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feedforward neural networks

are parametrized families of functions

µ : RN −→M,

θ 7−→ fL,θ ◦ . . . ◦ f1,θ
M = function space / neuromanifold, L = # layers
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training a network

Given training data D, the goal is to minimize the loss

RN µ−→M `D−→ R.

Geometric questions:

How does the network architecture affect the geometry of the function
space?

How does the geometry of the function space impact the training of the
network?

In this talk:
What is the impact of changing from dense layers to convolutional layers?
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linear dense networks

In this example:

µ : R2×4 × R3×2 −→ R3×4,

(W1,W2) 7−→W2W1.

M = {W ∈ R3×4 | rank(W ) ≤ 2}

In general:

µ : Rk1×k0 × Rk2×k1 × . . .× RkL×kL−1 −→ RkL×k0 ,

(W1,W2, . . . ,WL) 7−→WL · · ·W2W1.

M = {W ∈ RkL×k0 | rank(W ) ≤ min(k0, . . . , kL)} is an algebraic variety and
we know its singularities etc.
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Linear Convolutional Networks (LCNs)
with 1D-convolutions

µ : R3 × R2 −→ R5,

(u, v) 7−→ Tv ,1Tu,2, where

Tu,2 =

[
u0 u1 u2 0 0
0 0 u0 u1 u2

]
Tv ,1 =

[
v0 v1

]
In general: µ : (w1, . . . ,wL) 7→ TwL,sL · · ·Tw1,s1 , where

Tw ,s =


w0 · · · ws · · · wk−1

w0 · · · wk−1
. . .

. . .

w0 · · · wk−1


is a convolutional matrix of stride s with filter w
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LCNs & sparse polynomial factorization
Observation: µ(w1, . . . ,wL) = TwL,sL · · ·Tw1,s1 is again a convolutional
matrix of stride s1 · · · sL.

Its filter can be computed via polynomial
multiplication:

For S ∈ Z>0, let

πS : Rk −→ R[xS ]≤k−1,

v 7−→ v0x
S(k−1) + v1x

S(k−2) + . . .+ vk−2x
S + vk−1

and πS(Tw ,s) := πS(w). Then:

π1(µ(w1, . . . ,wL)) = πSL(wL) · · ·πS1(w1), where Si := s1 · · · si−1.

Hence, we reinterpret µ as

µ : R[xS1 ]≤d1 × . . .× R[xSL ]≤dL −→ R[x ]≤d1S1+...+dLSL ,

(P1, . . . ,PL) 7−→ PL · · ·P1
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LCN function spaces

µ : R[xS1 ]≤d1 × . . .× R[xSL ]≤dL −→ R[x ]≤d ,where d :=
∑

i diSi

(P1, . . . ,PL) 7−→ PL · · ·P1,

Theorem: The function space Md ,S = im(µ) is a semi-algebraic,
Euclidean-closed subset of R[x ]≤d of dimension d1 + . . .+ dL + 1.

µ : R[x ]≤2 × R[x2]≤1 → R[x ]≤4 µ : R[x ]≤1 × R[x ]≤1 × R[x2]≤1 → R[x ]≤4
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LCN function spaces

µ : R[xS1 ]≤d1 × . . .× R[xSL ]≤dL −→ R[x ]≤d ,where d :=
∑

i diSi

(P1, . . . ,PL) 7−→ PL · · ·P1,

Theorem: The function space Md ,S = im(µ) is a semi-algebraic,
Euclidean-closed subset of R[x ]≤d of dimension d1 + . . .+ dL + 1.

Corollary: Md ,S is full-dimensional in R[x ]≤d if and only if all strides si = 1.
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comparison

linear LCN LCN
dense ∀i : si = 1 ∃i : si > 1

M algebraic variety semialgebraic & Euclidean closed
full-dimensional low-dimensional

∂M ∅ non-empty non-empty

Sing(M◦) non-empty ∅ non-empty

µ(Crit(LD)) often in Sing(M) often in ∂M ??

training a network = minimizing the loss LD : RN µ−→M `D−→ R.
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training with the squared error loss

Given training data D = {(Xi ,Yi ) ∈ Rk0 × RkL | i = 1, . . . ,N}, the squared
error loss on the function space is

`D : RkL×k0 −→ R,

T 7−→
N∑
i=1

‖Yi − TXi‖2.

