understanding Linear Convolutional Neural Networks via sparse factorizations of real polynomials

Kathlén Kohn

joint work with

Guido Montúfar MPI MiS Leipzig & UCLA

KTH

Matthew Trager Amazon Alexa AI, NYC

feedforward neural networks

I - XVII

feedforward neural networks

feedforward neural networks

are parametrized families of functions $\mu : \mathbb{R}^{N} \longrightarrow \mathcal{M},$ $\theta \longmapsto f_{L,\theta} \circ \ldots \circ f_{1,\theta}$ $\mathcal{M} = \text{ function space / neuromanifold, } L = \# \text{ layers }$

training a network

Given training data \mathcal{D}_{r} the goal is to minimize the loss

 $\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$

training a network

Given training data \mathcal{D} , the goal is to minimize the loss

 $\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$

Geometric questions:

- How does the network architecture affect the geometry of the function space?
- How does the geometry of the function space impact the training of the network?

training a network

Given training data \mathcal{D} , the goal is to minimize the loss

 $\mathbb{R}^N \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$

Geometric questions:

- How does the network architecture affect the geometry of the function space?
- How does the geometry of the function space impact the training of the network?

In this talk:

What is the impact of changing from dense layers to convolutional layers?

linear dense networks

In this example:

 $\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} \longrightarrow \mathbb{R}^{3 \times 4},$ $(W_1, W_2) \longmapsto W_2 W_1.$

linear dense networks

In this example:

 $\begin{array}{c} \mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} \longrightarrow \mathbb{R}^{3 \times 4}, \\ (W_1, W_2) \longmapsto W_2 W_1. \end{array}$

 $\mathcal{M} = \{ \mathcal{W} \in \mathbb{R}^{3 \times 4} \mid \mathrm{rank}(\overline{\mathcal{W}) \leq 2} \}$

linear dense networks

In this example:

 $\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} \longrightarrow \mathbb{R}^{3 \times 4},$ $(W_1, W_2) \longmapsto W_2 W_1.$

 $\mathcal{M} = \{ \mathcal{W} \in \mathbb{R}^{3 \times 4} \mid \mathrm{rank}(\mathcal{W}) \leq 2 \}$

In general:

$$\mu: \mathbb{R}^{k_1 \times k_0} \times \mathbb{R}^{k_2 \times k_1} \times \ldots \times \mathbb{R}^{k_L \times k_{L-1}} \longrightarrow \mathbb{R}^{k_L \times k_0},$$
$$(W_1, W_2, \ldots, W_L) \longmapsto W_L \cdots W_2 W_1.$$

 $\mathcal{M} = \{W \in \mathbb{R}^{k_L \times k_0} \mid \operatorname{rank}(W) \leq \min(k_0, \ldots, k_L)\} \text{ is an algebraic variety and} we know its singularities etc.}$

 $\mu: \mathbb{R}^3 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$ $(u, v) \longmapsto \mathcal{T}_{v,1} \mathcal{T}_{u,2}, \text{ where }$

 $T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$ $T_{v,1} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$

 $\mu: \mathbb{R}^3 imes \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$ $(u, v) \longmapsto T_{v,1}T_{u,2}, \text{ where }$

 $T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$ $T_{v,1} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$

In general: $\mu : (w_1, \ldots, w_L) \mapsto T_{w_L, s_L} \cdots T_{w_1, s_1}$, where

 $\mu: \mathbb{R}^3 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$ $(u, v) \longmapsto T_{v,1}T_{u,2}, \text{ where }$

 $T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$ $T_{v,1} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$

In general: $\mu: (w_1, \ldots, w_L) \mapsto T_{w_L, s_L} \cdots T_{w_1, s_1}$, where

LCNs & sparse polynomial factorization Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$.

