws= :

)

Wo Wk—1

is a convolutional matrix of stride s with filter w
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LCNs & sparse polynomial factorization

Observation: p(wi,...,w ) = T, s, - Tuy,s is again a convolutional

matrix of stride s; - - - s;. Its filter can be computed via polynomial
multiplication:

For S € Z>0, let
e RF —s R[Xs]gk,l,
V— voxs(kfl) 4 les(k*2) S vk,gxs <= V]
and ms( Ty/s) := ms(w).; Then:

71'1(,LL(W17 Wi WL)) = WSL(WL) 0 ~7'('51(W1), where 5,' ool T (R T A

Hence, we reinterpret p as

K R[XSI]Sdl XX R[XSL]SdL = R[X]Sd151+...+d1_5u
(Pl,...,PL)'—> PLH-Pl
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R <g, X ... x R[x*]<g, — R[x]<d, where d := 3", d:5;
(Pl,...,PL)'—> Pp--- Py,

Theorem: The function space My s = im(y) is a semi-algebraic,
Euclidean-closed subset of R[x]<4 of dimension di + ...+ d; + 1.

p: Rix]<2 x R[x*]<1 — R[x] < 1 Rix]<a x Rlx]<1 x R[x*]<1 — R[x] <



LCN function spaces

1 RxM <y X - .. X R[x*]<g, — Rl[x]<q, where d := 3", d;S;
FE A M O R B0

Theorem: The function space Mg s = im(u) is a semi-algebraic,
Euclidean-closed subset of R[x]<4 of dimension di + ...+ d; + 1.

Corollary: My s is full-dimensional in R[x]<4 if and only if all strides s; = 1.
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training with the squared error loss

Given training data D = {(X;, Y;) € R® x R* | i =1,..., N}, the squared
error loss on the function space is

lp : Rft<bo 5 R

N
T— > |Yi— TX|1%
i=1
Training an LCN minimizes the squared error loss on the parameter space:

{t
Lp:RE x ... xRE 25 My C R0 2By R

W e Toge. < Tyt = Z,D(TWLasL = TW17$1)
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2
Lp:REx ... xRE £ Mys 2R

Theorem
Consider an LCN with all strides > 1. Let N > >".d;S; + 1.

For almost all data D € (R% x R¥)N  every critical point w of Lp satisfies
one of the following:

* u(w)=0,or
¢ p(w) is a smooth, interior point of Mg s.
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training LCNs with the squared error loss
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Theorem

Consider an LCN with all strides > 1. Let N > >, d;S; + 1.

For almost all data D € (R* x R*)N, every critical point w of Lp satisfies
one of the following:

* u(w) =0, or

¢ 1(w) is a smooth, interior point of Mg s and w is a regular point of f.
In particular, pu(w) is a critical point of £p|Reg(ms 4)-
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reducing LCNs

o Rlx]<2 X R[x*]<1 = R[x]<4 p: Rix]<1 X R[x]<1 x R[x*]<1 = R[x]<4

R[x]<1 x R[x]<1 X Rx*l<1 —— M1,1,1),1,1,2)
R[x]<2 X R[x¥ <1 —— M21),1.2)

Given an LCN (d, S), merging neighboring layers with the same S; yields an
LCN (d,8) with 1 =§; < 5 < 53 < ... (i.e, all strides > 1),
called the reduced LCN.
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Singularities

Lemma: My s C Mg and mms = M& 3§
where - denotes the Zariski closure inside R[x]<g.

Theorem Let (d, S) be a reduced LCN with L layers.

¢ If L=1 (i.e., any associated non-reduced LCN has all strides equal 1),
then My s = R[x]<q.
o IfL>1, degﬂdﬁ > 1 and

Sing(Ma,s) = {0}U | ] Mas={0}U | ] Mas,
d'eD d'eD

where D :={d’ € Zéo | Mdf’s & ﬂd,s}
={d' €25 | d' #£d, T, diSi =, S,V T, diS > T, diSi}

=
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Example

p: Rix]<2 x Rx*]<1 = Rx]<a p: Rlx]<r x Rlx]<1 X R[x*] <1 = R[x]<s

Rx]<2 x R[x*J<1 = M1),1,2)
Sing(M2,1),12)) = M(0,2),12) = R[x}]<2
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Relative Boundary
OMg s = points in My s that are limits of sequences in Mg\ My s.
Recall: MgsCMgesC ﬂd,s = MJ g
¢ reduced boundary points: limits in My s of sequences in ﬂdﬁ \MJ.S
¢ stride-1 boundary points: limits in Mg s of sequences in Mj &\ My s

reduced boundary points have at least codimension 2
stride-1 boundary points (if existent) have codimension 1
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