understanding Linear Convolutional Neural Networks via sparse factorizations of real polynomials

joint work with

Guido Montúfar MPI MiS Leipzig \& UCLA

Vahid Shahverdi KTH

Matthew Trager
Amazon Alexa AI, NYC

feedforward neural networks

feedforward neural networks

are parametrized families of functions

$$
\begin{aligned}
\mu: \mathbb{R}^{N} & \longrightarrow \mathcal{M} \\
\theta & \longmapsto f_{L, \theta} \circ \ldots \circ f_{1, \theta}
\end{aligned}
$$

feedforward neural networks

are parametrized families of functions

$$
\begin{aligned}
\mu: \mathbb{R}^{N} & \longrightarrow \mathcal{M} \\
\theta & \longmapsto f_{L, \theta} \circ \ldots \circ f_{1, \theta}
\end{aligned}
$$

$\mathcal{M}=$ function space / neuromanifold, $L=\#$ layers $\mid-X V \|$

training a network

Given training data \mathcal{D}, the goal is to minimize the loss

$$
\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R} .
$$

training a network

Given training data \mathcal{D}, the goal is to minimize the loss

$$
\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}
$$

Geometric questions:

- How does the network architecture affect the geometry of the function space?
- How does the geometry of the function space impact the training of the network?

training a network

Given training data \mathcal{D}, the goal is to minimize the loss

$$
\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R} .
$$

Geometric questions:

- How does the network architecture affect the geometry of the function space?
- How does the geometry of the function space impact the training of the network?

In this talk:

What is the impact of changing from dense layers to convolutional layers?

linear dense networks

In this example:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

linear dense networks

In this example:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

$$
\mathcal{M}=\left\{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\right\}
$$

III - XVII

linear dense networks

In this example:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

$$
\mathcal{M}=\left\{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\right\}
$$

In general:

$$
\begin{aligned}
\mu: \mathbb{R}^{k_{1} \times k_{0}} \times \mathbb{R}^{k_{2} \times k_{1}} \times \ldots \times \mathbb{R}^{k_{L} \times k_{L-1}} & \longrightarrow \mathbb{R}^{k_{L} \times k_{0}} \\
\left(W_{1}, W_{2}, \ldots, W_{L}\right) & \longmapsto W_{L} \cdots W_{2} W_{1} .
\end{aligned}
$$

$\mathcal{M}=\left\{W \in \mathbb{R}^{k_{L} \times k_{0}} \mid \operatorname{rank}(W) \leq \min \left(k_{0}, \ldots, k_{L}\right)\right\}$ is an algebraic variety and we know its singularities etc.
III - XVII

Linear Convolutional Networks (LCNs) with 1D-convolutions

IV - XVII

Linear Convolutional Networks (LCNs) with 1D-convolutions

$$
\begin{aligned}
& \mu: \mathbb{R}^{3} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{5}, \\
& \quad(u, v) \longmapsto T_{v, 1} T_{u, 2}, \text { where } \\
& T_{u, 2}=\left[\begin{array}{ccccc}
u_{0} & u_{1} & u_{2} & 0 & 0 \\
0 & 0 & u_{0} & u_{1} & u_{2}
\end{array}\right] \\
& T_{v, 1}=\left[\begin{array}{ll}
v_{0} & v_{1}
\end{array}\right]
\end{aligned}
$$

$$
I V-X V I I
$$

Linear Convolutional Networks (LCNs) with 1D-comvolutions

$$
\begin{aligned}
& \mu: \mathbb{R}^{3} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{5}, \\
& \quad(u, v) \longmapsto T_{v, 1} T_{u, 2}, \text { where } \\
& T_{u, 2}=\left[\begin{array}{ccccc}
u_{0} & u_{1} & u_{2} & 0 & 0 \\
0 & 0 & u_{0} & u_{1} & u_{2}
\end{array}\right] \\
& T_{v, 1}=\left[\begin{array}{ll}
v_{0} & v_{1}
\end{array}\right]
\end{aligned}
$$