For $S \in \mathbb{Z}_{>0}$, let

 $\pi_{S} : \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}]_{\leq k-1},$ $v \longmapsto v_{0}x^{S(k-1)} + v_{1}x^{S(k-2)} + \ldots + v_{k-2}x^{S} + v_{k-1}$

For $S \in \mathbb{Z}_{>0}$, let

 $\pi_{S} : \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}]_{\leq k-1},$ $v \longmapsto v_{0}x^{S(k-1)} + v_{1}x^{S(k-2)} + \ldots + v_{k-2}x^{S} + v_{k-1}$

and $\pi_S(T_{w,s}) := \pi_S(w)$. Then:

For $S \in \mathbb{Z}_{>0}$, let

 $\pi_{S} : \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}]_{\leq k-1},$ $v \longmapsto v_{0}x^{S(k-1)} + v_{1}x^{S(k-2)} + \ldots + v_{k-2}x^{S} + v_{k-1}$

and $\pi_S(T_{w,s}) := \pi_S(w)$. Then:

 $\pi_1(\mu(w_1, \ldots, w_L)) = \pi_{S_L}(w_L) \cdots \pi_{S_1}(w_1), \text{ where } S_i := s_1 \cdots s_{i-1}.$

For $S \in \mathbb{Z}_{>0}$, let

 $\pi_{S} : \mathbb{R}^{k} \longrightarrow \mathbb{R}[x^{S}]_{\leq k-1},$ $v \longmapsto v_{0}x^{S(k-1)} + v_{1}x^{S(k-2)} + \ldots + v_{k-2}x^{S} + v_{k-1}$

and $\pi_S(T_{w,s}) := \pi_S(w)$. Then:

 $\pi_1(\mu(w_1, \ldots, w_L)) = \pi_{S_L}(w_L) \cdots \pi_{S_1}(w_1), \text{ where } S_i := s_1 \cdots s_{i-1}.$

Hence, we reinterpret μ as

 $\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} \times \ldots \times \mathbb{R}[x^{S_L}]_{\leq d_L} \longrightarrow \mathbb{R}[x]_{\leq d_1S_1 + \ldots + d_LS_L},$ $(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1$

\/ _ X\/

LCN function spaces

 $\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} \times \ldots \times \mathbb{R}[x^{S_L}]_{\leq d_l} \longrightarrow \mathbb{R}[x]_{\leq d}$, where $d:=\sum_i d_i S_i$ $(P_1,\ldots,P_L)\longmapsto P_L\cdots P_1,$

LCN function spaces

 $\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} \times \ldots \times \mathbb{R}[x^{S_L}]_{\leq d_L} \longrightarrow \mathbb{R}[x]_{\leq d}, \text{ where } d := \sum_i d_i S_i$ $(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1,$

Theorem: The function space $\mathcal{M}_{d,S} = \operatorname{im}(\mu)$ is a semi-algebraic, Euclidean-closed subset of $\mathbb{R}[x]_{\leq d}$ of dimension $d_1 + \ldots + d_L + 1$.

 $\mu: \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} \to \mathbb{R}[x]_{\leq 4}$

 $\mu: \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x^2]_{\leq 1} \to \overline{\mathbb{R}[x]_{\leq 4}}$ $\bigvee | - \bigvee \bigvee | |$

LCN function spaces

$$\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} \times \ldots \times \mathbb{R}[x^{S_L}]_{\leq d_L} \longrightarrow \mathbb{R}[x]_{\leq d}, \text{ where } d := \sum_i d_i S_i$$
$$(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1,$$

Theorem: The function space $\mathcal{M}_{d,S} = \operatorname{im}(\mu)$ is a semi-algebraic, Euclidean-closed subset of $\mathbb{R}[x]_{\leq d}$ of dimension $d_1 + \ldots + d_L + 1$.

Corollary: $\mathcal{M}_{d,S}$ is full-dimensional in $\mathbb{R}[x]_{\leq d}$ if and only if all strides $s_i = 1$.

	linear	LCN	LCN
	dense	$orall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety		Euclidean closed
		full-dimensional	low-dimensional
			VIII - XVI

	linear	LCN	LCN
	dense	$orall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$		non-empty	
		•	
		Cot x	
			\/III X\/I

	linear	LCN	LCN
	dense	$orall i:s_i=1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$		non-empty	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^N \xrightarrow{\mu} \mathcal{M} \xrightarrow{c_{\mathcal{D}}} \mathbb{R}$.

	linear	LCN	LCN
	dense	$orall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$		non-empty	
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$		often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$

	linear	LCN	LCN
	dense	$orall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$		often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$

	linear	LCN	LCN
	dense	$orall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	
$Sing(\mathcal{M}^\circ)$	non-empty		
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \stackrel{\mu}{\longrightarrow} \mathcal{M} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}.$

	linear	LCN	LCN
	dense	$orall i:s_i=1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \stackrel{\mu}{\longrightarrow} \mathcal{M} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}.$

	linear	LCN	LCN
	dense	$orall i:s_i=1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$??