Training an LCN minimizes the squared error loss on the parameter space:

LD : Rd1 × . . .× RdL µ−→Md ,S ⊆ RkL×k0 `D−→ R,
(w1, . . . ,wL) 7−→ TwL,sL · · ·Tw1,s1 7−→ `D(TwL,sL · · ·Tw1,s1)
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training LCNs with the squared error loss

LD : Rd1 × . . .× RdL µ−→Md ,S
`D−→ R

Theorem
Consider an LCN with all strides > 1. Let N ≥

∑
i diSi + 1.

For almost all data D ∈ (Rk0 × RkL)N , every critical point w of LD satisfies
one of the following:

µ(w) = 0, or

µ(w) is a smooth, interior point of Md ,S .
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comparison

linear LCN LCN
dense ∀i : si = 1 ∀i : si > 1

M algebraic variety semialgebraic & Euclidean closed
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Sing(M◦) non-empty ∅ non-empty
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Sing(M◦) or ∂M

critical points often often almost never
spurious?

training a network = minimizing the loss LD : RN µ−→M `D−→ R.

A critical point θ ∈ Crit(LD) is called spurious if µ(θ) /∈ Crit(`D).
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For almost all data D ∈ (Rk0 × RkL)N , every critical point w of LD satisfies
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µ(w) = 0, or

µ(w) is a smooth, interior point of Md ,S and w is a regular point of µ.
In particular, µ(w) is a critical point of `D|Reg(M◦d ,S ).
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reducing LCNs
µ : R[x ]≤2 × R[x2]≤1 → R[x ]≤4 µ : R[x ]≤1 × R[x ]≤1 × R[x2]≤1 → R[x ]≤4

R[x ]≤1 × R[x ]≤1 × R[x2]≤1 M(1,1,1),(1,1,2)

R[x ]≤2 × R[x2]≤1 M(2,1),(1,2)

Given an LCN (d ,S), merging neighboring layers with the same Si yields an
LCN (d̃ , S̃) with 1 = S̃1 < S̃2 < S̃3 < . . . (i.e., all strides > 1),
called the reduced LCN.
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Singularities

Lemma: Md ,S ⊆Md̃ ,S̃ and Md ,S =Md̃ ,S̃ ,

where · denotes the Zariski closure inside R[x ]≤d .

Theorem Let (d ,S) be a reduced LCN with L layers.

If L = 1 (i.e., any associated non-reduced LCN has all strides equal 1),
then Md ,S = R[x ]≤d .

If L > 1, degMd ,S > 1 and

Sing(Md ,S) = {0} ∪
⋃

d ′∈D
Md ′,S = {0} ∪

⋃
d ′∈D

Md ′,S ,

where D := {d ′ ∈ ZL
≥0 | Md ′,S (Md ,S}

= {d ′ ∈ ZL
≥0 | d ′ 6= d ,

∑L
i=1 d

′
i Si =

∑L
i=1 diSi ,∀l :

∑L
i=l d

′
i Si ≥

∑L
i=l diSi}
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Theorem Let (d ,S) be a reduced LCN with L layers.

If L = 1 (i.e., any associated non-reduced LCN has all strides equal 1),
then Md ,S = R[x ]≤d .

If L > 1, degMd ,S > 1 and
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Example

µ : R[x ]≤2 × R[x2]≤1 → R[x ]≤4 µ : R[x ]≤1 × R[x ]≤1 × R[x2]≤1 → R[x ]≤4

R[x ]≤2 × R[x2]≤1 →M(2,1),(1,2)

Sing(M(2,1),(1,2)) =

M(0,2),(1,2) = R[x2]≤2
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Relative Boundary
∂Md ,S = points in Md ,S that are limits of sequences in Md ,S \Md ,S .

Recall: Md ,S⊆Md̃ ,S̃ ⊆Md ,S =Md̃ ,S̃

reduced boundary points: limits in Md ,S of sequences in Md ,S \Md̃ ,S̃
stride-1 boundary points: limits in Md ,S of sequences in Md̃ ,S̃ \Md ,S

reduced boundary points have at least codimension 2
stride-1 boundary points (if existent) have codimension 1
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comparison

linear LCN LCN
dense ∀i : si = 1 ∀i : si > 1

M algebraic variety semialgebraic & Euclidean closed
full-dimensional low-dimensional

∂M ∅ non-empty non-empty

Sing(M◦) non-empty ∅ non-empty

µ(Crit(LD)) often in Sing(M) often in ∂M almost never in
Sing(M◦) or ∂M

critical points often often almost never
spurious?

training a network = minimizing the loss LD : RN µ−→M `D−→ R.

A critical point θ ∈ Crit(LD) is called spurious if µ(θ) /∈ Crit(`D).
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