In general: $\mu:\left(w_{1}, \ldots, w_{L}\right) \mapsto T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}$, where

$$
T_{w, s}=\left[\begin{array}{ccccccccc}
w_{0} & \cdots & w_{s} & \cdots & w_{k-1} & & & & \\
& & w_{0} & & \cdots & & w_{k-1} & & \\
& & & \ddots & & & & \ddots & \\
& & & & & w_{0} & & \cdots & w_{k-1}
\end{array}\right]
$$

$$
I V-X V I I
$$

Linear Convolutional Networks (CNs)

 with 1D-convolutions

$$
\begin{aligned}
& \mu: \mathbb{R}^{3} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{5}, \\
& \quad(u, v) \longmapsto T_{v, 1} T_{u, 2}, \text { where } \\
& T_{u, 2}=\left[\begin{array}{ccccc}
u_{0} & u_{1} & u_{2} & 0 & 0 \\
0 & 0 & u_{0} & u_{1} & u_{2}
\end{array}\right] \\
& T_{v, 1}=\left[\begin{array}{ll}
v_{0} & v_{1}
\end{array}\right]
\end{aligned}
$$

In general: $\mu:\left(w_{1}, \ldots, w_{L}\right) \mapsto T_{w_{L}, s_{L}} \ldots T_{w_{1}, s_{1}}$, where

$$
T_{w, s}=\left[\begin{array}{cccccccc}
w_{0} & \cdots & w_{s} & \cdots & w_{k-1} & & & \\
& & w_{0} & & \cdots & & w_{k-1} & \\
& & & \ddots & & & & \ddots \\
& & & & & w_{0} & & \cdots
\end{array} w_{k-1}\right]
$$

is a convolutional matrix of stride s with filter w

LCNs \& sparse polynomial factorization

Observation: $\mu\left(w_{1}, \ldots, w_{L}\right)=T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}$ is again a convolutional matrix of stride $s_{1} \cdots s_{L}$.

LCNs \& sparse polynomial factorization

Observation: $\mu\left(w_{1}, \ldots, w_{L}\right)=T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}$ is again a convolutional matrix of stride $s_{1} \cdots s_{L}$. Its filter can be computed via polynomial multiplication:

LCNs \& sparse polynomial factorization

Observation: $\mu\left(w_{1}, \ldots, w_{L}\right)=T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}$ is again a convolutional matrix of stride $s_{1} \cdots s_{L}$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$
\begin{aligned}
\pi_{S}: \mathbb{R}^{k} & \longrightarrow \mathbb{R}\left[x^{S}\right]_{\leq k-1}, \\
v & \longmapsto v_{0} x^{S(k-1)}+v_{1} x^{S(k-2)}+\ldots+v_{k-2} x^{S}+v_{k-1}
\end{aligned}
$$

LCNs \& sparse polynomial factorization

Observation: $\mu\left(w_{1}, \ldots, w_{L}\right)=T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}$ is again a convolutional matrix of stride $s_{1} \cdots s_{L}$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$
\begin{aligned}
\pi_{S}: \mathbb{R}^{k} & \longrightarrow \mathbb{R}\left[x^{S}\right]_{\leq k-1}, \\
v & \longmapsto v_{0} x^{S(k-1)}+v_{1} x^{S(k-2)}+\ldots+v_{k-2} x^{S}+v_{k-1}
\end{aligned}
$$

and $\pi_{s}\left(T_{w, s}\right):=\pi_{s}(w)$. Then:

LCNs \& sparse polynomial factorization

Observation: $\mu\left(w_{1}, \ldots, w_{L}\right)=T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}$ is again a convolutional matrix of stride $s_{1} \cdots s_{L}$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$
\begin{aligned}
\pi_{S}: \mathbb{R}^{k} & \longrightarrow \mathbb{R}\left[x^{S}\right]_{\leq k-1}, \\
v & \longmapsto v_{0} x^{S(k-1)}+v_{1} x^{S(k-2)}+\ldots+v_{k-2} x^{S}+v_{k-1}
\end{aligned}
$$

and $\pi_{S}\left(T_{w, s}\right):=\pi_{S}(w)$. Then:

$$
\pi_{1}\left(\mu\left(w_{1}, \ldots, w_{L}\right)\right)=\pi_{s_{L}}\left(w_{L}\right) \cdots \pi_{s_{1}}\left(w_{1}\right), \text { where } S_{i}:=s_{1} \cdots s_{i-1}
$$