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

training with the squared error loss

Given training data $\mathcal{D} = \{(X_i, Y_i) \in \mathbb{R}^{k_0} \times \mathbb{R}^{k_L} \mid i = 1, ..., N\}$, the squared error loss on the function space is

$$\ell_{\mathcal{D}} : \mathbb{R}^{k_L imes k_0} \longrightarrow \mathbb{R},$$

 $T \longmapsto \sum_{i=1}^N \|Y_i - TX_i\|^2.$

training with the squared error loss

Given training data $\mathcal{D} = \{(X_i, Y_i) \in \mathbb{R}^{k_0} \times \mathbb{R}^{k_L} \mid i = 1, ..., N\}$, the squared error loss on the function space is

$$\ell_{\mathcal{D}} : \mathbb{R}^{k_L imes k_0} \longrightarrow \mathbb{R},$$

 $T \longmapsto \sum_{i=1}^N \|Y_i - TX_i\|^2.$

Training an LCN minimizes the squared error loss on the parameter space:

$$\begin{array}{c} \mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{L}} \xrightarrow{\mu} \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathbb{R}^{k_{L} \times k_{0}} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}, \\ (w_{1}, \ldots, w_{L}) \longmapsto \mathcal{T}_{w_{L},s_{L}} \cdots \mathcal{T}_{w_{1},s_{1}} \longmapsto \ell_{\mathcal{D}}(\mathcal{T}_{w_{L},s_{L}} \cdots \mathcal{T}_{w_{1},s_{1}}) \end{array}$$

IX - XVII

training LCNs with the squared error loss

 $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} \times \ldots \times \mathbb{R}^{d_L} \xrightarrow{\mu} \mathcal{M}_{d, S} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

training LCNs with the squared error loss

 $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} \xrightarrow{} \dots \times \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{d, S} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(w) = 0$, or
- $\mu(w)$ is a smooth, interior point of $\mathcal{M}_{d,S}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$orall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in Sing (\mathcal{M})	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial\mathcal{M}$

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$

XI - XVII

	linear	LCN	LCN
	dense	$orall i:s_i=1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	2 Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial\mathcal{M}$

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$. A critical point $\theta \in \operatorname{Crit}(\mathcal{L}_{\mathcal{D}})$ is called **spurious** if $\mu(\theta) \notin \operatorname{Crit}(\ell_{\mathcal{D}})$.

	linear	LCN	LCN
	dense	$orall i:s_i=1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic & Euclidean closed	
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial\mathcal{M}$
critical points spurious?	often		

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^N \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$. A critical point $\theta \in \operatorname{Crit}(\mathcal{L}_{\mathcal{D}})$ is called spurious if $\mu(\theta) \notin \operatorname{Crit}(\ell_{\mathcal{D}})$.

	linear	LCN	LCN
	dense	$orall i:s_i=1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic & Euclidean closed	
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in Sing (\mathcal{M})	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial\mathcal{M}$
critical points spurious?	often	often	almost never

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$. A critical point $\theta \in \operatorname{Crit}(\mathcal{L}_{\mathcal{D}})$ is called spurious if $\mu(\theta) \notin \operatorname{Crit}(\ell_{\mathcal{D}})$.

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \xrightarrow{\mu} \mathcal{M}_{d,S} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \xrightarrow{\mu} \mathcal{M}_{d,S} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

$$ullet$$
 $\mu(oldsymbol{w})=$ 0, or

• $\mu(w)$ is a smooth, interior point of $\mathcal{M}_{d,S}$ and w is a regular point of μ .

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{d.S} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

$$ullet$$
 $\mu(oldsymbol{w})=$ 0, or

 μ(w) is a smooth, interior point of M_{d,S} and w is a regular point of μ.

 In particular, μ(w) is a critical point of ℓ_D|_{Reg(M^o_{d,S})}.

reducing LCNs

XIII - XVII

reducing LCNs

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\overline{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\overline{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN with \boldsymbol{L} layers.

 If L = 1 (i.e., any associated non-reduced LCN has all strides equal 1), then M_{d,S} = ℝ[x]_{≤d}.

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\overline{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN with L layers.