LCNs \& sparse polynomial factorization

Observation: $\mu\left(w_{1}, \ldots, w_{L}\right)=T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}$ is again a convolutional matrix of stride $s_{1} \cdots s_{L}$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$
\begin{aligned}
\pi_{S}: \mathbb{R}^{k} & \longrightarrow \mathbb{R}\left[x^{S}\right]_{\leq k-1}, \\
v & \longmapsto v_{0} x^{S(k-1)}+v_{1} x^{S(k-2)}+\ldots+v_{k-2} x^{S}+v_{k-1}
\end{aligned}
$$

and $\pi_{S}\left(T_{w, s}\right):=\pi_{S}(w)$. Then:

$$
\pi_{1}\left(\mu\left(w_{1}, \ldots, w_{L}\right)\right)=\pi_{s_{L}}\left(w_{L}\right) \cdots \pi_{s_{1}}\left(w_{1}\right), \text { where } S_{i}:=s_{1} \cdots s_{i-1}
$$

Hence, we reinterpret μ as

$$
\begin{aligned}
\mu: \mathbb{R}\left[x^{S_{1}}\right]_{\leq d_{1}} \times \ldots \times \mathbb{R}\left[x^{S_{L}}\right]_{\leq d_{L}} & \longrightarrow \mathbb{R}[x]_{\leq d_{1} S_{1}+\ldots+d_{L} S_{L}}, \\
\left(P_{1}, \ldots, P_{L}\right) & \longmapsto P_{L} \cdots P_{1}
\end{aligned}
$$

LCN function spaces

$$
\mu: \mathbb{R}\left[x^{S_{1}}\right]_{\leq d_{1}} \times \ldots \times \mathbb{R}\left[x^{S_{L}}\right]_{\leq d_{L}} \longrightarrow \mathbb{R}[x]_{\leq d} \text {, where } d:=\sum_{i} d_{i} S_{i}
$$

$$
\left(P_{1}, \ldots, P_{L}\right) \longmapsto P_{L} \cdots P_{1},
$$

LCN function spaces

$$
\begin{aligned}
\mu: \mathbb{R}\left[x^{S_{1}}\right]_{\leq d_{1}} \times \ldots \times \mathbb{R}\left[x^{S_{L}}\right]_{\leq d_{L}} & \longrightarrow \mathbb{R}[x]_{\leq d}, \text { where } d:=\sum_{i} d_{i} S_{i} \\
\left(P_{1}, \ldots, P_{L}\right) & \longmapsto P_{L} \ldots P_{1},
\end{aligned}
$$

Theorem: The function space $\mathcal{M}_{d, s}=\operatorname{im}(\mu)$ is a semi-algebraic, Euclidean-closed subset of $\mathbb{R}[x]_{\leq d}$ of dimension $d_{1}+\ldots+d_{L}+1$.

LCN function spaces

$$
\begin{aligned}
\mu: \mathbb{R}\left[x^{S_{1}}\right]_{\leq d_{1}} \times \ldots \times \mathbb{R}\left[x^{S_{L}}\right]_{\leq d_{L}} & \longrightarrow \mathbb{R}[x]_{\leq d}, \text { where } d:=\sum_{i} d_{i} S_{i} \\
\left(P_{1}, \ldots, P_{L}\right) & \longmapsto P_{L} \ldots P_{1},
\end{aligned}
$$

Theorem: The function space $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{s}}=\operatorname{im}(\mu)$ is a semi-algebraic, Euclidean-closed subset of $\mathbb{R}[x]_{\leq d}$ of dimension $d_{1}+\ldots+d_{L}+1$.

Corollary: $\mathcal{M}_{\boldsymbol{d}, S}$ is full-dimensional in $\mathbb{R}[x]_{\leq d}$ if and only if all strides $s_{i}=1$.

comparison

	linear dense	$\forall i: s_{i}=1$	$\exists i: s_{i}>1$
\mathcal{M}	algebraic variety	semialgebraic \& Euclidean closed	
full-dimensional	low-dimensional		

comparison

comparison

comparison

	linear dense	$\forall i: s_{i}=1$	$\exists i: s_{i}>1$
\mathcal{M}	algebraic variety	semialgebraic \& Euclidean closed full-dimensional 	
		non-empty	
$\mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right)$			

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

comparison

	linear dense	$\forall i: s_{i}=1$	$\exists i: s_{i}>1$
\mathcal{M}	algebraic variety	semialgebraic \& Euclidean closed full-dimensional	low-dimensional
$\partial \mathcal{M}$	\emptyset	non-empty	
$\mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right)$			

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

comparison

	linear dense	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}=1 \end{gathered}$	$\begin{gathered} \mathrm{LCN} \\ \exists i: s_{i}>1 \end{gathered}$
\mathcal{M}	algebraic variety	 full-dimensional	Euclidean closed low-dimensional
$\partial \mathcal{M}$	\emptyset	non-empty	
$\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$	non-empty		
$\mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right)$	often in $\operatorname{Sing}(\mathcal{M})$	often in $\partial \mathcal{M}$	

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

comparison

	linear dense	LCN \mathcal{M} algebraic variety	semialgebraic \& Euclidean closed full-dimensional
$\boldsymbol{\mathcal { M }}$	\emptyset	low-dimensional	
$\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$	non-empty	\emptyset	
$\mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right)$	often in $\operatorname{Sing}(\mathcal{M})$	often in $\partial \mathcal{M}$	

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

comparison

	linear dense	$\forall i: s_{i}=1$	$\exists i: s_{i}>1$
\mathcal{M}	algebraic variety	semialgebraic \& Euclidean closed	
full-dimensional	low-dimensional		
$\partial \mathcal{M}$	\emptyset	non-empty	non-empty
$\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$	non-empty	\emptyset	non-empty
$\mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right)$	often in $\operatorname{Sing}(\mathcal{M})$	often in $\partial \mathcal{M}$??

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

training with the squared error loss

Given training data $\mathcal{D}=\left\{\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{k_{0}} \times \mathbb{R}^{k_{L}} \mid i=1, \ldots, N\right\}$, the squared error loss on the function space is

$$
\begin{aligned}
\ell_{\mathcal{D}}: \mathbb{R}^{k_{L} \times k_{0}} & \longrightarrow \mathbb{R}, \\
T & \longmapsto \sum_{i=1}^{N}\left\|Y_{i}-T X_{i}\right\|^{2} .
\end{aligned}
$$

training with the squared error loss

Given training data $\mathcal{D}=\left\{\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{k_{0}} \times \mathbb{R}^{k_{L}} \mid i=1, \ldots, N\right\}$, the squared error loss on the function space is

$$
\begin{aligned}
\ell_{\mathcal{D}}: \mathbb{R}^{k_{L} \times k_{0}} & \longrightarrow \mathbb{R} \\
T & \longrightarrow \sum_{i=1}^{N}\left\|Y_{i}-T X_{i}\right\|^{2}
\end{aligned}
$$

Training an LCN minimizes the squared error loss on the parameter space:

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{L}} \xrightarrow{\mu} \mathcal{M}_{d, s} \subseteq \mathbb{R}^{k_{L} \times k_{0}} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}, \\
& \quad\left(w_{1}, \ldots, w_{L}\right) \longmapsto T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}} \longmapsto \ell_{\mathcal{D}}\left(T_{w_{L}, s_{L}} \cdots T_{w_{1}, s_{1}}\right)
\end{aligned}
$$

training LCNs with the squared error loss

$$
\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{L}} \xrightarrow{\mu} \mathcal{M}_{d, s} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}
$$

Theorem

Consider an LCN with all strides >1. Let $N \geq \sum_{i} d_{i} S_{i}+1$. For almost all data $\mathcal{D} \in\left(\mathbb{R}^{k_{0}} \times \mathbb{R}^{k_{L}}\right)^{N}$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

training LCNs with the squared error loss

$$
\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{L}} \xrightarrow{\mu} \mathcal{M}_{\boldsymbol{d}, S} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}
$$

Theorem

Consider an LCN with all strides >1. Let $N \geq \sum_{i} d_{i} S_{i}+1$. For almost all data $\mathcal{D} \in\left(\mathbb{R}^{k_{0}} \times \mathbb{R}^{k_{L}}\right)^{N}$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\boldsymbol{w})=0$, or
- $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$.

comparison

	linear dense	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}=1 \end{gathered}$	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}>1 \end{gathered}$
$\begin{array}{r} \partial \mathcal{M} \\ \operatorname{Sing}\left(\mathcal{M}^{\circ}\right) \\ \mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right) \end{array}$	algebraic variety \emptyset non-empty often in $\operatorname{Sing}(\mathcal{M})$	semialgebraic \& full-dimensional non-empty \emptyset often in $\partial \mathcal{M}$	Euclidean closed low-dimensional non-empty non-empty almost never in $\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$ or $\partial \mathcal{M}$