- If L = 1 (i.e., any associated non-reduced LCN has all strides equal 1), then M_{d,S} = ℝ[x]_{≤d}.
- If L > 1, $\deg \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} > 1$ and

 $\operatorname{Sing}(\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}}) = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \mathcal{M}_{\boldsymbol{d}',\boldsymbol{S}},$

I\/ _ X\/

where $D := \{ \boldsymbol{d}' \in \mathbb{Z}_{\geq 0}^L \mid \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} \subsetneq \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \}$

Lemma: $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$ and $\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} = \overline{\mathcal{M}}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$, where $\overline{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let $(\boldsymbol{d}, \boldsymbol{S})$ be a reduced LCN with L layers.

- If L = 1 (i.e., any associated non-reduced LCN has all strides equal 1), then M_{d,S} = ℝ[x]_{≤d}.
- If L > 1, $\deg \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} > 1$ and

$$\operatorname{Sing}(\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}}) = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \mathcal{M}_{\boldsymbol{d}',\boldsymbol{S}}$$

where $D := \{ \boldsymbol{d}' \in \mathbb{Z}_{\geq 0}^{L} \mid \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} \subsetneq \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \}$ = $\{ \boldsymbol{d}' \in \mathbb{Z}_{\geq 0}^{L} \mid \boldsymbol{d}' \neq \boldsymbol{d}, \sum_{i=1}^{L} d_{i}'S_{i} = \sum_{i=1}^{L} d_{i}S_{i}, \forall l : \sum_{i=l}^{L} d_{i}'S_{i} \ge \sum_{i=l}^{L} d_{i}S_{i} \}$

XIV - XVII

Example

$\mu: \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} \to \mathbb{R}[x]_{\leq 4} \qquad \mu: \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x^2]_{\leq 1} \to \mathbb{R}[x]_{\leq 4}$

 $\mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} \to \mathcal{M}_{(2,1),(1,2)}$ Sing $(\overline{\mathcal{M}}_{(2,1),(1,2)}) =$

Example

$\mu: \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} \to \mathbb{R}[x]_{\leq 4} \qquad \mu: \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x^2]_{\leq 1} \to \mathbb{R}[x]_{\leq 4}$

V_- XV/II

$$\begin{split} \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} &\rightarrow \mathcal{M}_{(2,1),(1,2)}\\ \operatorname{Sing}(\overline{\mathcal{M}}_{(2,1),(1,2)}) &= \mathcal{M}_{(0,2),(1,2)} = \mathbb{R}[x^2]_{\leq 2} \end{split}$$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

 $\partial \mathcal{M}_{d,S} = \text{points in } \mathcal{M}_{d,S} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{d,S} \setminus \mathcal{M}_{d,S}.$ Recall: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}} \subseteq \overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

 $\text{Recall: } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathcal{M}_{\boldsymbol{\tilde{d}},\boldsymbol{\tilde{S}}} \subseteq \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} = \overline{\mathcal{M}}_{\boldsymbol{\tilde{d}},\boldsymbol{\tilde{S}}}$

- reduced boundary points: limits in $\mathcal{M}_{d,S}$ of sequences in $\overline{\mathcal{M}}_{d,S} \setminus \mathcal{M}_{\tilde{d},\tilde{S}}$
- stride-1 boundary points: limits in $\mathcal{M}_{d,S}$ of sequences in $\mathcal{M}_{\tilde{d},\tilde{S}} \setminus \mathcal{M}_{d,S}$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} =$ points in $\mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}$ that are limits of sequences in $\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}$.

- reduced boundary points: limits in $\mathcal{M}_{d,S}$ of sequences in $\overline{\mathcal{M}}_{d,S} \setminus \mathcal{M}_{\tilde{d},\tilde{S}}$
- stride-1 boundary points: limits in $\mathcal{M}_{d,S}$ of sequences in $\mathcal{M}_{\tilde{d},\tilde{S}} \setminus \mathcal{M}_{d,S}$

reduced boundary points have at least codimension 2 stride-1 boundary points (if existent) have codimension 1

	linear	LCN	LCN
	dense	$orall i:s_i=1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic & Euclidean closed	
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in Sing (\mathcal{M})	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial\mathcal{M}$
critical points spurious?	often	often	almost never

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$. A critical point $\theta \in \operatorname{Crit}(\mathcal{L}_{\mathcal{D}})$ is called **spurious** if $\mu(\theta) \notin \operatorname{Crit}(\ell_{\mathcal{D}})$.