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

comparison

	linear dense	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}=1 \end{gathered}$	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}>1 \end{gathered}$
$\begin{array}{r} \partial \mathcal{M} \\ \operatorname{Sing}\left(\mathcal{M}^{\circ}\right) \\ \mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right) \end{array}$	algebraic variety \emptyset non-empty often in $\operatorname{Sing}(\mathcal{M})$	semialgebraic full-dimensional non-empty \emptyset often in $\partial \mathcal{M}$	Euclidean closed low-dimensional non-empty non-empty almost never in $\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$ or $\partial \mathcal{M}$

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.
A critical point $\theta \in \operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)$ is called spurious if $\mu(\theta) \notin \operatorname{Crit}\left(\ell_{\mathcal{D}}\right)$.

comparison

	linear dense	$\begin{gathered} \mathrm{LCN} \\ \forall i: s_{i}=1 \end{gathered}$	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}>1 \end{gathered}$
$\begin{array}{r} \mathcal{M} \\ \partial \mathcal{M} \\ \operatorname{Sing}\left(\mathcal{M}^{\circ}\right) \\ \mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right) \end{array}$ critical points spurious?	algebraic variety \emptyset non-empty often in $\operatorname{Sing}(\mathcal{M})$ often	semialgebraic full-dimensional non-empty \emptyset often in $\partial \mathcal{M}$	Euclidean closed low-dimensional non-empty non-empty almost never in $\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$ or $\partial \mathcal{M}$

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.
A critical point $\theta \in \operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)$ is called spurious if $\mu(\theta) \notin \operatorname{Crit}\left(\ell_{\mathcal{D}}\right)$.

comparison

	linear dense	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}=1 \end{gathered}$	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}>1 \end{gathered}$
$\begin{array}{r} \mathcal{M} \\ \partial \mathcal{M} \\ \operatorname{Sing}\left(\mathcal{M}^{\circ}\right) \\ \mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right) \end{array}$ critical points spurious?	algebraic variety \emptyset non-empty often in $\operatorname{Sing}(\mathcal{M})$ often	semialgebraic full-dimensional non-empty \emptyset often in $\partial \mathcal{M}$ often	Euclidean closed low-dimensional non-empty non-empty almost never in $\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$ or $\partial \mathcal{M}$ almost never

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.
A critical point $\theta \in \operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)$ is called spurious if $\mu(\theta) \notin \operatorname{Crit}\left(\ell_{\mathcal{D}}\right)$.

training LCNs with the squared error loss

$$
\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{L}} \xrightarrow{\mu} \mathcal{M}_{d, s} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}
$$

Theorem

Consider an LCN with all strides >1. Let $N \geq \sum_{i} d_{i} S_{i}+1$.
For almost all data $\mathcal{D} \in\left(\mathbb{R}^{k_{0}} \times \mathbb{R}^{k_{L}}\right)^{N}$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

training LCNs with the squared error loss

$$
\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{L}} \xrightarrow{\mu} \mathcal{M}_{\boldsymbol{d}, S} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}
$$

Theorem

Consider an LCN with all strides >1. Let $N \geq \sum_{i} d_{i} S_{i}+1$.
For almost all data $\mathcal{D} \in\left(\mathbb{R}^{k_{0}} \times \mathbb{R}^{k_{L}}\right)^{N}$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\boldsymbol{w})=0$, or
- $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$ and \boldsymbol{w} is a regular point of μ.

training LCNs with the squared error loss

$$
\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{L}} \xrightarrow{\mu} \mathcal{M}_{\boldsymbol{d}, S} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}
$$

Theorem

Consider an LCN with all strides >1. Let $N \geq \sum_{i} d_{i} S_{i}+1$.
For almost all data $\mathcal{D} \in\left(\mathbb{R}^{k_{0}} \times \mathbb{R}^{k_{L}}\right)^{N}$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\boldsymbol{w})=0$, or
- $\mu(\boldsymbol{w})$ is a smooth, interior point of $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$ and \boldsymbol{w} is a regular point of μ. In particular, $\mu(\boldsymbol{w})$ is a critical point of $\left.\ell_{\mathcal{D}}\right|_{\operatorname{Reg}\left(\mathcal{M}_{d, S}^{\circ}\right)}$.

reducing LCNs

$\mu: \mathbb{R}[x]_{\leq 2} \times \mathbb{R}\left[x^{2}\right]_{\leq 1} \rightarrow \mathbb{R}[x]_{\leq 4}$ $\mu: \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1} \times \mathbb{R}\left[x^{2}\right]_{\leq 1} \rightarrow \mathbb{R}[x]_{\leq 4}$

$$
\mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1}
$$

XIII - XVII

reducing LCNs

$$
\mu: \mathbb{R}[x]_{\leq 2} \times \mathbb{R}\left[x^{2}\right]_{\leq 1} \rightarrow \mathbb{R}[x]_{\leq 4} \quad \mu: \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1} \times \mathbb{R}\left[x^{2}\right]_{\leq 1} \rightarrow \mathbb{R}[x]_{\leq 4}
$$

$$
\underset{\sim}{\mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1}}
$$

Given an LCN $(\boldsymbol{d}, \boldsymbol{S})$, merging neighboring layers with the same S_{i} yields an $\operatorname{LCN}(\tilde{\boldsymbol{d}}, \tilde{\boldsymbol{s}})$ with $1=\tilde{S}_{1}<\tilde{S}_{2}<\tilde{S}_{3}<\ldots$ (i.e., all strides >1), called the reduced LCN.

Singularities

Lemma: $\mathcal{M}_{\boldsymbol{d}, S} \subseteq \mathcal{M}_{\tilde{d}, \tilde{s}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{s}}=\overline{\mathcal{M}}_{\tilde{d}, \tilde{s}}$, where : denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Singularities

Lemma: $\mathcal{M}_{\boldsymbol{d}, S} \subseteq \mathcal{M}_{\tilde{d}, \tilde{S}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d}, S}=\overline{\mathcal{M}}_{\tilde{d}, \tilde{S}}$, where - denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN with L layers.

- If $L=1$ (i.e., any associated non-reduced LCN has all strides equal 1), then $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}}=\mathbb{R}[x]_{\leq d}$.

Singularities

Lemma: $\mathcal{M}_{\boldsymbol{d}, S} \subseteq \mathcal{M}_{\tilde{d}, \tilde{S}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d}, S}=\overline{\mathcal{M}}_{\tilde{d}, \tilde{S}}$, where : denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN with L layers.

- If $L=1$ (i.e., any associated non-reduced LCN has all strides equal 1), then $\overline{\mathcal{M}}_{d, S}=\mathbb{R}[x]_{\leq d}$.
- If $L>1, \operatorname{deg} \overline{\mathcal{M}}_{\boldsymbol{d}, S}>1$ and

$$
\operatorname{Sing}\left(\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{s}}\right)=\{0\} \cup \bigcup_{d^{\prime} \in D} \overline{\mathcal{M}}_{\boldsymbol{d}^{\prime}, \boldsymbol{s}}=\{0\} \cup \bigcup_{d^{\prime} \in D} \mathcal{M}_{\boldsymbol{d}^{\prime}, \boldsymbol{S}},
$$

where $D:=\left\{\boldsymbol{d}^{\prime} \in \mathbb{Z}_{\geq 0}^{L} \mid \overline{\mathcal{M}}_{\boldsymbol{d}^{\prime}, \boldsymbol{s}} \subsetneq \overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{s}}\right\}$

Singularities

Lemma: $\mathcal{M}_{\boldsymbol{d}, S} \subseteq \mathcal{M}_{\tilde{d}, \tilde{S}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d}, S}=\overline{\mathcal{M}}_{\tilde{d}, \tilde{S}}$, where - denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN with L layers.

- If $L=1$ (i.e., any associated non-reduced LCN has all strides equal 1), then $\overline{\mathcal{M}}_{d, S}=\mathbb{R}[x]_{\leq d}$.
- If $L>1$, $\operatorname{deg} \overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}}>1$ and

$$
\operatorname{Sing}\left(\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{s}}\right)=\{0\} \cup \bigcup_{d^{\prime} \in D} \overline{\mathcal{M}}_{\boldsymbol{d}^{\prime}, \boldsymbol{s}}=\{0\} \cup \bigcup_{d^{\prime} \in D} \mathcal{M}_{\boldsymbol{d}^{\prime}, \boldsymbol{s}},
$$

where $D:=\left\{\boldsymbol{d}^{\prime} \in \mathbb{Z}_{\geq 0}^{L} \mid \overline{\mathcal{M}}_{\boldsymbol{d}^{\prime}, \boldsymbol{s}} \subsetneq \overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{s}}\right\}$
$=\left\{\boldsymbol{d}^{\prime} \in \mathbb{Z}_{\geq 0}^{L} \mid \boldsymbol{d}^{\prime} \neq \boldsymbol{d}, \sum_{i=1}^{L} d_{i}^{\prime} S_{i}=\sum_{i=1}^{L} d_{i} S_{i}, \forall I: \sum_{i=1}^{L} d_{i}^{\prime} S_{i} \geq \sum_{i=1}^{L} d_{i} S_{i}\right\}$

Example

$\mathbb{R}[x]_{\leq 2} \times \mathbb{R}\left[x^{2}\right]_{\leq 1} \rightarrow \mathcal{M}_{(2,1),(1,2)}$
$\operatorname{Sing}\left(\overline{\mathcal{M}}_{(2,1),(1,2)}\right)=$

XV - XVII

Example

$\mathbb{R}[x]_{\leq 2} \times \mathbb{R}\left[x^{2}\right]_{\leq 1} \rightarrow \mathcal{M}_{(2,1),(1,2)}$
$\operatorname{Sing}\left(\overline{\mathcal{M}}_{(2,1),(1,2)}\right)=\mathcal{M}_{(0,2),(1,2)}=\mathbb{R}\left[x^{2}\right]_{\leq 2}$

XV - XVII

Relative Boundary

$\partial \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}=$ points in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$ that are limits of sequences in $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}} \backslash \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$.

Relative Boundary

$\partial \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}=$ points in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$ that are limits of sequences in $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}} \backslash \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$.
Recall: $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{d}, \tilde{s}} \subseteq \overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}}=\overline{\mathcal{M}}_{\tilde{d}, \tilde{s}}$

Relative Boundary

$\partial \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}=$ points in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$ that are limits of sequences in $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}} \backslash \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$.
Recall: $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{\boldsymbol{d}}, \tilde{S}} \subseteq \overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}}=\overline{\mathcal{M}}_{\tilde{\boldsymbol{d}}, \tilde{\boldsymbol{s}}}$

- reduced boundary points: limits in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{s}}$ of sequences in $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}} \backslash \mathcal{M}_{\tilde{\boldsymbol{d}}, \tilde{\boldsymbol{s}}}$
- stride-1 boundary points: limits in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{s}}$ of sequences in $\mathcal{M}_{\tilde{d}, \tilde{s}} \backslash \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$

Relative Boundary

$\partial \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}=$ points in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$ that are limits of sequences in $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}} \backslash \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$.
Recall: $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{\boldsymbol{d}}, \tilde{S}} \subseteq \overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{S}}=\overline{\mathcal{M}}_{\tilde{\boldsymbol{d}}, \tilde{\boldsymbol{s}}}$

- reduced boundary points: limits in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{s}}$ of sequences in $\overline{\mathcal{M}}_{\boldsymbol{d}, \boldsymbol{s}} \backslash \mathcal{M}_{\tilde{\boldsymbol{d}}, \tilde{s}}$
- stride-1 boundary points: limits in $\mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$ of sequences in $\mathcal{M}_{\tilde{\boldsymbol{d}}, \tilde{\boldsymbol{S}}} \backslash \mathcal{M}_{\boldsymbol{d}, \boldsymbol{S}}$

reduced boundary points have at least codimension 2 stride-1 boundary points (if existent) have codimension 1

comparison

	linear dense	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}=1 \end{gathered}$	$\begin{gathered} \text { LCN } \\ \forall i: s_{i}>1 \end{gathered}$
$\begin{array}{r} \mathcal{M} \\ \partial \mathcal{M} \\ \operatorname{Sing}\left(\mathcal{M}^{\circ}\right) \\ \mu\left(\operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)\right) \end{array}$ critical points spurious?	algebraic variety \emptyset non-empty often in $\operatorname{Sing}(\mathcal{M})$ often	semialgebraic full-dimensional non-empty \emptyset often in $\partial \mathcal{M}$ often	Euclidean closed low-dimensional non-empty non-empty almost never in $\operatorname{Sing}\left(\mathcal{M}^{\circ}\right)$ or $\partial \mathcal{M}$ almost never

training a network $=$ minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.
A critical point $\theta \in \operatorname{Crit}\left(\mathcal{L}_{\mathcal{D}}\right)$ is called spurious if $\mu(\theta) \notin \operatorname{Crit}\left(\ell_{\mathcal{D}}\right)$.

